Buck_Boost和Cuk电路仿真分析

合集下载

BUCK_BOOST仿真分析报告

BUCK_BOOST仿真分析报告

BUCK-BOOST转换器仿真分析摘要:本课题利用电感电压平均近似和电容电流平均近似的方法,建立连续模式(CCM)下电压控制型BUCK/BOOST结构DC/DC转换器的线性模型,实现非线性向线性模型的转化,得到由控制到输出的传递函数;在此基础上利用Matlab工具对不同补偿网路的频域特性进行仿真,并对仿真结果进行分析。

关键词:BUCK/BOOST ;DC/DC转换器;MATLAB仿真;频域特性BUCK-BOOST CONVERTER SIMULATION ANALYSISAbstract: This project uses the inductor voltage and capacitor current average approximate average approximation method, build a continuous mode (CCM), under voltage-controlled BUCK / BOOST structure DC / DC converter linear model, to achieve non-linear transformation to the linear model obtained from the control to output transfer function; on the basis of compensation for the use of Matlab tools for different networks frequency domain simulation, and analysis of simulation results.Keywords: BUCK / BOOST; DC / DC converter; MATLAB simulation; frequency domain中图分类号:TM712 文献标识:B 文章编号:0 引言开关电源转换器是现代电路理论的重要研究对象。

protues直流变换器cuk电路设计与仿真

protues直流变换器cuk电路设计与仿真

protues直流变换器cuk电路设计与仿真直流斩波电路(DC Chopper)功能是将直流电变为另一固定电压或调电压的直流电,也称为直接直流一直流变换器(DC/DC Converter)。

直流斩波电路的种类较多,包括6种基本斩波电路:降压斩波电路、升压斩波电路、升降压斩波电路、Cuk斩波电路、Sepic斩波电路和Zeta斩波电路,其中前两种是最基本的电路。

一方面,这两种电路应用最为广泛,另一方面,理解了这两种电路可为理解其他的电路打下基础,因此本文对这两种电路作了着重介绍并利用Matlab/Simulink进行了仿真。

利用不同的基本斩波电路进行组合,可构成复合斩波电路,如电流可逆斩波电路、桥式可逆斩波电路等。

利用相同结构的基本斩波电路进行组合,可构成多相多重斩波电路。

DC Chopper (DC Chopper) function is to change DC to another fixed voltage or adjustable voltage DC, also known as direct DC - DC Converter (DC/DC Converter).The kinds of DC chopper are more, including six basic choppers: Buck Chopper, Boost Chopper, Boost-Buck Chopper, Cuk Chopper, Sepic Chopper and Zeta Chopper, among them the former two are the most basic circuits. On the one hand, the applications of the two circuits are the most widely, on the other hand, understanding the two circuits is the foundationof understanding the other circuits, so this thesis introduces emphatically the two circuits and simulates by Matlab/simulink. On the basis, the rest several circuits are introduced.Using different basic Chopper combination can form composite Chopper, such as Current Reversible Chopper, Bridge Type Reversible Chopper, etc. Using the same structural basic Chopper combination can form multiphase multiple Chopper. The above two kinds of circuits are also introduced and simulated.。

BuckBoost和Cuk电路仿真分析.docx

BuckBoost和Cuk电路仿真分析.docx

Buck_Boost和Cuk电路仿真分析一、Buck_Boost电路仿真仿真电路图如下图所示:电路参数如下:Vs=5V,L=0.5mH,C=100μF,R=5Ω,f S=10kHz,D=0.8。

IGBT导通电阻R on=1mΩ,正向导通压降V on=0.1V,二极管导通电阻R on=1mΩ,正向导通压降V o n=1mV。

理论计算结果如下所示:仿真结果如下所示:对比理论与仿真结果可以看出,二者部分存在误差,但差距不大。

部分数据由于目测的原因,也存在一定的误差,但误差很小,此处不再考虑。

波形图如下所示,其中图1上半部分为I O,下半部分为V O,图二为I L,图三为I D,图4为V C。

图1图2图3图4二、Cuk电路仿真仿真电路图如下:电路参数如下:Vs=5V,L1=L2=0.5mH,C1=C2=100μF,R=5Ω,f S=10kHz,D=0.8。

IGBT导通电阻R on=1mΩ,正向导通压降V on=0.1V,二极管导通电阻R on=1mΩ,正向导通压降V o n=1mV。

理论计算结果如下所示:V OΔV OΔV C1I O I D(I L1)ΔI L1ΔI L2-20V0.1V 3.2V-4A16A0.8A0.8A 仿真结果如下所示:V OΔV O V C1ΔV C1I OΔI O I D(I L1)ΔI L1I L2ΔI L2 -19.5V0.1V24.5V 3.1V-3.92A0.02A16.4A0.8A-3.9A0.8A对比理论与仿真结果可以看出,二者部分存在误差,但差距不大。

部分数据由于目测的原因,也存在一定的误差,但误差很小,此处不再考虑。

波形图如下图所示:图1其中,图1为V C1,图2上半部分为I O ,下半部分为V O ,图3上半部分为I D (I L1),下半部分为I L2。

三、Buck_Boost 和Cuk 电路的对比1、从稳态比较(1)Cuk 电路结构复杂,需要的元件较多,相应电路的分析与调节会复杂化,Buck_Boost 电路结构简单,元件少,分析也较为简单。

Buck-Boost变换器的研究

Buck-Boost变换器的研究

南京航空航天大学硕士学位论文Buck-Boost变换器的研究姓名:李宇申请学位级别:硕士专业:电机与电器指导教师:王慧贞20060201南京航空航天大学硕士学位论文摘要一种新的高可靠性飞机专用电源系统,需要研制一种大功率宽电压输入范围的DC/DC变换器电源。

在充分考虑不同DC/DC变换器拓扑特点的基础上,本文选用了Buck-Boost作为系统的主电路拓扑。

本文介绍了Buck-Boost电路的工作原理,建立了非理想Buck-Boost平均法的模型,对整个电路进行了单电压闭环参数设计的研究,实现了控制理论中零极点补偿法在电力电子中的应用,建立了闭环小信号模型,总结了设计校正网络的步骤和具体方法。

在利用MATLAB设计出校正网络的传递函数后,又在电路上验证了校正网络参数选择的正确性。

接着,本文给出了540W 27-270VDC/28VDC变换器的设计过程,并进行了损耗分析。

为了使系统能够在宽电压输入范围内稳定正常工作,本文实现了提出的变传递函数系统校正方法在电力电子闭环参数设计中的应用,并与闭环参数设计方法进行了比较,指出了该方法的优点,并通过仿真和实验验证了该方法的正确性。

关键字:Buck-Boost,DC/DC变换器,闭环设计,宽电压输入范围,非理想数学模型iBuck-Boost变换器的研究ABSTRACTDC/DC converter with high power and wide range input voltage was required for more reliable special aero-power systems. Through comparison of characteristics for different DC/DC topologies, Buck-Boost converter was selected as main topology of the power system.The working principle of Buck-Boost is first introduced, and averaging model of non-ideal Buck-Boost converter is established. The design details for voltage loop were given and zero-pole compensation method from classic control theory was applied to the filed of power electronics. Thus, small-signal model of closed-loop was established, with detailed design guidelines for correction network. Base on the above-mentioned analysis and also with the help of MATLAB simulation, transfer function of the correction network was designed. Then experimental results verify correctness of the network’s parameters. Besides, the design procedure and power loss analysis were given for a Buck-Boost converter of 540kW 27-270VDC/28VDC.By using the correction approach of vary-transfer function for designing parameter of closed-loop in the area of power electronics, the system could work reliably under wide range input voltage conditions. Compared with the design method of closed-loop parameter, the advantages of the correction approach of vary-transfer function were highlighted and testified by simulation and experimental results.Keywords: Buck-Boost, DC/DC converter, closed-loop design, wide range input voltage, non-ideal physical modelii承诺书本人郑重声明:所呈交的学位论文,是本人在导师指导下,独立进行研究工作所取得的成果。

Buck电路的闭环设计及仿真分析

Buck电路的闭环设计及仿真分析

Buck电路的闭环设计及仿真分析一、本文概述随着电力电子技术的飞速发展,电源转换技术已成为现代电子设备不可或缺的一部分。

其中,Buck电路作为一种基本的直流-直流(DC-DC)转换器,因其结构简单、效率高、调节范围宽等优点,在电子设备中得到了广泛应用。

然而,为了确保Buck电路在各种环境和负载条件下的稳定性和高效性,闭环设计显得尤为重要。

本文旨在探讨Buck电路的闭环设计方法,并通过仿真分析验证设计的有效性。

文章首先简要介绍了Buck电路的基本原理和应用背景,然后重点阐述了闭环设计的重要性及常用方法。

在闭环设计部分,文章详细分析了反馈网络的选取、控制策略的制定以及功率级和控制级的协同工作等问题。

同时,结合具体的设计实例,阐述了闭环设计在实际应用中的具体实现过程。

为了验证设计的有效性,文章采用了仿真分析的方法。

通过搭建基于MATLAB/Simulink的仿真模型,对设计的Buck闭环电路进行了全面的仿真分析。

仿真结果证明了闭环设计的有效性,同时也为实际电路的制作和调试提供了重要参考。

文章对闭环设计的Buck电路进行了总结,并指出了未来研究方向和潜在的应用前景。

通过本文的研究,旨在为从事电源转换技术研究和应用的工程师和学者提供有益的参考和启示。

二、Buck电路的基本原理Buck电路,也称为降压转换器,是一种基本的直流-直流(DC-DC)转换电路,其主要功能是将较高的直流电压降低到所需的较低直流电压。

其名称来源于电路中开关元件(如MOSFET或晶体管)的操作,类似于"bucking"(减少或抑制)输入电压。

Buck电路的基本构成包括一个开关(通常是MOSFET),一个电感(或称为线圈),一个二极管(也称为整流器或续流二极管),以及一个输出电容器。

在开关打开时,电流通过电感从输入源流向输出,此时电感储存能量。

当开关关闭时,电感释放其储存的能量,通过二极管向输出电容器和负载供电。

Buck电路的工作原理基于电感的电压-电流关系。

Buck-Boost变换器的设计与仿真

Buck-Boost变换器的设计与仿真

1 概述直流-直流变流电路的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路。

其中,直接直流变流电路又叫斩波电路,它包括降压斩波电路(Buck Chopper)、升压斩波电路(Boost Chopper)、升降压斩波电路(Buck/Boost)、Cuk斩波电路、Sepic斩波电路和Zeta斩波电路共六种基本斩波电路。

Buck/Boost升降压斩波电路同时具有Buck斩波电路和Boost斩波电路的特点,能对直流电直接进行降压或者升压变换,应用广泛。

本文将对Buck/Boost升降压斩波电路进行详细的分析。

RVDRVDRVD 2 主电路拓扑和控制方式2.1 Buck/Boost 主电路的构成Buck/Boost 变换器的主电路与Buck 或Boost 变换器所用元器件相同,也由开关管、二极管、电感、电容等构成,如图1所示。

与Buck 和Boost 不同的是电感L 在中间,不在输出端也不在输入端,且输出电压极性与输入电压极性相反。

开关管也采用PWM 控制方式。

Buck/Boost 变换器也由电感电流连续和断续两种工作方式,但在实际应用中,往往要求电流不断续,即电流连续,当电路中电感值足够大时,就能使得电路工作在电流连续的状态下。

因此为了分析方便,现假设电感足够大,则在一个周期内电流连续。

图2-1 Buck/Boost 主电路结构图电流连续时有两个开关模态,即V 导通时的模态1,等效电路见图2(a );V 关断时的模态2,等效电路见图2(b )。

(a )V 导通(b )V 关断,VD 续流图2-2 Buck/Boost 不同模态等效电路ttttt2.2 电感电流连续时的工作原理及基本关系电感电流连续工作时的工作主要波形见图2-3。

图2-3电感电流连续时的主要波形为了方便分析,假设电感、电容的值足够大,并且忽略电感的寄生电容。

电感电流连续工作时,Buck/Boost 变换器有V 导通和V 关断两种工作模态。

(完整版)BUCK和BOOST电路

(完整版)BUCK和BOOST电路

(完整版)BUCK和BOOST电路在电子技术领域,BUCK和BOOST电路是两种常见的电源转换器。

它们分别将低压直流电(LDC)转换为高电压直流电(HVC)和将高电压直流电降低到低电压直流电(LDC)。

本文将对这两种电路进行详细的理论分析,探讨它们的工作原理、优缺点以及应用场景。

我们来了解一下BUCK电路。

BUCK电路是一种降压型转换器,其主要特点是输出电压可调,且输出电压与输入电压之间存在一定的关系。

BUCK电路的基本结构包括一个开关管、一个电感和一个二极管。

当开关管导通时,电感中储存的能量被释放,二极管导通,使得负载上的电流得到提升;当开关管截止时,电感中储存的能量无法释放,二极管截止,使得负载上的电流减小。

通过调整开关管的占空比,可以实现对输出电压的调节。

接下来,我们来探讨一下BOOST电路。

BOOST电路是一种升压型转换器,其主要特点是输出电压稳定,且输出电压与输入电压之间存在固定的关系。

BOOST电路的基本结构包括一个开关管、一个电感、一个二极管和一个稳压器。

当开关管导通时,电感中储存的能量被释放,二极管导通,使得负载上的电流得到提升;稳压器将输入电压升高到设定值,使得输出电压保持稳定。

通过调整开关管的占空比,可以实现对输出电压的调节。

那么,BUCK电路和BOOST电路各自有哪些优缺点呢?BUCK电路的优点主要表现在成本低、体积小、效率高等方面。

BUCK电路的缺点也比较明显,主要体现在输出电压稳定性较差、噪音较大等方面。

而BOOST电路的优点主要表现在输出电压稳定、噪音较小等方面。

BOOST电路的缺点也比较明显,主要体现在成本较高、体积较大、效率较低等方面。

在实际应用中,BUCK电路和BOOST电路各有适用的场景。

例如,BUCK电路适用于对输出电压稳定性要求不高的场合,如充电器、电池充放电等;而BOOST电路适用于对输出电压稳定性要求较高的场合,如LED照明、电力传输等。

BUCK电路和BOOST电路作为两种常见的电源转换器,各自具有一定的优势和局限性。

BOOST和cuk电路的设计

BOOST和cuk电路的设计

电力电子课程设计一、 设计要求1.BOOST 电路,输入电压:80v 。

输出电压:91v —128v 。

占空比:13.6%—41.8%2.CUK 电路,输入电压:80v 。

输出电压:50v —105v 。

占空比:27%—58.9% 输出电阻R 为1k ,PWM 波周期为2.2e-5s ,根据设计要求,计算出一个实验线路图中的开关器件的电感,电容数值以及型号。

二、 设计方案和电路图BOOST 电路图Boost 基本工作原理:Boost 电路可称为升压斩波电路,假设电路中电感L 值很大,电容C 值也很大。

当V 处于通态时,电源E 向电感L 充电,充电电流基本恒定为I 1,同时C 上的电压向负载R 供电,因为C 也很大,基本保持输出电压为恒值U 0.设V 通态时间为t on ,此阶段L 积蓄能量为 E I 1t on 。

当V 处于断态时E 和L 共同向C 充电,并向负载R 提供能量。

设V 处于断态时间为t off ,则这期间电感L 释放能量为(U 0-E )I 1t off .一周期T 中,电感L 积蓄的能量和释放的能量相等,即 E I 1 t on =(U 0-E )I 1t off化简得: U 0=T/ t off E 输出电压高于电源电压。

CUK 电路图Cuk基本工作原理:当可控开关V处于通态时,E-L1-V回路和R-L2-C-V回路分别流过电流。

当V处于断态时,E-L1-C-VD回路和R-L2-VD回路分别流过电流。

输出电压的极性与电源电压极性相反。

该电路的等效电路相当于开关S在A、B两点之间交替切换。

在该电路中,稳态是电容C的电流在一周期内的平均值应为零,也就是其对时间的积分为零。

其中:I2 ton= I1toff所以:I2/ I1= toff/ ton=(1-α)/ α可以得到输出电压与电源电压的关系为:U 0= ton/ toffE=α/(1-α) E三、参数计算Boost电路:D=20%L=(U d D)/(F△I)=28.16 mH C=(I0D)/(△U f)=1.3uFCuk电路:D=40%L1=L2=(U d D)/(△I f)=0.198HC1=(I(1-D))/(△U f)=0.132uF C2=(U d D)/(8L2△U f2)=0.00183uF四:仿真电路设计1.BOOST电路参数:L=0.02816H C=1.3E-6输出电压为100V2.CUK电路参数:L1=0.198; C1=1.32e-7; C2=1.833E-9输出电压为53V五:参数及对应的波形图参数:L=0.02816 C=1.3e-6输出电压为100V1.输入电流采样波形图2.脉冲采样波形、通过电力MOSFET电流采样波形、输出电压波形L=0.02816,C=1.3e-6D=20%输入电流采样波形图2.脉冲采样波形、通过电力MOSFET电流采样波形、通过二极管电流采样波形、输出电压波形L1=L2=0.198,C1=5.3e-7,C2=1.833e-9D=40%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Buck_Boost和Cuk电路仿真分析
一、Buck_Boost电路仿真
仿真电路图如下图所示:
电路参数如下:
Vs=5V,L=0.5mH,C=100μF,R=5Ω,f S=10kHz,D=0.8。

IGBT导通电阻R on=1mΩ,正向导通压降V on=0.1V,
二极管导通电阻R on=1mΩ,正向导通压降V o n=1mV。

理论计算结果如下所示:
仿真结果如下所示:
对比理论与仿真结果可以看出,二者部分存在误差,但差距不大。

部分数据由于目测的原因,也存在一定的误差,但误差很小,此处不再考虑。

波形图如下所示,其中图1上半部分为I O,下半部分为V O,图二为I L,图三为I D,图4为V C。

图1
图2
图3
图4
二、Cuk电路仿真
仿真电路图如下:
电路参数如下:
Vs=5V,L1=L2=0.5mH,C1=C2=100μF,R=5Ω,f S=10kHz,D=0.8。

IGBT导通电阻R on=1mΩ,正向导通压降V on=0.1V,
二极管导通电阻R on=1mΩ,正向导通压降V o n=1mV。

理论计算结果如下所示:
V OΔV OΔV C1I O I D(I L1)ΔI L1ΔI L2
-20V0.1V 3.2V-4A16A0.8A0.8A 仿真结果如下所示:
V OΔV O V C1ΔV C1I OΔI O I D(I L1)ΔI L1I L2ΔI L2 -19.5V0.1V24.5V 3.1V-3.92A0.02A16.4A0.8A-3.9A0.8A
对比理论与仿真结果可以看出,二者部分存在误差,但差距不大。

部分数据由于目测的原因,也存在一定的误差,但误差很小,此处不再考虑。

波形图如下图所示:
图1
图2
图3
其中,图1为V C1,图2上半部分为I O,下半部分为V O,图3上半部分为I D(I L1),下半部分为I L2。

三、Buck_Boost和Cuk电路的对比
1、从稳态比较
(1)Cuk电路结构复杂,需要的元件较多,相应电路的分析与调节会复杂化,Buck_Boost电路结构简单,元件少,分析也较为简单。

(2)Cuk电路与Buck_Boost电路相比,V O、I O相差不大,但是Cuk电路的
ΔV O和ΔI O都比较小,电路稳定性好。

(2)Cuk电路输入电流I D也比较稳定,波动小,对电源的要求较低,不易造成损害,Buck_Boost电路的输入电流变化剧烈,波动大,易损害电源。

(4)Cuk电路流过电感的电流较小,对电感要求较低,但是V C1较大,对电容要求较高。

2、从动态比较
Cuk电路是四阶甚至更高阶的电路,动态过程复杂,会出现超调现象,这相当于变相提高了对电感电容器件的要求,部分或全部抵消了稳态时对电感要求较低的特性。

同时过渡过程较长,需要较长时间才能稳定下来。

Buck_Boost结构简单,电路阶数较低,无超调现象,稳定时间短。

总之,Buck_Boost电路和Cuk电路各有其特点,实际使用时应根据具体情况,综合考虑选用。

相关文档
最新文档