运动生物化学考题
运动生物化学试题及答案

运动生物化学试题及答案一、选择题(每题2分,共20分)1. 运动时,人体主要的能量来源是:A. 蛋白质B. 脂肪C. 碳水化合物D. 维生素答案:C2. 肌肉收缩时,肌肉细胞中哪种物质的含量会减少?A. ATPB. ADPC. 肌酸磷酸D. 乳酸答案:A3. 运动过程中,肌肉细胞内哪种物质的含量会增加?A. ATPB. ADPC. 肌酸磷酸D. 乳酸答案:D4. 哪种维生素对肌肉功能至关重要?A. 维生素AB. 维生素BC. 维生素CD. 维生素D答案:B5. 运动后,肌肉酸痛的主要原因是:A. 肌肉拉伤B. 乳酸积累C. 肌肉疲劳D. 缺乏维生素答案:B6. 哪种物质在肌肉收缩过程中起到关键作用?A. 钙离子B. 钾离子C. 钠离子D. 镁离子答案:A7. 肌肉疲劳时,肌肉细胞内哪种物质的含量会增加?A. ATPB. ADPC. 肌酸磷酸D. 乳酸答案:B8. 运动时,人体主要的供能系统是:A. 磷酸系统B. 糖酵解系统C. 有氧系统D. 无氧系统答案:C9. 肌肉收缩的直接能量来源是:A. ATPB. ADPC. 肌酸磷酸D. 乳酸答案:A10. 肌肉耐力训练可以提高哪种物质的含量?A. ATPB. ADPC. 肌酸磷酸D. 乳酸答案:C二、填空题(每空1分,共20分)1. 肌肉收缩的能量主要来自________,其分解产生的能量用于肌肉收缩。
答案:ATP2. 运动时,肌肉细胞内________的含量会迅速减少,而________的含量会增加。
答案:ATP;ADP3. 肌肉疲劳时,肌肉细胞内________的含量会增加,导致肌肉收缩能力下降。
答案:乳酸4. 维生素B群中,________对肌肉功能尤为重要,它参与能量代谢。
答案:维生素B15. 肌肉收缩时,钙离子的释放和再摄取是肌肉收缩和舒张的关键过程,这一过程主要依赖于________。
答案:肌浆网6. 肌肉耐力训练可以提高肌肉细胞内________的含量,从而提高肌肉的耐力。
《运动生物化学》的考试题目及参考答案

1.多糖: 由多个(>10个)单糖分子缩合而成的糖类,不溶于水,皆无甜味,也无还原性。
2.生物氧化:有机物质在生物体细胞内氧化分解产生二氧化碳、水,并释放出大量能量的过程称为生物氧化。
又称细胞呼吸。
3.必需脂肪酸:是指人体自身不能合成或合成速率低不能满足人体需要,必须从食物中摄取进行补充的氨基酸。
4.运动性疲劳:在运动过程中,当机体生理过程不能继续保持着特定水平上进行和或不能维持预定的运动强度时,即称之为运动性疲劳。
5.高住低训:利用高原或人工低氧环境进行的训练统称为高住低训。
6.运动营养品:是指适用于专业和业余运动人群食用的、能满足运动人体的特殊营养需要,或具有特定运动营养保健功能的食品及口服制品。
7.α-氨基酸:是指在紧连羧基的碳原子上同时连有了一个氨基丁氨基酸。
8.多不饱和脂肪酸:有多个双键的脂肪酸称为多不饱和脂肪酸或高度不饱和脂肪酸。
9.同工酶:指催化同一种化学反应,而酶蛋白的分子结构、理化性质及生物学性质不同的一类酶。
10.酮体:是脂肪酸在肝内分解氧化时代特有的中间代谢产物,包括乙酰乙酸、β——羟丁酸和丙酮。
11.缓冲溶液:一种弱酸和该弱酸盐所形成的、具有缓冲酸碱能力的混合溶液。
12.双糖:由2分子单糖以糖苷键连接而成,水解后又生成2分子单糖。
13.酶活性:酶所具有的催化能力称为酶活性,或酶活力。
14.转氨基作用:是某一种氨基酸与α—酮酸进行氨基转移反应,生成相应的α—酮酸和另一种氨基酸。
2.简述糖的有氧氧化分哪两个阶段?第一阶段是由葡萄糖生成的丙酮酸,在细胞质中进行;第二阶段是丙酮酸进入线粒体中,经氧化脱羧生成乙酰CoA进入三羧酸循环,进而氧化生成CO2和H2O,同时NADH+H+等可经过呼吸链传递,伴随氧化磷酸化过程生成H2O和A TP。
3. 什么是β-氧化?一次β-氧化包括哪几个步骤?在氧供应充足的条件下,脂肪酸分解为乙酰CoA,彻底氧化成C2O和H2O,其碳链的断裂是在β位碳原子出发生的,故把脂肪酸的氧化分解称为β—氧化。
习题-运动生物化学

习题-运动生物化学第一章物质代谢与运动概述一、单项选择题:1. 运动生物化学成为独立学科的年代是()。
A. 1955年B. 1968年C. 1966年D. 1979年E1982年2. 运动生物化学的一项重要任务是()。
A. 研究运动对机体组成的影响B. 阐明激素作用机制C. 研究物质的代谢D. 营养的补充E. 研究运动人体的物质组成3.酶促反应中决定反应特异性的是()A. 酶蛋白B. 辅基C. 辅酶D. 金属离子 E .变构剂4.酶促反应速度(V)达最大反应速度(Vm)的60%时,底物浓度[S]为()A. 1 KmB. 2 KmC. 1.5 KmD. 2.5 KmE. 3 Km5.下列哪个化学物质不属于运动人体的能源物质。
()A.葡萄糖B.维生素CD.软脂酸E.糖原6.酶分子中将底物转变为产物的基团是()A. 结合基团B. 催化基团C. 碱性基团D. 酸性基团E. 疏水基团7.温度对酶活性的影响是()A. 低温可以使酶失活B. 催化的反应速度随温度的升高而增加C. 最适温度是酶的特征性常数D. 最适温度随反应的时间而有所变化E. 以上全对8.关于酶活性中心的叙述,哪项不正确()A. 酶与底物接触只限于酶分子上与酶活性密切有关的较小区域B. 必需基团可位于活性中心之内,也可位于活性中心之外C. 一般来说,总是多肽链的一级结构上相邻的几个氨基酸的残基相对集中,形成酶的活性中心D. 酶原激活实际上就是完整的活性中心形成的过程E. 当底物分子与酶分子相接触时,可引起酶活性中心的构象改变9.一种酶作用于多种底物,其天然底物的Km是()A. 与其他底物相同B. 最大C. 最小D. 居中E. 与Km相同10.某一酶促反应的速度为最大反应速度的80%时,Km等于()A. [S]C. 0.25 [S]D. 0.4 [S]E. 0.8 [S]11.缺乏可导致贫血的物质有()A. 维生素CB. 维生素DC. 维生素B1D. 尼克酸E. 维生素B1212.生物氧化是指()A. 生物体内的脱氢反应B. 生物体内释放电子的反应C. 营养物质氧化生成水和二氧化碳、并释放能量的过程D. 生物体内的脱氧反应E. 生物体内的加氧反应13. 生物氧化过程中CO2的生成方式是()A. 碳与氧直接结合产生B. 碳与氧间接结合产生C. 在电子传递过程中产生D. 由有机酸脱羧产生E. 以上均不对14.呼吸链中各种氧化还原对的标准氧化还原电位最高的是()A. NAD+/NADH+H+B. FMN/FMNH2C. FAD/FADH2D. Cyt a Fe3+/Fe2+E. 1/2 O2/ H2O15.NADH氧化呼吸链中与磷酸化相偶联的部位有几个()A. 1B. 3C. 2D. 4E. 516.人体生理活动的直接能量供给者是()A. 葡萄糖B. 脂肪酸C. ATPD. ADPE. 乙酰CoA17.下列化合物中不含有高能磷酸键的是()A. 磷酸肌酸B. ADPC. UTPD. 琥珀酰CoAE. 磷酸烯醇式丙酮酸18. 胞液中的NADH+H+经苹果酸-天冬氨酸穿梭进入线粒体进行氧化磷酸化,生成几分子ATP()A. 1B. 1.5C. 2.5D. 4E. 519.下列化合物中不含有高能磷酸键的是()A. 磷酸肌酸B. ADPC. UTPD. 琥珀酰CoAE. 磷酸烯醇式丙酮酸20. 胞液中的NADH+H+经苹果酸-天冬氨酸穿梭进入线粒体进行氧化磷酸化,生成几分子ATP()A. 1B. 1.5C. 2.5D. 4E. 5二、多项选择题:1.酶原的激活在于()A. 形成酶的活性中心B. 除去酶的非蛋白质部分C. 暴露活性中心D. 酶原分子相互聚合E. 酶与辅酶结合2.酶促反应中决定酶特异性和反应类型的部分是()A. 底物B. 酶蛋白C. 辅基或辅酶D. 金属离子E.酶的活性中心3.必需基团()A. 与催化作用直接有关B. 与酶分子活性中心特定的空间结构有关C. 由必需氨基酸提供D. 仅存在于活性中心E. 与酶分子结合底物有关4.影响酶反应速度的因素是()A. 酶浓度B. PH值C. 抑制剂D. 激活剂E. 温度5.运动时血清酶活性的影响因素有哪些()A.运动时间B.运动强度C.运动方式D.运动环境E.训练水平6.运动人体的物质代谢的主要特点()A.物质代谢相互联系的整体性B.严格精细的代谢调控性C.运动过程不同阶段物质代谢的侧重性D.能量生成形式的同一性E.运动时营养物质分解代谢速度加快7.NADH氧化呼吸链的组成有哪些复合体()A. 复合体ⅠB. 复合体ⅠC. 复合体ⅠD. 复合体ⅠE. 复合体Ⅰ8.关于呼吸链的描述正确的是()A. 线粒体中存在两条呼吸链B. 两条呼吸链的汇合点是CoQC. 在两条呼吸链中最主要的是NADH氧化呼吸链D. 每对氢通过琥珀酸氧化呼吸链生成1.5分子ATPE. 两条呼吸链的组成完全不同9.体内生成ATP的方式有()A. 底物水平磷酸化B. 氧化磷酸化C. 苹果酸-天冬氨酸穿梭D. 丙酮酸羧化支路E. -磷酸甘油穿梭10.电子传递链中氧化磷酸化相偶联的部位是()A. NADH→CoQB. FAD→CoQC. CoQ→Cyt cD. Cyt c→Cyt aa3E. Cyt aa3→O2三、问答题:1.运动人体的物质组成有那些?各有何功能2.运动对人体化学物质的影响3.什么是呼吸链?体内ATP如何生成?第二章糖代谢与运动一、单项选择题:1.一般所说的血糖指的是血液中的()A.果糖B.糖原C.葡萄糖D.6-磷酸葡萄糖E.乳糖2.维持大脑正常生理机能所需的能源物质主要来自()A.大脑的糖储备B.肌糖原C.肌肉中的葡萄糖D.血液中的葡萄糖E.肝糖原3.多糖在动物体内的储存形式有()A.肝糖原B.淀粉C.血糖D.糖脂E.糖蛋白4.一分子乙酰辅酶A彻底氧化释放的能量可合成()ATPA.10B.12C.15D.20E.305.大强度运动持续30秒至90秒时,主要由()提供能量供运动肌收缩利用。
运动生物化学测试题

第一小组:一.选择题:1、下列哪个酶不属于糖酵解酶类(B)A.磷酸化酶B.肌酸激酶C.磷酸果糖基酶D.乳酸脱氢酶2、下列不属于生物氧化意义的是(D)A.能量逐渐释放,持续利用B.合成人体的直接能源A TPC.产生热量,维持体温D.加速新陈代谢3、乳酸阈(乳酸无氧阈)强度训练,主要发展(C )供能能力的训练A.磷酸原系统B.无氧代谢C.有氧代谢D.神经系统4、短时间剧烈运动时,血糖浓度变化的趋势是(D)A.上升B.先不变后上升C.下降D.无明显变化5、耐力训练可以提高脂肪的分解代谢水平,主要是提高了(A)A.HDLB.CMC.VLDLD.LDL二.填空题:1.运动时人体的主要三个供能系统是磷酸原系统、糖酵解系统、糖有氧氧化系统2.糖酵解是体内组织的葡萄糖/糖原在无氧条件下分解生成乳酸同时释放能量的过程。
3.糖酵解过程中的关键霉是磷酸果糖激素酶4.酶是生物细胞产生的具有催化功能的蛋白质5.糖异生是非糖物质转变成为葡糖糖/糖原的过程三.是非题:1.乳酸在体内重新合成葡萄糖和糖原的代谢途经属于糖异生过程。
(×)2.三磷酸腺苷和磷酸肌酸是人体内重要的能源物质(√)3.糖酵解是运动时尤其是长时间大强度运动时的重要能量代谢(×)4.绝大多数酶的化学本质是蛋白质(√)5.糖是大脑的主要能源物质(√)四.问答题:1.运动时糖的生物学功能答:(1)糖可以提供机体所需的能量;(2)糖对脂肪代谢具有调节作用;(3)糖具有节约蛋白质的作用;(4)糖可以促进运动性疲劳的恢复2.试述耐力训练对肝糖原利用的影响答:耐力训练适应后,运动肌脂肪酸氧化供能的比例提高,引起运动肌吸收利用血糖的比例降低,防止肝糖原的过多分解。
这种适应性变化的意义在于提高血糖正常水平的维持能力,有利于保持长时间运动能力和防止低血糖症的发生.第二大组:一.选择题:1.运动生物化学的主要研究对象是(A)A.人体B.植物体C.生物体D.微生物2.下列哪个化学物质不属于运动人体的能源物质(B)A.葡萄糖B.维生素cC.氨基酸D.软脂酸3.骨骼肌中_相对较多(D)A.LDH1B.LDH2C.LDH3D.LDH44.ATP的分子结构构成成分中不包括(D)A.腺嘌呤B.核糖C.磷酸基团D.核酸5.下列哪项不是糖异生的原料(C)A.甘油B.乙酰辅酶C.乳酸D.生糖氨基酸二.填空题:1.酶根据其化学性质组成可分为单纯酶、结合酶两类2.ATP是由腺嘌呤、核糖、三个磷酸基团构成的核苷酸3.在肝脏中合成并储存的糖称为肝糖原4.糖有氧代谢合成的ATP是糖酵解的18~19倍5.呼吸链有NADH呼吸链、琥珀酸呼吸链两条三.是非题:1.三磷酸腺苷(ATP)是肌肉收缩时唯一的直接能源物质(√)2.CP在磷酸激酶(CK)催化下快速用于ADP磷酸化合成ATP(√)3.糖是自然界存在的含量最丰富的物质之一(√)4.通常把维持人体正常生长所需而体内又不能合成的脂肪酸称为非必需脂肪酸(×)5.维生素既不是体内的能源物质也不是细胞的结构材料(√)四.问答题:1.运动时ATP的生物化学功能是什么?书:P8~P92.影响酶促反应的速率的因素是什么?书P31第三小组:一.判断题1.所有的糖都符合。
运动生物化学试题库

运动生物化学试题(Ⅰ)一、问答题(40分4×10分)1、何谓乳酸循环,它在体育运动中有何意义?并分析中低强度运动开始时产生乳酸的原因。
2、分析“蛋炒饭”中主要营养素在代谢中存在的相互转变关系。
3、计算糖原中的1分子葡萄糖单位彻底氧化产生的ATP数,并写出ATP生成的步骤。
4、分析400米跑的供能过程及供能特点,训练中通常采用何种训练方法发展其供能能力,如何利用血乳酸评价训练效果及供能能力二、名词解释(20分)1、支链氨基酸2、运动性贫血3、糖异生4、维生素5、血糖6、脂肪酸ß-氧化7、酶8、糖酵解9、兴奋剂10、生物氧化三、填空(20分)1、马拉松跑时肌肉消耗的能量主要来自。
2、、正常人空腹血糖浓度为。
3、糖异生的原料可以是、、。
4、1分子乙酰COA进入三羧酸循环可产生分子ATP。
5、NH3在体内主要代谢途径为在合成,由排出。
7、酮体包括。
在中形成,在中利用。
8、糖酵解的供能原料是产物是。
9、评价运动机能状态常用的生化指标为、、。
四、选择(10分)1、运动后测定血乳酸的采血时间一般是。
A、即刻B、运动后10分钟C、运动后3~5分钟D、时间不限2、糖与运动能力关系密切,要提高肌糖原的贮备,必须采用以提高运动能力。
A、高糖膳食与运动相结合B、高糖膳食C、高脂、高糖膳食D、运动中补充高渗含糖饮料3、ß—阻断剂是违禁药物,在——项目中常被采用。
A、射击 B 、健美C、长跑D、游泳4、碱盐的摄取可提高项目的运动能力。
A、100米跑B、马拉松C、400米跑D、举重5、1~2分钟运动能力下降的主要原因为A、CP减少B、肌糖原消耗C、肌肉PH下降D、血糖降低6、评定一个耐力运动员有氧代谢能力的高低通常用。
A、乳酸阈跑速B、尿肌酐C、血尿素值D、尿中蛋白总量7、发展糖酵解供能系统,对提高——运动能力最重要。
A、速度B、速度耐力C、耐力D、爆发力7、维生素D可A、促进肠道钙、磷吸收B、维持生殖机能C、维持正常视力8、糖酵解发生在——A、线粒体B、核糖体C、细胞浆D、内质网9、催化CP分解,生成A TP的酶是A、CKB、肌激酶C、A TP酶D、磷酸化酶10、甘油分解代谢发生在——A、肾脏B、肝脏C、大脑D、骨骼肌五、判断(10分)1、生物氧化的部位在细胞浆内()。
运动生物化学考题

运动生物化学考题一.名词说明:〔每题4分,共24分〕1.电子传递链〔呼吸链〕2.底物水平磷酸化〔胞液〕3.糖酵解作用4.酮体5.氨基酸代谢库6.运动性疲劳二.填空题:〔每空1分,共25分〕1.运动生物化学是生物化学的分支,是研究时体内的化学变化即及其调剂的特点与规律,研究运动引起体内变化及其的一门学科。
是从生物化学和生理学的基础上进展起来的,是体育科学和生物化学及生理学的结合。
2.据化学组成,酶能够分为:类和类,在结合蛋白酶类中的蛋白质部分称之为,非蛋白质部分称为〔或辅助因子〕。
3.人体各种运动中所需要的能量分别由三种不同的能源系统供给。
即、、。
4.生物氧化中水的生成是通过电子呼吸链进行的,在呼吸链上有两条呼吸链,一条为:NADH 氧化呼吸链,一分子NADH进入呼吸链后可产生分子的ATP;另一条为FADH2氧化呼吸链,一分子FADH2进入呼吸链后可产生分子A TP。
在肝脏,每分子甘油氧化生成乳酸时,开释能量可合成A TP;假如完全氧化生成CO2和H2O时,那么开释出的能量可合成A TP。
5.正常人血氨浓度一样不超过μmol/L。
评判运动时体内蛋白质分解代谢的常用指标是尿素氮;尿中。
血尿素在安静正常值为毫摩尔/升6.运动强度的生化指标有、、;运动负荷量的生化评定指标要紧有:、、、。
2分,论述2分,共16分〕1.安静时,运动员血清酶活性处于正常范畴水平或正常水平的高限;运动后或次日晨血清酶活性升高;血清中酶浓度升高多少与运动连续时刻、强度和训练水平有关。
运动员安静时血清升高是细胞机能下降的一种表现,属于病理性变化。
2. 底物水平磷酸化与氧化磷酸化差不多上在线粒体中进行的。
3. 所有的氨基酸都能够参与转氨基作用。
4. 脂肪分子中那么仅甘油部分可经糖异生作用转换为糖。
脂肪酸不能转化为糖。
四、简答题:〔每题5分,共25分〕1.简述三大营养物质〔糖原、脂肪、蛋白质〕生物氧化的共同规律。
2.从葡萄糖至1,6-2磷酸果糖生成消耗多少A TP? 消耗ATP的作用是什么?3.糖酵解过程可净合成多少分子ATP? 依照运动实践谈谈糖酵解是何种运动状态下的要紧能量来源。
运动生物化学

运动生化复习题1、运动生物化学的研究内容:①运动对人体化学组成的影响②运动时人体物质代谢和能量代谢的特点与规律③运动训练的生化分析④体育锻炼的生化分析2、分别简述CP,ATP在运动中的功能特点及在合成途径?答:ATP特点:①ATP是肌肉工作时唯一的直接能源②ATP含量少,转换率而快③ATP不能透过细胞膜,只能细胞内生成而被利用。
途径:CP的转化;糖的酵解;糖,脂肪,蛋白质的有氧代谢。
CP特点:①存高能磷酸键②提供能量快速合成ATP③是线粒体内外的能量快传递。
途径:CR+ATP c k CP+ADP。
3、简述糖在不同运动状态下的代谢过程及其功能意义?答:①无氧代谢:葡萄糖→(无氧)丙酮酸→(LHD5)2乳酸→2ATP;意义:糖酵解是短时间(30-90S)激烈运动时肌肉获得能量的重要来源,速度耐力运动时,肌肉所需的能量主要通过糖酵解方式来获得。
②有氧代谢:葡萄糖→丙酮酸→(有氧(氧化磷酸化)乙酰COA→(三羧酸循环)CO2+H2O+36ATP;意义:糖的有氧代谢是长时间大强度运动的重要来源,糖的有氧化是数分钟以上的耐力性运动项目的重要来源。
4、影响骨骼肌摄取利用血糖的因素?迅速长时间全力运动过程中血糖浓度变化特点并分析血糖调节机制?答:因素:①不同强度运动时血糖的利用②持续运动时血糖的利用③不同肌糖原储量时血糖的利用。
特点:1-2分钟,变化不明显;4-10分钟,浓度明显上升;超过30分钟以上下降。
机制:运动时血糖浓度的调节;血糖升高时,甘糖原的分解与糖异生交感神经作用及肾上腺素,胰高血糖,糖皮质素和生长激素分泌量增加5、运动血浆游离脂肪酸的利用有何影响?答:①安静时,动脉血游离脂肪酸是骨骼肌的基本燃料②短时间极量或高强度运动时,骨骼肌摄取血浆游离脂肪酸的数量有限,血浆游离脂肪酸供能意义不大。
③长时间中低强度运动中,血浆游离脂肪酸在骨骼肌的功能起关键作用。
④运动时血浆游离脂肪酸利用的影响因素:运动强度与运动持续时间;肌纤维类型;血浆游离脂肪酸浓度;耐力水平;营养干预;环境条件。
运动生物化学的考试资料

第一章一、单选题1. 1分子ATP分子内含有()高能磷酸键。
A、1B、2C、3D、42. ATP储量最多的组织是()。
A、心肌B、肝脏C、骨骼肌D、肾脏3. 骨骼肌收缩时唯一的直接能源物质是()。
A、糖B、脂肪C、CPD、ATP4. 体内快速能量储存体是()。
A、CPB、ATPC、ADPD、AMP5. 线粒内合成的ATP,不能直接透过线粒体膜,故要把能量传递给工作肌纤维,必须通过()实现。
A、工作肌内渗透压的改变B、工作肌肌节构型变化C、工作肌中肌酸与磷酸肌酸互变D、工作肌强烈收缩6. 组成ATP分子的糖是()。
A、核糖B、脱氧核糖C、葡萄糖D、果糖7. 催化CP分子合成ATP酶是()。
A、CKB、MKC、ATP酶D、磷酸化酶8. CP再合成速度较快,()CP恢复一半,()基本恢复到运动前水平A、21s,5minB、60s,2minC、21s,3minD、60s,3min9. 多糖在人体内主要储存形式是()。
A、血糖B、肝糖原和肌糖原C、糖蛋白D、纤维素10. 血糖的主要成分是()。
A、果糖B、糖原C、葡萄糖D、乳糖11. 下列物质除()外,其余能为人体消化。
A、淀粉B、乳糖C、纤维素D、果糖12. 维持大脑正常生理机能所需的能源物质主要来自()。
A、大脑的糖储备B、肌糖原C、肌肉中的葡萄糖D、血液中的葡萄糖13. 储存糖原最多的组织是()。
A、肝B、肌肉C、肾D、心14. 低血糖时首先受影响的器官是(),因此,运动时低血糖会引起神经中枢疲劳。
A、脑B、肝C、心D、肌肉15. 氧化1g脂肪可释放37.71KJ热能,而氧化1克糖可释放18KJ热能,原因是脂肪含()。
A、“C、H”元素多B、“O”元素多C、“C、O”元素多D、“C”元素多16. 下列关于脂肪的阐述正确是()。
A、脂肪又称类脂B、就是甘油脂类C、脂肪是体内直接供能者D、脂肪又称甘油三酯17. 关于脂肪的生物学功能错误的是()。
A、供能B、储能C、抗震D、构成生物膜18. 血浆中HDL的主要功能是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
得分
名词解释:(每题4分,共24分)
1.电子传递链(呼吸链)
2.底物水平磷酸化(胞液)
3.糖酵解作用
4.酮体
5.氨基酸代谢库
6.运动性疲劳
得分
填空题:(每空1分,共25分)
1.运动生物化学是生物化学的分支,是研究时体内的化学变化即及其调节的特点与规律,研究运动引起体内变化及其的一门学科.是从生物化学和生理学的基础上发展起来的,是体育科学和生物化学及生理学的结合.
2.据化学组成,酶可以分为: 类和类,在结合蛋白酶类中的蛋白质部分称之为,非蛋白质部分称为(或辅助因子).
3.人体各种运动中所需要的能量分别由三种不同的能源系统供给.即, , .
4.生物氧化中水的生成是通过电子呼吸链进行的,在呼吸链上有两条呼吸链,一条为:NADH氧化呼吸链,一分子NADH进入呼吸链后可产生分子的ATP;另一条为FADH2氧化呼吸链,一分子FADH2进入呼吸链后可产生分子ATP.
在肝脏,每分子甘油氧化生成乳酸时,释放能量可合成ATP;如果完全氧化生成CO2和H2O时,则释放出的能量可合成ATP.
5.正常人血氨浓度一般不超过μmol/L.
评价运动时体内蛋白质分解代谢的常用指标是尿素氮;尿中.
血尿素在安静正常值为毫摩尔/升
6.运动强度的生化指标有, , ;运动负荷量的生化评定指标主要有: , , , .
得分
三,辨析题:(判断正误,如果表述错误,请将正确的表述论述出来.每题判断正误2分,论述2分,共16分)
1.安静时,运动员血清酶活性处于正常范围水平或正常水平的高限;运动后或次日晨血清酶活性升高;血清中酶浓度升高多少与运动持续时间,强度和训练水平有关.运动员安静时血清升高是细胞机能下降的一种表现,属于病理性变化.
2. 底物水平磷酸化与氧化磷酸化都是在线粒体中进行的.
3. 所有的氨基酸都可以参与转氨基作用.
4. 脂肪分子中则仅甘油部分可经糖异生作用转换为糖.脂肪酸不能转化为糖.
得分
简答题:(每题5分,共25分)
1.简述三大营养物质(糖原,脂肪,蛋白质)生物氧化的共同规律.
2.从葡萄糖至1,6-2磷酸果糖生成消耗多少ATP 消耗ATP的作用是什么
3.糖酵解过程可净合成多少分子ATP 根据运动实践谈谈糖酵解是何种运动状态下的主要能量来源.
4.描述糖有氧氧化的基本过程.(三个步骤)
5.乳酸消除的意义是什么
五.总结三大功能系统的特点(10分).
名词解释
1.电子传递链(呼吸链)
在线粒体内膜上,一系列递氢,递电子体按一定顺序排列,构成的一条连锁反应体系.由于此反应体系与细胞摄取氧的呼吸过程有关,故又称为呼吸链.
2.底物水平磷酸化(胞液)
直接由代谢物分子的高能磷酸键转移给ADP生成ATP的方式,称为底物水平磷酸化,简称底物磷酸化.
3.糖酵解作用
在无氧条件下,葡萄糖进行分解形成2分子的丙酮酸并提供能量.这一过程称为糖酵解作用.是一切有机体中普遍存在的葡萄糖降解途径,也是葡萄糖分解代谢所经历的共同途径.也称为EMP途径.糖酵解是在细胞质中进行.不论有氧还是无氧条件均能发生.
4.在肌肉等组织的细胞内,脂肪酸能够完全氧化成二氧化碳和水.但是,在某些组织如肝脏细胞内脂肪酸氧化不完全, β—氧化生成的乙酰辅酶A大于量堆积,而缩合生成乙酰乙酸, β—羟丁酸和丙酮等中间代谢产物,总称酮体.
5.氨基酸代谢库(metabolic pool): 食物蛋白经消化吸收的氨基酸(外源性氨基酸)与体内组织蛋白降解产生的氨基酸(内源性氨基酸)混在一起,分布于体内各处参与代谢,称为氨基酸代谢库.
6.运动性疲劳的概念:有机体生理过程不能维持其机能在特定水平和/或不能维持预定的运动强度.
二.填空
1.人体运动;物质代谢;分子水平适应性;机理
2.单纯蛋白酶;结合蛋白酶;酶蛋白;辅因子
3.磷酸原系统;糖酵解系统;氧化能系统
4.3;2;4;22
5.0.6;3-甲基组氨酸;3.2-7.0;
6.血乳酸;尿蛋白;血清肌酸激酶;血尿素(Bu);血红蛋白(Hb);血睾酮(T);尿胆原(URO)
三.辨析题
1.错;安静时,运动员血清酶活性处于正常范围水平或正常水平的高限;运动后或次日晨血清酶活性升高;血清中酶浓度升高多少与运动持续时间,强度和训练水平有关.运动员安静时血清升高是细胞机能下降的一种表现,但仍属生理性变化.
2.错;底物水平磷酸化是在胞浆中进行的;而氧化磷酸化都是在线粒体中进行的
3.错;大多数氨基酸可参与转氨基作用,但赖氨酸,脯氨酸,羟脯氨酸除外.
4.对
四.
1.
2.1)消耗2ATP
2)消耗ATP作用:
A,提供合成新化学键的能量
B,提供磷酸基团
3)此过程也叫磷酸化(活化)过程
3.糖酵解过程可净合成2-3ATP,糖酵解是短时间(30-90秒)激烈运动时肌肉获得能量的重要来源.也是中长跑,游泳,球类等项目运动员完成加速和冲刺时,能量的主要来源.
4.第一阶段:糖酵解途径;
第二阶段:丙酮酸由胞液进入线粒体,转变成乙酰辅酶A;
第三阶段:乙酰辅酶A的乙酰基进入
三羧酸循环而氧化.
5.提供骨骼肌,心肌细胞氧化的底物.
通过糖异生作用转变为葡萄糖,用以维持血糖水平和促进运动后肌糖原,肝糖原储量的恢复. 肌乳酸不断释放入血液,可以改善肌细胞内环境,保持糖酵解的供能速率.
五.论述题
1.磷酸原系统供能特点:
启动:"最早起动,最快利用"和最大功率输出的特点.
输出功率:最大输出功率可达每千克干肌每秒1.6—3.0毫摩尔~P.
可维持最大供能强度运动时间:约6—8秒钟.(磷酸原储量有限,ATP为每千克湿肌4.7-7.8mmol,CP为每千克湿肌20-30mmol.)
运动项目:与速度,爆发力关系密切之项目,如短跑,投掷,跳跃,举重及柔道.
(在短时间最大强度或最大用力运动中起主要供能作用.)
供能方式:无需氧参与,直接水解ATP中高能磷酸键,或由CP传至ATP后直接水解.胞液进行2.糖酵解供能特点:
启动:以最大强度运动6-8秒时,即可激活,全力运动30-60秒时达最大速率.
输出功率:最大可达每千克干肌每秒1毫摩尔~P.
可维持最大功率的时间:2分钟以内
(肌糖原储量为每千克干肌350mmol葡萄糖单位.)
运动项目:速度,速度耐力项目,如200—1500米跑,100—200米游泳,短距离速滑等项目;非周期性高体能项目,如摔跤,柔道,拳击,武术等.
供能方式:无需氧的参与,G或Gn经多步反应生成ATP,再由ATP水解供能.胞液进行.
3.有氧氧化供能特点:
启动:安静时即在运转,只是运转速率等充分调动.
维持运动时间:
肌糖原储量以有氧方式氧化,可供大强度运动1-2小时能量之需.
脂肪储量理论上可供运动的时间不限,其供能随运动强度增加而降低,随运动时间延长而增高.为静息状态与低中强度运动时能量代谢的主要基质.
蛋白质的主要功能是承担生命活动,故虽能在长于30分钟的激烈运动中供能,但最多不超过总耗能的18%.
输出功率:糖有氧氧化最大输出功率为糖酵解的一半,脂肪氧化最大输出功率为糖有氧氧化的一半.
运动项目:数分钟以上耐力性项目的基本供能系统.。