高中数学《抛物线的简单几何性质》学案 新人教版选修
高中数学 2.4.3 抛物线的简单几何性质(二)学案 新人教A版选修2-1

§2.4.3 抛物线的简单几何性质(二)学习目标:1、掌握抛物线的几何性质;2、掌握直线与抛物线位置关系等;3、在对抛物线几何性质的讨论中,注意数与形的结合一、知识回顾:(见《三维设计》)1、焦半径:2、焦点弦的问题:二、典例分析:〖例1〗:已知抛物线的方程24y x =,直线l 过定点()2,1P -,斜率为k 。
k 为何值时,直线l 与抛物线24y x =:只有一个公共点;有两个公共点;没有公共点?〖例2〗:过抛物线22y x =的顶点作互相垂直的二弦,OA OB 。
(1)求AB 中点M 的轨迹方程;(2)证明:AB 与x 轴的交点为定点。
〖例3〗:已知点()()()11222,8,,,,A B x y C x y 在抛物线22y px =上,ABC ∆的重心与此抛物线的焦点F重合。
(1)写出该抛物线的方程和焦点F 的坐标;(2)求线段BC 中点M 的坐标;(3)求BC 所在直线的方程。
〖例4〗:线段AB 过点()(),00M m m >,并且点,A B 到x 轴的距离之积为4m ,抛物线C 以x 轴为对称轴且经过,,O A B 三点。
(1)求抛物线C 的方程;(2)当1,2m AM MB ==,时,求直线AB 的方程。
三、课后作业:1、已知抛物线()220y px p =>上有一点()4,M y ,它到焦点F 的距离为5,O 为原点,则OFM S ∆=( )A 、1B C 、2 D 、 2、抛物线2y x =上到直线240x y -+=的距离最小的点是( )A 、11,22⎛⎫ ⎪⎝⎭B 、93,42⎛⎫ ⎪⎝⎭C 、()1,1D 、()4,2 3、过抛物线2y x =的焦点F 作弦AB ,若()()1122,,,A x y B x y ,则( )A 、1214x x ⋅=-B 、1214x x ⋅=C 、1214y y =-D 、1214y y = 4、已知定点()1,0F ,动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且0PM PF ⋅=,PN PM =,则动点N 的轨迹方程是( )A 、24y x =B 、24y x =-C 、22y x =D 、22y x =- 5、对于抛物线24y x =上任一点Q ,点(),0P a 都满足PQ a ≥,则a 的取值范围是( )A 、(),0-∞B 、()0,2C 、[]0,2D 、(],2-∞ 6、抛物线22x y =上离点()0,A a 最近的点恰好是顶点的充要条件( )A 、1a ≤B 、0a ≤C 、12a ≤D 、2a ≤7、顶点在原点,焦点在x 轴上的抛物线截直线24y x =-所得的弦长AB =则抛物线方程为 。
最新人教版高中数学选修2-1第二章《抛物线的简单几何性质》示范教案(第1课时)

2.4.2 抛物线的简单几何性质整体设计教材分析“抛物线的简单几何性质”在全章占有重要的地位和作用.本节知识在生产、生活和科学技术中经常用到,也是大纲规定的必须掌握的内容,还是将来大学学习的基础知识之一.对于训练学生用坐标法解题,本节一如前面各节一样起着相当重要的作用.研究抛物线的几何性质和研究椭圆、双曲线的几何性质一样,按范围、对称性、顶点、离心率顺序来研究,完全可以独立探索得出结论.已知抛物线的标准方程,求它的焦点坐标和准线方程时,首先要判断抛物线的对称轴和开口方向,一次项的变量如果为x(或y),则x轴(或y轴)是抛物线的对称轴,一次项的符号决定开口方向,由已知条件求抛物线的标准方程时,首先要根据已知条件确定抛物线标准方程的类型,再求出方程中的参数p.课时分配本节分两课时进行教学.第一课时内容主要讲抛物线的几何性质、抛物线的画图、例3及其他例题;第二课时主要内容为焦半径公式、例4、例5、例6.第1课时教学目标知识与技能1.抛物线的范围、对称性、顶点、离心率等几何性质.2.能根据抛物线的几何性质对抛物线方程进行讨论,在此基础上列表、描点、画抛物线图形;3.在对抛物线几何性质的讨论中,注意数与形的结合与转化.过程与方法1.使学生掌握抛物线的几何性质,根据给出的条件求抛物线的标准方程.2.掌握抛物线的画法.情感、态度与价值观1.培养学生数形结合及方程的思想.2.训练学生分析问题、解决问题的能力,了解抛物线在实际问题中的初步应用.重点难点教学重点:掌握抛物线的几何性质,使学生能根据给出的条件求出抛物线的标准方程和一些实际应用.教学难点:抛物线各个知识点的灵活应用.教学过程复习引入1.抛物线的定义平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫做抛物线.定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.2.抛物线的标准方程相同点:(1)抛物线都过原点;(2)对称轴为坐标轴;(3)准线都与对称轴垂直,垂足与焦点在对称轴上关于原点对称. 它们到原点的距离都等于一次项系数绝对值的14,即2p 4=p2.不同点:(1)图形关于x 轴对称时,x 为一次项,y 为二次项,方程右端为±2px、左端为y 2;图形关于y 轴对称时,x 为二次项,y 为一次项,方程右端为±2py,左端为x 2.(2)开口方向为x 轴(或y 轴)正向时,焦点在x 轴(或y 轴)的正半轴上,方程右端取正号;开口为x 轴(或y 轴)负向时,焦点在x 轴(或y 轴)的负半轴上,方程右端取负号.讲解新课 唐朝王翰在《凉州词》中有“葡萄美酒夜光杯,欲饮琵琶马上催”的句子,诗中提到“夜光杯”.提出问题1:如果测得酒杯口宽4 cm ,杯深8 cm , 试求酒杯轴截面所在曲线的方程.活动设计:学生先独立思考,必要时,允许合作讨论.教师巡视指导,再由一名学生板演.解:如图建立平面直角坐标系, 则可知A(-2,8),B(2,8). 所以设抛物线的方程为: x 2=2py(p>0)A 、B 点在抛物线上,代入抛物线方程,可得p = 14,则所求的抛物线方程为:x 2=12y.提出问题2:这一节我们来研究抛物线的标准方程y 2=2px(p>0)的几何性质.请同学们思考:类比椭圆、双曲线的几何性质,你应从哪几个方面进行研究?学情预测:学生会给出很多方面,此时教师引导学生观察图象给出性质.1.范围2.对称性3.顶点4.离心率5.通径探索研究活动设计:先由学生合作讨论,再由一、两名学生代表发言,教师适时补充.1.范围学情预测:一般情况下,学生会从图像观察到:x≥0,y∈R.此时教师可引导学生从方程角度思考,可得到:因为p>0,由方程y2=2px(p>0)可知,这条抛物线上的点M的坐标(x,y)满足不等式x≥0,所以这条抛物线在y轴的右侧;当x的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸.2.对称性学情预测:一般情况下,学生会从图象观察到:关于x轴对称.此时教师可引导学生从方程角度思考,可得到:以-y代y,方程y2=2px(p>0)不变,所以这条抛物线关于x轴对称,我们把抛物线的对称轴叫做抛物线的轴.3.顶点抛物线和它的轴的交点叫做抛物线的顶点.在方程y2=2px(p>0)中,当y=0时,x=0,因此抛物线y2=2px(p>0)的顶点就是坐标原点.4.离心率活动设计:此处可由教师给出定义.抛物线上的点M与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e表示.由抛物线的定义可知,e=1.多媒体给出下表的第1、2行和第1列,由学生得出其他几种形式的方程的几何性质:注意强调p 的几何意义:是焦点到准线的距离.补充说明:1.抛物线只位于半个平面坐标内,虽然它可以无限延伸但它没有渐近线.因此抛物线不是双曲线的一支.2.抛物线只有一条对称轴,没有对称中心. 3.抛物线只有一个顶点,一个焦点,一条准线. 4.抛物线的离心率是确定的且为1.附:抛物线不存在渐近线的证明.(反证法)假设抛物线y 2=2px 存在渐近线y =mx +n ,A(x ,y)为抛物线上的一点, A 0(x ,y 1)为渐近线上与A横坐标相同的点.如图, 则有y =±2px 和y 1=mx +n. ∴ |y 1-y|=|mx +n 2px| =|x|²|m+nx2p x|. 当m≠0时,若x→+∞,则|y 1-y|→+∞.当m =0时,|y 1-y|=|n 2px|,当x→+∞,则|y 1-y|→+∞.这与y =mx +n 是抛物线y 2=2px 的渐近线矛盾,所以抛物线不存在渐近线.提出问题:椭圆的圆扁程度、双曲线的张口大小由e 的大小决定,那么抛物线的开口大小由什么决定?下面我们来看一个例题.在同一坐标系中画出下列抛物线的草图:(1)y 2=12x ;(2)y 2=x ;(3)y 2=2x ;(4)y 2=4x.活动设计:由学生自己完成,教师可将学生所画的图象投影展示.学情预测:从图象观察到抛物线标准方程中的p 越大,开口越开阔. 探究问题:在抛物线的标准方程中2p 的几何意义是什么?通径的定义:通过焦点且垂直于对称轴的直线与抛物线相交于两点,连接这两点的线段叫抛物线的通径.提出问题:由学生求出通径的长度.通径的长度:2p.反思应用1已知抛物线关于x轴对称,它的顶点在坐标原点,并且经过点M(2,-22),求它的标准方程,并用描点法画出图形.分析:由已知条件求抛物线的标准方程时,首先要根据已知条件确定抛物线标准方程的类型,再求出方程中的参数p.解:由题意,可设抛物线方程为y2=2px,因为它过点M(2,-22),所以(-22)2=2p²2,即 p=2.因此,所求的抛物线方程为y2=4x.将已知方程变形为y=±2x,根据y=2x计算抛物线在x≥0的范围内几个点的坐标,得点评:在本题的画图过程中,如果描出抛物线上更多的点,可以发现这条抛物线虽然也向右上方和右下方无限延伸,但并不能像双曲线那样无限地接近于某一直线,也就是说,抛物线没有渐近线.提出问题:顶点在坐标原点,对称轴是坐标轴,并且经过点M(2,-22)的抛物线有几条?求出它们的标准方程.活动设计:先由学生独立完成或合作讨论,再由一名学生上黑板板演.学情预测:易得到结果:y2=4x或x2=-2y.2若抛物线的通径长为7,顶点在坐标原点,且关于坐标轴对称,求抛物线的方程.解:设抛物线方程为y2=±2px或者x2=±2py(p>0),∵通径长2p=7,所以所求抛物线方程y2=±7x或者x2=±7y.3过抛物线y2=2px的焦点F任作一条直线m,交抛物线于A、B两点,求证:以AB为直径的圆和这抛物线的准线相切.分析:运用抛物线的定义和平面几何知识来证比较简捷.证明:如图.设AB的中点为E,过A、E、B分别向准线l引垂线AD 、EH 、BC ,垂足为D 、H 、C ,则 |AF|=|AD|,|BF|=|BC|.∴|AB|=|AF|+|BF|=|AD|+|BC|=2|EH|.所以EH 是以AB 为直径的圆E 的半径,且EH⊥l,因而圆E 和准线l 相切.达标检测 1.抛物线的标准方程为x 2=-12y ,则其通径的长为( )A .-12 B.12 C.14D .12.已知M 为抛物线y 2=4x 上一动点,F 为抛物线的焦点,定点P(3,1),则|MP|+|MF|的最小值为( )A .3B .4C . 5D .63.过抛物线y 2=4x 的焦点F 的直线l 与抛物线交于A 、B 两点,则弦AB 的中点的轨迹方程是____________________.4.定长为3的线段AB 的端点A 、B 在抛物线y 2=x 上移动,求AB 中点M 到y 轴距离的最小值,并求出此时AB 中点M 的坐标.答案:1.B 2.B 3.y 2=2(x -1) 4.M(54,±22),M 到y 轴距离的最小值为54.本课小结 1.抛物线的性质;2.灵活运用抛物线的几何性质求抛物线的标准方程及描点法画图. 布置作业 课本习题2.4A 组4. 补充练习1.过抛物线x =ay 2的焦点的一条直线和抛物线交于A(x 1,y 1)B(x 2,y 2),则x 1x 2=______________.2.下列说法中,错误的是( ) A .任何抛物线的离心率都是1B .在抛物线上所有的点中,顶点到焦点的距离最短C .过一定点的所有直线中,与抛物线恰有一个公共点的直线最多有两条D .抛物线的所有焦点弦中,通径的长最短3.过抛物线焦点F 的直线与抛物线交于A 、B 两点,若A 、B 在准线上的射影是A 2、B 2,则∠A 2FB 2等于________.4.以椭圆x 25+y 2=1的右焦点F 为焦点,以坐标原点为顶点作抛物线,求抛物线截椭圆的右准线所得的弦长.答案:1.116a2 2.C 3.90° 4.4 5设计说明二次曲线是平面解析几何的主要研究对象,在教学时,注意挖掘它们之间的内在联系和区别,不要孤立地和静止地看待抛物线.因此在研究抛物线的几何性质时采用对比的方法进行教学,让学生对照椭圆、双曲线的几何性质,去探求抛物线的几何性质,在进行对比时,要注意横向和纵向两种对比,也就是既要注意每种曲线内部的对比,同时也要注意几种曲线之间的对比.本节课引导与组织学生研究抛物线的几何性质,而抛物线几何性质的研究项目、方法和结果同椭圆、双曲线很类似.学生很自然地用类比的方法填充给出的表,不仅可以使3种圆锥曲线的性质得到对比,而且可以提高学生对新知识的探索能力.在授课方式上,教师精心设计提问,以便引导学生去探索,去创新.富有艺术性的提问,能启迪学生思维,发展学生智力和培养学生能力.而问题的设置要从学生的实际出发,能被学生所接受,又要富有启发性,能激发学生的学习兴趣,调动学生积极思考,有利于教学目标的实现.备课资料●拋物线的画法及其光学性质应用赏析一位板球选手击出的球、小孩向空中掷的石头,它们的行进路线就近似为拋物线.拋物线至今已有2 400多年的历史,画抛物线的方法除了我们课堂上所学习的描点法之外,还有很多有趣的方法,以下收录几种画法供同学们欣赏.1.拉线绘制抛物线取固定长度的绳子一根,将其一端固定于 F点,另一端固定于丁字尺 AB 的末梢B点;再将笔放在点P处,拉直绳子,慢慢移动丁字尺,即可绘制出拋物线.(如图1) 2.折纸折出抛物线在纸上画一条直线L及直线L外一点F. 将点F与直线上任意点P对折,其折痕就包络出一拋物线.(如图2)3.雷达画法作抛物线作许多半径成比例的同心圆,在圆与 y轴交点处作y轴的垂线,则在某些特定规则下,直线与圆的交点相连即可成拋物线.(如图3)图1 图2 图3 4.童军绳上的抛物线(1)作两线段AB,CD,分別在AB,CD上取20个等分点,并依反序相连,其包络之图形即为抛物线(如图4).(2)任取三点 A,B,C,并连接线段AB,BC,分別在线段AB,BC上取20个等分点,并依反序相连,其包络之图形即为抛物线(如图5).图4 图5 图6 5.由函数式y=x2作抛物线在直角坐标系中的x轴上标出单位长1及一动点x;利用两个相似三角形作出 x2的高度,则点 (x, x2) 的轨迹就是抛物线y=x2(如图6).亲爱的同学们,在欣赏了上述抛物线的种种有趣的画法后,接下来请同学们了解抛物线的光学性质及简单的应用.一只很小的灯泡发出的光,会分散地射向各方,但把它装在圆柱形手电筒里,经过适当调节,就能射出一束比较强的平行光线,这是为什么呢?图7原来手电筒内,在小灯泡后面有一个反光镜,镜面的形状是一个由抛物线绕它的轴旋转所得到的曲面(如图7),叫做抛物面.人们已经证明,抛物线有一条重要性质:从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的轴.平时我们看到的探照灯也是利用这个原理设计的.图8应用抛物线的这个性质,也可以使一束平行于抛物线的轴的光线,经过抛物线的反射集中于它的焦点.人们应用这个原理设计了一种加热水和食物的太阳灶(如图8).在这种太阳灶上装有一个旋转抛物面形的反光镜,当它的轴与太阳光线平行时,太阳光线经过反射后集中于焦点处,这一点的温度就会很高.(设计者:姜华)。
【高中数学】3.3.2 抛物线的简单几何性质高二数学新教材配套学案(人教A版选择性必修第一册)

3.3.2 抛物线的简单几何性质【学习目标】1.抛物线的几何性质⎛⎫p ⎛⎫p ⎛⎫p ⎛⎫p 2.直线过抛物线y 2=2px (p >0)的焦点F ,与抛物线交于A (x 1,y 1)、B (x 2,y 2)两点,由抛物线的定义知,|AF |=x 1+p 2,|BF |=x 2+p2,故|AB |= . 3.直线与抛物线的位置关系直线与抛物线有三种位置关系: 、 和 .设直线y =kx +m 与抛物线y 2=2px (p >0)相交于A (x 1,y 1),B (x 2,y 2)两点,将y =kx +m 代入y 2=2px ,消去y 并化简,得k 2x 2+2(mk -p )x +m 2=0. ∈k =0时,直线与抛物线只有 交点;∈k ≠0时,Δ>0∈直线与抛物线 ∈有 公共点. Δ=0∈直线与抛物线 ∈只有 公共点.Δ<0∈直线与抛物线∈ 公共点.【小试牛刀】1.抛物线关于顶点对称.()2.抛物线只有一个焦点,一条对称轴,无对称中心.() 3.抛物线的标准方程虽然各不相同,但是其离心率都相同.() 4.抛物线y2=2px过焦点且垂直于对称轴的弦长是2p.()5.抛物线y=-18x2的准线方程为x=132.()【经典例题】题型一抛物线性质的应用把握三个要点确定抛物线的简单几何性质(1)开口:由抛物线标准方程看图象开口,关键是看准二次项是x还是y,一次项的系数是正还是负.(2)关系:顶点位于焦点与准线中间,准线垂直于对称轴.(3)定值:焦点到准线的距离为p;过焦点垂直于对称轴的弦(又称为通径)长为2p;离心率恒等于1.例1 (1)已知抛物线的顶点在坐标原点,对称轴为x轴且与圆x2+y2=4相交的公共弦长等于23,则抛物线的方程为________.(2)如图,过抛物线y2=2px(p>0)的焦点F的直线依次交抛物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=4,求抛物线的方程.[跟踪训练]1 已知抛物线y2=8x.(1)求出该抛物线的顶点、焦点、准线方程、对称轴、变量x的范围;(2)以坐标原点O为顶点,作抛物线的内接等腰三角形OAB,|OA|=|OB|,若焦点F是∈OAB 的重心,求∈OAB的周长.题型二直线与抛物线的位置关系直线与抛物线交点问题的解题思路(1)判断直线与抛物线的交点个数时,一般是将直线与抛物线的方程联立消元,转化为形如一元二次方程的形式,注意讨论二次项系数是否为0.若该方程为一元二次方程,则利用判别式判断方程解的个数.(2)直线与抛物线有一个公共点时有两种情形:(1)直线与抛物线的对称轴重合或平行;(2)直线与抛物线相切.例2已知直线l:y=kx+1,抛物线C:y2=4x,当k为何值时,l与C:只有一个公共点;有两个公共点;没有公共点.[跟踪训练]2若抛物线y2=4x与直线y=x-4相交于不同的两点A,B,求证OA∈OB.题型三中点弦及弦长公式“中点弦”问题解题方法例3已知抛物线方程为y2=2px(p>0),过此抛物线的焦点的直线与抛物线交于A,B两点,[跟踪训练]3 过点Q(4,1)作抛物线y2=8x的弦AB,恰被点Q所平分,求AB所在直线的方程.题型四 抛物线的综合应用例4 求抛物线y =-x 2上的点到直线4x +3y -8=0的最小距离.[跟踪训练]4 如图所示,抛物线关于x 轴对称,它的顶点为坐标原点,点P (1,2),A (x 1,y 1),B (x 2,y 2)均在抛物线上. (1)求抛物线的方程及其准线方程;(2)当P A 与PB 的斜率存在且倾斜角互补时,证明:直线AB 的斜率为定值.【当堂达标】1.在抛物线y 2=16x 上到顶点与到焦点距离相等的点的坐标为( ) A .(42,±2) B .(±42,2) C .(±2,42)D .(2,±42)2.以x 轴为对称轴的抛物线的通径(过焦点且与对称轴垂直的弦)长为8,若抛物线的顶点在坐标原点,则其方程为( ) A .y 2=8xB .y 2=-8xC .y 2=8x 或y 2=-8xD .x 2=8y 或x 2=-8y3.若抛物线y 2=2x 上有两点A 、B 且AB 垂直于x 轴,若|AB |=22,则抛物线的焦点到直线AB 的距离为( )A .12B .14C .16D .184.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 是抛物线上一点,若OA →·AF →=-4,则点A的坐标是()A.(2,±22)B.(1,±2)C.(1,2)D.(2,22)5.过点P(0,1)与抛物线y2=x有且只有一个交点的直线有()A.4条B.3条C.2条D.1条6.过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,如果x1+x2=6,则|AB|=________.7.已知AB是过抛物线2x2=y的焦点的弦,若|AB|=4,则AB的中点的纵坐标是________.8.已知抛物线x=-y2与过点(-1,0)且斜率为k的直线相交于A,B两点,O为坐标原点,当∈AOB的面积等于10时,求k的值.9.已知y=x+m与抛物线y2=8x交于A,B两点.(1)若|AB|=10,求实数m的值;(2)若OA∈OB,求实数m的值.10.已知抛物线的顶点在原点,x轴为对称轴,经过焦点且倾斜角为π4的直线l被抛物线所截得的弦长为6,求抛物线的标准方程.【参考答案】【自主学习】x =-p 2 x =p 2 y =-p 2 y =p2 x 轴 y 轴 (0,0) 1 x 1+x 2+p 相离 相切 相交 一个 相交 两个 相切 一个 相离 没有 【小试牛刀】 × √ √ √ × 【经典例题】例1 (1)y 2=3x 或y 2=-3x [根据抛物线和圆的对称性知,其交点纵坐标为±3,交点横坐标为±1,则抛物线过点(1,3)或(-1,3),设抛物线方程为y 2=2px 或y 2=-2px (p >0),则2p =3,从而抛物线方程为y 2=3x 或y 2=-3x .](2)[解] 如图,分别过点A ,B 作准线的垂线,分别交准线于点E ,D , 设|BF |=a ,则由已知得:|BC |=2a ,由定义得:|BD |=a ,故∈BCD =30°,在Rt∈ACE 中,∈|AF |=4,|AC |=4+3a ,∈2|AE |=|AC |,∈4+3a =8,从而得a =43,∈BD ∈FG ,∈43p =23,p =2.因此抛物线的方程是y 2=4x .[跟踪训练]1 解 (1)抛物线y 2=8x 的顶点、焦点、准线方程、对称轴、变量x 的范围分别为(0,0),(2,0),x =-2,x 轴,x ≥0.(2)如图所示,由|OA |=|OB |可知AB ∈x 轴,垂足为点M , 又焦点F 是∈OAB 的重心,则|OF |=23|OM |. 因为F (2,0),所以|OM |=32|OF |=3,所以M (3,0).故设A (3,m ),代入y 2=8x 得m 2=24;所以m =26或m =-26,所以A (3,26),B (3,-26),所以|OA |=|OB |=33,所以∈OAB 的周长为233+4 6. 例2 解 联立⎩⎨⎧y =kx +1,y 2=4x ,消去y ,得k 2x 2+(2k -4)x +1=0.(*)当k =0时,(*)式只有一个解x=14,∈y =1,∈直线l 与C 只有一个公共点⎝ ⎛⎭⎪⎫14,1,此时直线l 平行于x 轴.当k ≠0时,(*)式是一个一元二次方程,Δ=(2k -4)2-4k 2=16(1-k ).∈当Δ>0,即k <1,且k ≠0时,l 与C 有两个公共点,此时直线l 与C 相交;∈当Δ=0,即k =1时,l 与C 有一个公共点,此时直线l 与C 相切; ∈当Δ<0,即k >1时,l 与C 没有公共点,此时直线l 与C 相离. 综上所述,当k =1或0时,l 与C 有一个公共点; 当k <1,且k ≠0时,l 与C 有两个公共点; 当k >1时,l 与C 没有公共点.[跟踪训练]2 [证明] 由⎩⎨⎧y 2=4x ,y =x -4,消去y ,得x 2-12x +16=0.∈直线y =x -4与抛物线相交于不同两点A ,B , ∈可设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=12,x 1x 2=16.∈OA →·OB →=x 1x 2+y 1y 2=x 1x 2+(x 1-4)(x 2-4)=x 1x 2+x 1x 2-4(x 1+x 2)+16=16+16-4×12+16=0,∈OA →∈OB →,即OA ∈OB .例3 解 由题意知焦点F ⎝ ⎛⎭⎪⎫p 2,0,设A (x 1,y 1),B (x 2,y 2),若AB ∈x 轴,则|AB |=2p ≠52p ,不满足题意.所以直线AB 的斜率存在,设为k ,则直线AB 的方程为y =k ⎝ ⎛⎭⎪⎫x -p 2,k ≠0.由⎩⎪⎨⎪⎧y =k ⎝ ⎛⎭⎪⎫x -p 2,y 2=2px ,消去x ,整理得ky 2-2py -kp 2=0.由根与系数的关系得y 1+y 2=2pk ,y 1y 2=-p 2.所以|AB |=⎝ ⎛⎭⎪⎫1+1k 2·y 1-y 22=1+1k 2·y 1+y 22-4y 1y 2=2p ⎝ ⎛⎭⎪⎫1+1k 2=52p ,解得k =±2.所以AB 所在的直线方程为2x -y -p =0或2x +y -p =0.[跟踪训练]3 [解] 法一:(点差法)设以Q 为中点的弦AB 的端点坐标为A (x 1,y 1),B (x 2,y 2),则有y 21=8x 1,y 22=8x 2,∈(y 1+y 2)(y 1-y 2)=8(x 1-x 2).又y 1+y 2=2,∈y 1-y 2=4(x 1-x 2),即y 1-y 2x 1-x 2=4,∈k AB =4. ∈AB 所在直线的方程为y -1=4(x -4),即4x -y -15=0.法二:由题意知AB 所在直线斜率存在,设A (x 1,y 1),B (x 2,y 2),弦AB 所在直线的方程为y=k (x -4)+1.联立⎩⎨⎧y 2=8x ,y =k x -4+1,消去x ,得ky 2-8y -32k +8=0,此方程的两根就是线段端点A ,B 两点的纵坐标.由根与系数的关系得y 1+y 2=8k .又y 1+y 2=2,∈k =4.∈AB 所在直线的方程为4x -y -15=0. 例4 解 方法一 设A (t ,-t 2)为抛物线上的点,则点A 到直线4x +3y -8=0的距离d =|4t -3t 2-8|5=|3t 2-4t +8|5=15⎪⎪⎪⎪⎪⎪3⎝⎛⎭⎪⎫t -232-43+8 =15⎪⎪⎪⎪⎪⎪3⎝ ⎛⎭⎪⎫t -232+203=35⎝ ⎛⎭⎪⎫t -232+43. 所以当t =23时,d 有最小值43.方法二 如图,设与直线4x +3y -8=0平行的抛物线的切线方程为4x +3y +m =0,由⎩⎨⎧y =-x 2,4x +3y +m =0,消去y 得3x 2-4x -m =0,∈Δ=16+12m =0,∈m =-43. 故最小距离为⎪⎪⎪⎪⎪⎪-8+435=2035=43.[跟踪训练]4 [解] (1)由题意可设抛物线的方程为y 2=2px (p >0),则由点P (1,2)在抛物线上,得22=2p ×1,解得p =2,故所求抛物线的方程是y 2=4x ,准线方程是x =-1.(2)证明:因为P A 与PB 的斜率存在且倾斜角互补,所以k P A =-k PB ,即y 1-2x 1-1=-y 2-2x 2-1. 又A (x 1,y 1),B (x 2,y 2)均在抛物线上,所以x 1=y 214,x 2=y 224,从而有y 1-2y 214-1=-y 2-2y 224-1,即4y 1+2=-4y 2+2,得y 1+y 2=-4,故直线AB 的斜率k AB =y 1-y 2x 1-x 2=4y 1+y 2=-1. 【当堂达标】1.D [抛物线y 2=16x 的顶点O (0,0),焦点F (4,0),设P (x ,y )符合题意,则有⎩⎨⎧y 2=16x ,x 2+y 2=x -42+y 2∈⎩⎨⎧ y 2=16x ,x =2∈⎩⎨⎧x =2,y =±4 2.所以符合题意的点为(2,±42).] 2. C 解析 设抛物线方程为y 2=2px 或y 2=-2px (p >0),依题意得x =p2,代入y 2=2px 或y 2=-2px 得|y |=p ,∈2|y |=2p =8,p =4. ∈抛物线方程为y 2=8x 或y 2=-8x .3.A [线段AB 所在的直线方程为x =1,抛物线的焦点坐标为⎝ ⎛⎭⎪⎫12,0,则焦点到直线AB 的距离为1-12=12.]4.B [由题意知F (1,0),设A ⎝ ⎛⎭⎪⎫y 204,y 0,则OA →=⎝ ⎛⎭⎪⎫y 204,y 0,AF →=⎝ ⎛⎭⎪⎫1-y 204,-y 0,由OA →·AF →=-4得y 0=±2,∈点A 的坐标为(1,±2),故选B.]5. B 解析 当直线垂直于x 轴时,满足条件的直线有1条; 当直线不垂直于x 轴时,满足条件的直线有2条,故选B.6. 8解析 因为直线AB 过焦点F (1,0),所以|AB |=x 1+x 2+p =6+2=8.7.158 [设A (x 1,y 1),B (x 2,y 2),由抛物线2x 2=y ,可得p =14.∈|AB |=y 1+y 2+p =4,∈y 1+y 2=4-14=154,故AB 的中点的纵坐标是y 1+y 22=158.] 8.解 过点(-1,0)且斜率为k 的直线方程为y =k (x +1)(k ≠0), 由方程组⎩⎨⎧x =-y 2,y =k x +1,消去x 整理得ky 2+y -k =0,Δ=1+4k 2>0,设A (x 1,y 1),B (x 2,y 2),由根与系数之间的关系得y 1+y 2=-1k ,y 1·y 2=-1. 设直线与x 轴交于点N ,显然N 点的坐标为(-1,0). ∈S ∈OAB =S ∈OAN +S ∈OBN =12|ON ||y 1|+12|ON ||y 2|=12|ON ||y 1-y 2|, ∈S ∈AOB =12×1×y 1+y 22-4y 1y 2=12×1k 2+4=10,解得k =±16.9.解 由⎩⎨⎧y =x +m ,y 2=8x ,得x 2+(2m -8)x +m 2=0.由Δ=(2m -8)2-4m 2=64-32m >0,得m <2.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8-2m ,x 1x 2=m 2,y 1y 2=m (x 1+x 2)+x 1x 2+m 2=8m . (1)因为|AB |=1+k 2x 1+x 22-4x 1x 2=2·64-32m =10,所以m =716,经检验符合题意.(2)因为OA ∈OB ,所以x 1x 2+y 1y 2=m 2+8m =0,解得m =-8或m =0(舍去). 所以m =-8,经检验符合题意.10.[解] 当抛物线焦点在x 轴正半轴上时,可设抛物线标准方程为y 2=2px (p >0),则焦点F ⎝ ⎛⎭⎪⎫p 2,0,直线l 的方程为y =x -p 2.设直线l 与抛物线的交点为A (x 1,y 1),B (x 2,y 2),过点A ,B 向抛物线的准线作垂线,垂足分别为点A 1,点B 1,则|AB |=|AF |+|BF |=|AA 1|+|BB 1|=⎝ ⎛⎭⎪⎫x 1+p 2+⎝ ⎛⎭⎪⎫x 2+p 2=x 1+x 2+p =6, ∈x 1+x 2=6-p .∈ 由⎩⎪⎨⎪⎧y =x -p 2,y 2=2px 消去y ,得⎝ ⎛⎭⎪⎫x -p 22=2px ,即x 2-3px +p 24=0.∈x 1+x 2=3p ,代入∈式得3p =6-p ,∈p =32.∈所求抛物线的标准方程是y 2=3x .当抛物线焦点在x 轴负半轴上时,用同样的方法可求出抛物线的标准方程是y 2=-3x .高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。
高中数学抛物线和简单几何性质教案新人教A版选修1-1

抛物线和简单几何性质一、教课目的( 一)知识教课点使学生理解并掌握抛物线的几何性质,并能从抛物线的标准方程出发,推导这些性质.( 二)能力训练点从抛物线的标准方程出发,推导抛物线的性质,进而培育学生剖析、概括、推理等能力.( 三)学科浸透点使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线方程的关系观点的理解,这样才能解决抛物线中的弦、最值等问题.二、教材剖析1.要点:抛物线的几何性质及初步运用.( 解决方法:指引学生类比椭圆、双曲线的几何性质得出.)2.难点:抛物线的几何性质的应用.( 解决方法:经过几个典型例题的解说,使学生掌握几何性质的应用.)3.疑点:抛物线的焦半径和焦点弦长公式.( 解决方法:指引学生证明并加以记忆.)三、活动设计发问、填表、解说、演板、口答.教课过程【情境设置】由一名学生回答,教师板书.问题抛物线的标准方程是如何的?答为:抛物线的标准方程是.与椭圆、双曲线同样,经过抛物线的标准方程能够研究它的几何性质.下边我们依据抛物线的标准方程:来研究它的几何性质.【探究研究】1.抛物线的几何性质( 1)范围由于,由方程可知,因此抛物线在轴的右边,当的值增大时,也增大,这说明抛物线向右上方和右下方无穷延长.( 2)对称性以代,方程不变,因此抛物线对于轴对称.我们把抛物线的对称轴叫做抛物线的轴.( 3)极点抛物线与它的轴的交点叫做抛物线的极点,在方程中,当时,因此抛物线的极点就是坐标原点.( 4)离心率抛物线上的点与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,由抛物线的定义可知其余三种标准方程抛物线的几何性质可近似地求得,教师用小黑板给出来表让学生填写.再向学生提出:与、双曲的几何性比,抛物的几何性有什么特色?学生和教共同小:(1)抛物只位于半个坐平面内,然它也能够无穷延长,但没有近;(2)抛物只有一条称,没有称中心;(3)抛物只有一个点、一个焦点、一条准;(4)抛物的离心率是确立的, 1.【例剖析】例 1 已知抛物对于称,它的点在座原点,而且点,求它的准方程,并用描点法画出形.求准方程,一名学生演板,教予以正.画可由教解,步如下:由求出的准方程,形,依据算抛物在的范内几个点的坐,得01234⋯⋯01 2.8 3.54⋯⋯描点画出抛物的一部分,再利用称性,就能够画出抛物的另一部分(如).而后明利用抛物的通性,能方便地画出反应抛物基本特色的草.例 2 探照灯反射的截面是抛物的一部分,光源位于抛物的焦点.已知灯口的直径,灯深,求抛物的准方程和焦点地点.解:如图,在探照灯的轴截面所在平面内成立直角坐标系,使反光镜的极点(即抛物线的极点)与原点重合,轴垂直于灯口直径.抛物线的标准方程为,由已知条件可得点的坐标是(40,30)且在抛物线上,代入方程得:,因此所求抛物线的标准方程为,焦点坐标是.(三)随堂练习1.求合适以下条件的抛物线方程①极点在原点,对于轴对称,而且经过点②极点在原点,焦点是③极点在原点,准线是④焦点是,准线是2.一条地道的顶部是抛物拱形,拱高是 m,跨度是 m,求拱形的抛物线方程答案:1.①②③④2.( 要选成立坐标系 )(四)总结提炼抛物线的性质和椭圆、双曲线比较起来,差异较大.它的离心率等于 1;它只有一个焦点、一个极点、一条对称轴、一条准线;它没有中心,也没有渐近线.(五)部署作业1.极点在原点、焦点在轴上,且过点的抛物线方程是()A.B.C.D.2.若抛物线上横坐标为6的点到焦点的距离为8,则焦点到准线的距离为()A.1B.2C.4D.63.若垂直于轴的直线交抛物线于点,且,则直线的方程为 __________.4.抛物线形拱桥,当水面宽时,水面离拱顶为,若水降落,则此时水面宽为 ___________.5.抛物线的极点是双曲线的中心,而焦点是双曲线的左极点,求抛物线方程.6.若抛物线上一点到准线及对称轴的距离分别是 10 和 6,求的横坐标及抛物线方程.答案:1.B2.C3.4.5. 6 .9,(六)板书设计教课设计评论:本节课第一设置情境,让学生利用类比的思想,探究、概括、总结出与椭圆、双曲线近似的性质,并与椭圆、双曲线的性质比较,便于学生掌握这三种曲线的性质。
高中数学 抛物线的简单几何性质(二)导学案 新人教A版选修2-1

1抛物线的简单几何性质(二)导学案 新人教A 版选修2-1【学习要求】1.提升对抛物线定义、标准方程的理解,掌握抛物线的几何特性. 2.学会解决直线与抛物线相交问题的综合问题. 【学法指导】结合椭圆和双曲线的几何性质,类比抛物线的性质,通过对抛物线的标准方程的讨论,进一步理解用代数方法研究几何性质的优越性,感受坐标法和数形结合的基本思想. 【双基检测】1.已知抛物线的方程为标准方程,焦点在x 轴上,其上一点P (-3,m )到焦点F 的距离为5,则抛物线方程为 ( )A .y 2=8xB .y 2=-8xC .y 2=4xD .y 2=-4x2.已知点A (-2,1),y 2=-4x 的焦点是F ,P 是y 2=-4x 上的点,为使|PA |+|PF |取得最小值,则P 点的坐标是( )A .⎝ ⎛⎭⎪⎫-14,1B .(-2,22)C .⎝ ⎛⎭⎪⎫-14,-1 D .(-2,-22)3.过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线( )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在4.已知F 是抛物线C :y 2=4x 的焦点,A 、B 是抛物线C 上的两个点,线段AB 的中点为M (2,2),则△ABF 的面积为________.【问题探究】题型一 抛物线的标准方程例1 抛物线的顶点在原点,对称轴是椭圆x 24+y 29=1短轴所在的直线,抛物线的焦点到顶点的距离为3,求抛物线的方程及准线方程.跟踪训练1 求以双曲线x 28-y 29=1的右顶点为焦点的抛物线的标准方程及准线方程.题型二 抛物线的几何性质例2 过抛物线焦点F 的直线交抛物线于A ,B 两点,通过点A 和抛物线顶点的直线交抛物线的准线于点D ,求证:直线DB 平行于抛物线的对称轴.跟踪训练2 如图所示,抛物线y 2=2px (p >0)的焦点为F ,经过点F 的直线交抛物线于A 、B 两点,点C 在抛物线的准线上,且BC ∥x 轴.证明直线AC 经过原点O .题型三 抛物线中的定值、定点问题例3 如图,过抛物线y 2=x 上一点A (4,2)作倾斜角互补的两条直线AB 、AC 交抛物线于B 、C 两点,求证:直线BC 的斜率是定值.跟踪训练3 A 、B 为抛物线y 2=2px (p >0)上两点,O 为原点,若OA ⊥OB ,求证:直线AB 过定点.【当堂检测】1.若一动点到点(3,0)的距离比它到直线x =-2的距离大1,则该点的轨迹是 ( ) A .椭圆 B .双曲线 C .双曲线的一支 D .抛物线2.已知抛物线C :y 2=8x 的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且|AK |=2|AF |,则△AFK 的面积为( )A .4B .8C .16D .32 3.对于顶点在原点的抛物线,给出下列条件: ①焦点在y 轴上; ②焦点在x 轴上;③抛物线上横坐标为1的点到焦点的距离等于6; ④抛物线的通径的长为5;⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).能使这条抛物线方程为y 2=10x 的条件是________(要求填写合适条件的序号).4.过抛物线y 2=4x 的顶点O 作互相垂直的两弦OM 、ON ,则M 的横坐标x 1与N 的横坐标x 2之积为________.【课堂小结】求抛物线的方程常用待定系数法和定义法;直线和抛物线的弦长问题、中点弦问题及垂直、对称等可利用判别式、根与系数的关系解决;抛物线的综合问题要深刻分析条件和结论,灵活选择解题策略,对题目进行转化.【拓展提高】1.已知抛物线)0(22>=p px y 与)0,0(12222>>=-b a by a x 有相同的焦点F ,点A 是两曲线的一个交点,且x AF ⊥轴,若l 为双曲线的一条渐近线,则l 的倾斜角所在的区间可能是( )A .)6,0(π B .)4,6(ππ C .)3,4(ππ D .)2,3(ππ2.已知抛物线y x 42=,则以⎪⎭⎫ ⎝⎛-25,1为中点的弦所在的直线方程是( ) A .062=+-y x B .042=-+y x C .0924=+-y x D .0124=-+y x 3.抛物线2y x =-上的点到直线4380x y +-=距离的最小值是4.已知直线k x y +=2被抛物线y x 42=截得的弦长AB 为20,O 为坐标原点(1)求实数k 的值(2)问点C 位于抛物线弧AOB 上何处时,ABC ∆面积最大?。
高中数学 2.3.2 抛物线的简单几何性质教案 新人教A版

2.3.2 抛物线的简单几何性质(教师用书独具)●三维目标1.知识与技能(1)理解抛物线的几何性质.(2)与抛物线有关的轨迹的求法,直线与抛物线的位置关系.2.过程与方法(1)灵活运用抛物线的性质.(2)培养学生对研究方法的思想渗透及运用数形结合思想解决问题的能力.3.情感、态度与价值观(1)训练学生分析问题、解决问题的能力.(2)培养学生数形结合思想、化归思想及方程的思想,提高学生的综合能力.●重点、难点重点:(1)掌握抛物线的几何性质.(2)根据给出的条件求出抛物线的标准方程.难点:抛物线各个几何性质的灵活应用.(教师用书独具)●教学建议本节课以启发式教学为主,综合运用演示法、讲授法、讨论法、有指导的发现法及练习法等教学方法.先通过多媒体动画演示,创设问题情境,在抛物线简单几何性质的教学过程中,通过多媒体演示,有指导的发现问题,然后进行讨论、探究、总结、运用,最后通过练习加以巩固提高.学法上,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,结合教法和学生的实际,在多媒体辅助教学的基础上,主要采用“复习——类比——探索——应用”的探究式学习方法,增加学生参与的机会,使学生在掌握知识形成技能的同时,培养逻辑推理、理性思维的能力及科学的学习方法,增强自信心.学法指导包括:联想法、观察分析法、练习巩固法.这样,本节课的重点与难点就迎刃而解了.●教学流程提出问题:你能说出抛物线y2=2px p>0的几何性质吗?⇒引导学生结合图象得出抛物线四种形式的几何性质,并对比它们的区别与联系.⇒通过引导学生回顾直线与椭圆的位置关系问题,引出直线与抛物线的位置关系知识.⇒通过例1及其变式训练,使学生掌握抛物线的性质及应用问题.⇒通过例2及其变式训练,使学生掌握抛物线的焦点弦问题.⇒错误!⇒错误!⇒错误!(对应学生用书第39页)课标解读1.掌握抛物线的几何性质及抛物线性质的应用.(重点)2.掌握直线与抛物线的位置关系.(难点)抛物线的几何性质类比椭圆、双曲线的几何性质,结合图象,你能说出抛物线y2=2px(p>0)的范围、对称性、顶点坐标吗?【提示】范围x≥0,关于x轴对称,顶点坐标(0,0).标准方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)图形续表标准方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)性质范围x≥0,y∈R x≤0,y∈R x∈R,y≥0x∈R,y≤0对称轴x轴y轴顶点O(0,0)离心率e=1直线与抛物线的位置关系1.直线与抛物线有哪几种位置关系?【提示】三种:相离、相切、相交.2.若直线与抛物线只有一个交点,直线与抛物线一定相切吗?【提示】不一定,当平行或重合于抛物线的对称轴的直线与抛物线相交时,也只有一个交点.直线与抛物线的位置关系与公共点位置关系公共点个数相交有两个或一个公共点相切有且只有一个公共点相离无公共点(对应学生用书第40页)抛物线简单几何性质的应用如图2-3-3所示,已知抛物线y 2=2px (p >0)的焦点为F ,A图2-3-3是抛物线上的一点,其横坐标为4,且在x 轴的上方,点A 到抛物线的准线的距离等于5,过A 作AB ⊥y 轴,垂足为B ,OB 的中点为M .(1)求抛物线的方程;(2)过M 作MN ⊥FA ,垂足为N ,求直线MN 的方程. 【思路探究】 (1)根据题意你能求出p 的值吗? (2)M 点的坐标是多少?直线MN 的斜率呢?【自主解答】 (1)抛物线y 2=2px (p >0)的准线为x =-p2,于是4+p2=5,p =2,∴抛物线的方程为y 2=4x .(2)由题意知A (4,4),B (0,4),M (0,2),F (1,0), ∴k FA =43.又MN ⊥FA ,∴k MN =-34,则直线FA 的方程为y =43(x -1),直线MN 的方程为y -2=-34x ,即3x +4y -8=0.研究抛物线的性质时要注意它们之间的关系:抛物线的焦点始终在对称轴上,顶点就是抛物线与对称轴的交点,准线始终与对称轴垂直,准线与对称轴的交点和焦点关于顶点对称,离心率不变总为1.已知抛物线的焦点F 在x 轴上,直线l 过F 且垂直于x 轴,l 与抛物线交于A 、B 两点,O 为坐标原点,若△OAB 的面积等于4,求此抛物线的标准方程.【解】 由题意,抛物线方程为y 2=2px (p ≠0),焦点F ⎝ ⎛⎭⎪⎫p 2,0,直线l :x =p2,∴A 、B 两点坐标为⎝ ⎛⎭⎪⎫p 2,p ,⎝ ⎛⎭⎪⎫p2,-p ,∴|AB |=2|p |. ∵△OAB 的面积为4,∴12·⎪⎪⎪⎪⎪⎪p 2·2|p |=4,∴p =±2 2. ∴抛物线标准方程为y 2=±42x .直线与抛物线的位置关系问题已知:直线l :y =kx +1,抛物线C :y 2=4x ,当k 为何值时,l 与C 有:(1)一个公共点;(2)两个公共点;(3)没有公共点?【思路探究】 (1)联立直线l 与抛物线C 的方程,得到的关于x 的方程是什么形式?(2)能直接用判别式法判断公共点的情况吗?【自主解答】 由⎩⎪⎨⎪⎧y =kx +1,y 2=4x ,得k 2x 2+(2k -4)x +1=0.(*)当k =0时,方程变为-4x +1=0,x =14,此时y =1.∴直线l 与C 只有一个公共点(14,1),此时直线l 平行于x 轴.当k ≠0时,方程(*)是一个一元二次方程:Δ=(2k -4)2-4k 2×1=16-16k①当Δ>0,即k <1,且k ≠0时,l 与C 有两个公共点,此时l 与C 相交; ②当Δ=0,即k =1时,l 与C 有一个公共点,此时l 与C 相切; ③当Δ<0,即k >1时,l 与C 没有公共点,此时l 与C 相离. 综上所述,(1)当k =1或k =0时,直线l 与C 有一个公共点; (2)当k <1,且k ≠0时,直线l 与C 有两个公共点; (3)当k >1时,直线l 与C 没有公共点.1.直线与抛物线的位置关系判断方法.通常使用代数法:将直线的方程与抛物线的方程联立,整理成关于x 的方程ax 2+bx +c =0.(1)当a ≠0时,利用判别式解决.Δ>0⇒相交;Δ=0⇒相切;Δ<0⇒相离.(2)当a =0时,方程只有一解x =-cb,这时直线与抛物线的对称轴平行或重合. 2.直线与抛物线相切和直线与抛物线公共点的个数的关系:直线与抛物线相切时,只有一个公共点,但是不能把直线与抛物线有且只有一个公共点统称为相切,这是因为平行于抛物线的对称轴的直线与抛物线只有一个公共点,而这时抛物线与直线是相交的.若过点(-3,2)的直线与抛物线y 2=4x 有两个公共点,求直线的斜率k 的取值范围. 【解】 设直线方程为y -2=k (x +3). 由⎩⎪⎨⎪⎧y -2=k x +3y 2=4x消去x ,整理得ky 2-4y +8+12k =0.①(1)当k =0时,方程①化为y =2,直线y =2与抛物线y 2=4x 相交,有一个公共点,不合要求; (2)当k ≠0时,Δ=16-4k (8+12k )>0. ∴-1<k <13,因此-1<k <13且k ≠0.综上可知,斜率k 的取值范围为{k |-1<k <13且k ≠0}.抛物线的焦点弦问题已知抛物线的顶点在原点,x 轴为对称轴,经过焦点且倾斜角为4的直线l 被抛物线所截得的弦长为6,求抛物线方程.【思路探究】 (1)焦点在x 轴上的抛物线方程如何设?(2)过焦点且倾斜角为π4的直线方程怎么求?它被抛物线截得的弦长问题能联系抛物线的定义吗?【自主解答】 当抛物线焦点在x 轴正半轴上时, 可设抛物线标准方程是y 2=2px (p >0), 则焦点F (p 2,0),直线l 为y =x -p2.设直线l 与抛物线的交点为A (x 1,y 1),B (x 2,y 2),过A 、B 分别向抛物线的准线作垂线AA 1、BB 1,垂足分别为A 1、B 1.则|AB |=|AF |+|BF |=|AA 1|+|BB 1|=(x 1+p 2)+(x 2+p2)=x 1+x 2+p =6,∴x 1+x 2=6-p .①由⎩⎪⎨⎪⎧y =x -p 2,y 2=2px ,消去y ,得(x -p2)2=2px ,即x 2-3px +p 24=0.∴x 1+x 2=3p ,代入①式得3p =6-p ,∴p =32.∴所求抛物线标准方程是y 2=3x .当抛物线焦点在x 轴负半轴上时,用同样的方法可求出抛物线的标准方程是y 2=-3x .1.本题是通过抛物线的性质求其方程的典型例题,抛物线的方程有两种形式,解答时切勿漏掉.2.过焦点F 和抛物线相交的弦叫做抛物线的焦点弦,在解决与焦点弦有关的问题时,一是注意用焦点弦所在的直线方程和抛物线方程联立得方程组,再结合根与系数关系解题,二是注意抛物线定义的灵活运用,特别应注意整体代入的方法.本例中,若把直线的倾斜角改为135°,被抛物线截得的弦长改为8,其他条件不变,试求抛物线的方程.【解】 如图,依题意当抛物线方程设为y 2=2px (p >0)时, 抛物线的准线为l ,则直线方程为y =-x +12p .设直线交抛物线于A (x 1,y 1),B (x 2,y 2),则由抛物线定义得|AB |=|AF |+|FB |=|AC |+|BD |=x 1+p 2+x 2+p2,即x 1+p 2+x 2+p2=8.①又A (x 1,y 1),B (x 2,y 2)是抛物线和直线的交点,由⎩⎪⎨⎪⎧y =-x +12p ,y 2=2px ,消去y 得x 2-3px +p 24=0.于是x 1+x 2=3p .将其代入①得p =2. 故所求抛物线方程为y 2=4x .当抛物线方程设为y 2=-2px (p >0)时,同理可求得抛物线方程为y 2=-4x . 综上所述,抛物线的方程为y 2=4x 或y 2=-4x .(对应学生用书第41页)忽略特殊直线致误求过定点P (0,1),且与抛物线y 2=2x 只有一个公共点的直线方程. 【错解】 设直线方程为y =kx +1,由⎩⎪⎨⎪⎧y =kx +1,y 2=2x得k 2x 2+2(k -1)x +1=0.当k =0时,解得y =1,即直线y =1与抛物线只有一个公共点; 当k ≠0时,Δ=4(k -1)2-4k 2=0,解得k =12,即直线y =12x +1与抛物线只有一个公共点.综上所述,所求的直线方程为y =1或y =12x +1.【错因分析】 本题直接设出了直线的点斜式方程,而忽视了斜率不存在的情况,从而导致漏解.【防范措施】 在解直线与抛物线的位置关系时,往往直接把直线方程设成点斜式方程,这样就把范围缩小了,而应先看斜率不存在的情况是否符合要求,直线斜率为0的情况也容易被忽略,所以解决这类问题时特殊情况要优先考虑,画出草图是行之有效的方法.【正解】 如图所示,若直线的斜率不存在, 则过点P (0,1)的直线方程为x =0,由⎩⎪⎨⎪⎧x =0,y 2=2x得⎩⎪⎨⎪⎧x =0,y =0,即直线x =0与抛物线只有一个公共点.若直线的斜率存在,则由错解可知,y =1或y =12x +1为所求的直线方程.故所求的直线方程为x =0或y =1或y =12x +1.1.讨论抛物线的几何性质,一定要利用抛物线的标准方程;利用几何性质,也可以求出抛物线的方程.2.解决焦点弦问题时,抛物线的定义有广泛的应用,求焦点弦长,一般不用弦长公式. 3.直线和抛物线的位置关系问题的通法与椭圆、双曲线一样,即联立方程消未知数,产生一元二次方程,用判别式Δ、根与系数关系解决问题.(对应学生用书第42页)1.抛物线y 2=ax (a ≠0)的对称轴为( ) A .y 轴 B .x 轴 C .x =-a2D .x =-a4【解析】 形如y 2=±2px (p >0)的抛物线的对称轴为x 轴. 【答案】 B2.顶点在原点,对称轴是y 轴,并且顶点与焦点的距离等于3的抛物线的标准方程( ) A .x 2=±3yB .y 2=±6xC .x 2=±12yD .x 2=±6y【解析】 依题意,p2=3,∴p =6.∴抛物线的标准方程为x 2=±12y . 【答案】 C3.抛物线y =ax 2的准线方程是y =-12,则a =________.【解析】 抛物线方程可化为x 2=1a y ,由题意14a =12,∴a =12.【答案】 124.若抛物线y 2=x 上一点P 到准线的距离等于它到顶点的距离,求点P 的坐标.【解】 根据题意可知:|PF |=|PO |,其中O 为原点,F 为焦点,∴x P =x F 2=18,∴y P =±18=±122=±24,∴P (18,±24).(对应学生用书第101页)一、选择题1.(2013·泰安高二检测)已知抛物线的顶点在原点,以x 轴为对称轴,焦点为F ,过F 且垂直于x 轴的直线交抛物线于A 、B 两点,且|AB |=8,则抛物线的标准方程为( )A .y 2=8x B .y 2=-8x C .y 2=±8xD .x 2=±8y【解析】 由抛物线的定义知,|AB |=|AF |+|BF |=2p =8,∴p =4,故标准方程为y 2=±8x .【答案】 C2.抛物线y =ax 2+1与直线y =x 相切,则a 等于( ) A.18 B.14C.12D .1【解析】 由⎩⎪⎨⎪⎧y =ax 2+1,y =x ,消y 得ax 2-x +1=0.∵直线y =x 与抛物线y =ax 2+1相切, ∴方程ax 2-x +1=0有两相等实根. ∴判别式Δ=(-1)2-4a =0,∴a =14.【答案】 B3.(2013·长沙高二检测)过点M (2,4)与抛物线y 2=8x 只有一个公共点的直线共有( )A .1B .2C .3D .4【解析】 由于M (2,4)在抛物线上,故满足条件的直线共有2条,一条是与x 轴平行的线,另一条是过M 的切线,如果点M 不在抛物线上,则有3条直线.【答案】 B4.探照灯反射镜的纵断面是抛物线的一部分,光源在抛物线的焦点处,灯口直径为60 cm ,灯深40 cm ,则光源到反射镜顶点的距离是( )A .11.25 cmB .5.625 cmC .20 cmD .10 cm【解析】 如图建立直角坐标系,则A (40,30),设抛物线方程为y 2=2px (p >0),将点(40,30)代入得p =454,所以p2=5.625即光源到顶点的距离.【答案】 B5.若点P 在y 2=x 上,点Q 在(x -3)2+y 2=1上,则|PQ |的最小值为( ) A.3-1 B.102-1 C .2 D.112-1 【解析】 设圆(x -3)2+y 2=1的圆心为Q ′(3,0),要求|PQ |的最小值,只需求|PQ ′|的最小值.设P 点坐标为(y 20,y 0),则|PQ ′|=y 20-32+y 2=y 202-5y 20+9=y 20-522+114. ∴|PQ ′|的最小值为112, 从而|PQ |的最小值为112-1. 【答案】 D 二、填空题6.(2013·台州高二检测)设抛物线y 2=16x 上一点P 到对称轴的距离为12,则点P 与焦点F 的距离|PF |=______.【解析】 设P (x,12),代入到y 2=16x 得x =9, ∴|PF |=x +p2=9+4=13.【答案】 137.设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2),若线段FA 的中点B 在抛物线上,则点B 到该抛物线准线的距离为________.【解析】 由已知得点B 的纵坐标为1,横坐标为p 4,即B (p4,1)将其代入y 2=2px 得p=2,则点B 到准线的距离为p 2+p 4=34p =342.【答案】342 8.(2012·北京高考)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点.其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为________.【解析】 ∵y 2=4x 的焦点为F (1,0),又直线l 过焦点F 且倾斜角为60°,故直线l 的方程为y =3(x -1),将其代入y 2=4x 得3x 2-6x +3-4x =0, 即3x 2-10x +3=0. ∴x =13或x =3.又点A 在x 轴上方,∴x A =3.∴y A =2 3. ∴S △OAF =12×1×23= 3.【答案】 3三、解答题9.若抛物线的顶点在原点,开口向上,F 为焦点,M 为准线与y 轴的交点,A 为抛物线上一点,且|AM |=17,|AF |=3,求此抛物线的标准方程.【解】 设所求抛物线的标准方程为x 2=2py (p >0),A (x 0,y 0),由题知 M (0,-p2).∵|AF |=3,∴y 0+p2=3,∵|AM |=17, ∴x 20+(y 0+p2)2=17,∴x 20=8,代入方程x 20=2py 0得, 8=2p (3-p2),解得p =2或p =4.∴所求抛物线的标准方程为x 2=4y 或x 2=8y .10.已知A ,B 两点在抛物线C :x 2=4y 上,点M (0,4)满足MA →=λMB →(λ≠0),求证:OA→⊥OB →.【证明】 设A (x 1,y 1)、B (x 2,y 2).∵MA →=λMB →,∴M 、A 、B 三点共线,即直线AB 过点M . 设l AB ∶y =kx +4(易知斜率存在),与x 2=4y 联立得,x 2-4kx -16=0, Δ=(-4k )2-4×(-16)=16k 2+64>0,由根与系数的关系得x 1+x 2=4k ,x 1x 2=-16, ∴OA →·OB →=x 1x 2+y 1y 2 =x 1x 2+(kx 1+4)(kx 2+4) =(1+k 2)x 1x 2+4k (x 1+x 2)+16=(1+k 2)·(-16)+4k ·(4k )+16=0, ∴OA →⊥OB →.11.(2013·泰州高二检测)已知抛物线x 2=ay (a >0),点O 为坐标原点,斜率为1的直线与抛物线交于A ,B 两点.(1)若直线l 过点D (0,2)且a =4,求△AOB 的面积;(2)若直线l 过抛物线的焦点且OA →·OB →=-3,求抛物线的方程. 【解】 (1)依题意,直线l 的方程为y =x +2,抛物线方程x 2=4y ,由⎩⎪⎨⎪⎧x 2=4y ,y =x +2,消去y ,得x 2-4x -8=0.则Δ=16-4×(-8)=48>0恒成立.设l 与抛物线的交点坐标为A (x 1,y 1),B (x 2,y 2),x 1<x 2. ∴x 1=2-23,x 2=2+2 3. 则|x 2-x 1|=4 3.∴S △AOB =12·|OD |·|x 2-x 1|=12×2×43=4 3.(2)依题意,直线l 的方程为y =x +a4.⎩⎪⎨⎪⎧y =x +a 4,x 2=ay ,⇒x 2-ax -a 24=0,∵Δ>0,设直线l 与抛物线交点A (x 1,y 1),B (x 2,y 2). ∴x 1+x 2=a ,x 1x 2=-a 24.又已知OA →·OB →=-3, 即x 1x 2+y 1y 2=-3,∴x 1x 2+(x 1+a 4)(x 2+a4)=-3,∴2x 1x 2+a 4(x 1+x 2)+a 216=-3, ∵a >0,∴a =4.∴所求抛物线方程为x 2=4y .(教师用书独具)已知抛物线y 2=2x ,(1)设点A 的坐标为(23,0),求抛物线上距离点A 最近的点P 的坐标及相应的距离|PA |;(2)在抛物线上求一点P ,使P 到直线x -y +3=0的距离最短,并求出距离的最小值. 【解】 (1)设抛物线上任一点P 的坐标为(x ,y ), 则|PA |2=(x -23)2+y 2=(x -23)2+2x=(x +13)2+13.∵x ≥0,且在此区间上函数单调递增, ∴当x =0时,|PA |min =23,距点A 最近的点的坐标为(0,0).(2)法一 设点P (x 0,y 0)是y 2=2x 上任一点, 则P 到直线x -y +3=0的距离为d =|x 0-y 0+3|2=|y 22-y 0+3|2=|y 0-12+5|22,当y 0=1时,d min =522=524,∴点P 的坐标为(12,1).法二 设与直线x -y +3=0平行的抛物线的切线为x -y +t =0,与y 2=2x 联立,消去x 得y 2-2y +2t =0,由Δ=0得t =12,此时y =1,x =12,∴点P 坐标为(12,1),两平行线间的距离就是点P 到直线的最小距离, 即d min =524.已知抛物线y 2=4x 与直线x +y -2=0的交点为A 、B ,抛物线的顶点为O ,在AOB 上求一点C ,使△ABC 的面积最大,并求出这个最大面积.【解】 设与直线AB 平行且与抛物线相切的直线方程为x +y -b =0,将它与抛物线方程y 2=4x 联立,消去x 得方程y 2=4(b -y ),即y 2+4y -4b =0.由Δ=42-4(-4b )=0得b =-1,故切线为x +y +1=0. 求得切点C (1,-2).因直线x +y +1=0与x +y -2=0的距离d =|1+2|2=322.由⎩⎪⎨⎪⎧x +y -2=0,y 2=4x ,解得交点坐标为A (4+23,-2-23)、B (4-23,-2+23). ∴|AB |=4 6.于是S △ABC =12|AB |·d =12×46×322=6 3.所以当C 点为(1,-2)时,S△ABC的最大值为6 3.。
2019-2020年高中数学《2.3.2 抛物线的简单几何性质》教案 新人教A版选修1-1

二、讲授新课:
1、教学直线与抛物线的位置关系
设直线,抛物线,直线与抛物线的交点的个数等价于方程组解的个数,也等价于方程解的个数
1当时,
当时,直线和抛物线相交,有两个公共点;
当时,直线和抛物线相切,有一个公共点;
当时,直线和抛物线相离,无公共点
②若,则直线与抛物线相交,有一个公共点,特别地,当直线的斜率不存在时,设,则当,与抛物线相交,有两个公共点;当时,与抛物线相切,有一个公共点,当时,与抛物线相离,无公共点.
上课时间
第周星期第节
课型
课题
教学目的
通过本节的学习,掌握抛物线的简单几何性质,能运用性质解决与抛物线有关的问题,进一步体会数形结合的思想.
教学设想
教学重点பைடு நூலகம்能运用性质解决与抛物线有关的问题.
教学难点:数形结合的思想在解决有关抛物线问题中的应用.
教
学
过
程
1、提问:回顾抛物线的简单几何性质,直线与抛物线的位置关系.
教
学
过
程
一、复习准备:
1、提问:你能回顾一下抛物线的定义,抛物线的标准方程?
2、抛物线上与焦点的距离等于6的点的坐标
二、讲授新课:
1、教学抛物线的简单几何性质
抛物线的标准方程:
①范围:
②对称性:这条抛物线关于对称,抛物线的对称轴叫做抛物线的轴.
③顶点:抛物线和它的轴的交点叫做抛物线的顶点,这条抛物线的顶点就是坐标原点
三、巩固练习:
①、过抛物线的焦点作直线交抛物线于,两点,如果,那么的值为多少?
②、抛物线上一点到顶点的距离等于它们到准线的距离,这点的坐标是
③、已知直线与抛物线相交与两点,若,(为坐标原点),且,求抛物线的方程.
人教版高中数学《抛物线的简单几何性质》优质教案

2.3.2抛物线的简单几何性质(第一课时)(人教A版普通高中教科书数学选择性必修第一册第三章)一、教学目标1.掌握抛物线的简单几何性质:范围、对称性、顶点、离心率;2.能根据抛物线的几何性质对抛物线方程进行讨论;3.对通径、焦半径公式进行初步探索;4.进一步理解数形结合的思想方法在解析几何中的应用。
二、教学重难点1.教学重点:抛物线的简单几何性质、利用抛物线的几何性质求方程、对通径与焦半径公式的初步探究。
2.教学难点:利用数形结合法对通径、焦半径公式的探究。
三、教学过程1.利用数形结合的思想探究抛物线的简单几何性质1.1 知识回顾,温故知新【学生活动】学生完成学案内容,对抛物线的四种方程、图形、焦点坐标、准线方程进行复习。
【设计意图】之前学过椭圆、双曲线的几何性质,都是通过图形和方程两方面进行研究的,因此引导学生对抛物线的四种方程、图形、焦点坐标、准线方程进行复习,有利于对抛物线性质的进一步探索。
1.2 数形结合,类比探究问题1:类比用标准方程研究椭圆、双曲线几何性质的过程与方法,请思考:我们要研究抛物线的哪些几何性质?如何研究这些性质?【预设答案】前面我们学习了椭圆、双曲线的范围、对称性、顶点、离心率,在双曲线中还学习了渐近线。
我们是通过“数”和“形”两方面对椭圆、双曲线的几何性质进行探究的。
【设计意图】类比椭圆、双曲线几何性质的研究思路,为接下来用数形结合法研究抛物线的几何性质进行铺垫。
问题2:观察图形,你能发现抛物线横、纵坐标的取值范围吗?【预设答案】通过观察图形,学生很容易得到开口向右的抛物线中横、纵坐标的取值范围,即为0,0>≥y x问题3:从数的角度,也就是从抛物线方程的角度,怎样得到抛物线中横纵坐标的取值范围呢?【预设答案】在方程0,22>=p px y 中,y 并无限制,因此R y ∈。
而因为022≥=y px ,且0>p ,所以0≥x 。
【设计意图】让学生从“数”和“形”两个角度探索抛物线的范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学《抛物线的简单几何性质》学案新人
教版选修
92、4、2抛物线的简单几何性质
【课程标准】
了解抛物线的定义、几何图形和标准方程,知道抛物线的几何性质
【学习目标】
1、通过自主学习了解抛物线的对称性、范围、顶点、离心率等简单几何性质
2、能从抛物线的标准方程出发推导抛物线的性质,从而培养学生的分析、归纳、推理能力
3、通过例题和练习逐步掌握对称性、范围、顶点、离心率等简单几何性质
【自主学习】
请类比椭圆、双曲线的几何性质,讨论抛物线的性质以为例
1、范围
2、对称性
3、顶点
4、离心率
【典型例题】
例
1、轻松判断(1)顶点在原点、焦点在坐标轴上且经过点(3,2)的抛物线有4条()(2)像椭圆、双曲线一样,一条抛物线有两个焦点,两条对称轴,一个对称中心()(3)抛物线的的取值范围是不同的,但其焦点到准线的距离是相同的,离心率也相同()(4)过抛物线焦点且垂直于对称轴的直线与抛物线交于两点A,B,则与抛物线标准方程的一次项系数相等( )例
2、边长为4的正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线上,求抛物线方程例
3、已知抛物线 ,设点A的坐标为,求抛物线上距离点A最近的点P的坐标及相应的距离、变式: 抛物线x2=4y的焦点为F, 斜率为2的直线经过抛物线的焦点,且与抛物线相交于A,B两点,求线段AB的长、拓展提高:
抛物线y2=4x的焦点为F, 点M在抛物线上运动, A(2,2), 试求|MA|+|MF|的最小值、
【课堂练习】
1、若抛物线上一点P到准线的距离等于它到顶点O的距离,则P点的坐标为()
2、连接抛物线上任意四点组成的图形有可能是(填写所有正确序号)①菱形②有3条边相等的四边形③梯形④平行四边形
3、求顶点在原点,焦点在y轴上且通径长为8的抛物线方程
4、已知抛物线C: ,焦点F到准线的距离为
2、(1)求p的值(2)过点F作直线交抛物线于
A、B,交于点M,若点M的纵坐标为-2,求。