2008年湘潭市中考数学试卷及解析
湘潭市中考数学试卷

湘潭市中考数学试卷湘潭市中考数学试卷共8小题.每题3分.共24分)1.(3分)﹣2的相反数是()A.2 B.﹣2 C.D.±22.(3分)如图所示的几何体的主视图是()A.B.C.D.3.(3分)每年5月11日是由世界卫生组织确定的世界防治肥胖日.某校为了解全校2000名学生的体重情况.随机抽测了200名学生的体重.根据体质指数(BMI)标准.体重超标的有15名学生.则估计全校体重超标学生的人数为()A.15 B.150 C.200 D.20004.(3分)如图.点A的坐标(﹣1.2).点A关于y轴的对称点的坐标为()A.(1.2)B.(﹣1.﹣2)C.(1.﹣2)D.(2.﹣1)5.(3分)如图.已知点E、F、G.H分别是菱形ABCD各边的中点.则四边形EFGH 是()A.正方形B.矩形C.菱形D.平行四边形6.(3分)下列计算正确的是()A.x2+x3=x5B.x2•x3=x5C.(﹣x2)3=x8D.x6÷x2=x37.(3分)若b>0.则一次函数y=﹣x+b的图象大致是()A. B. C. D.8.(3分)若一元二次方程x2﹣2x+m=0有两个不相同的实数根.则实数m的取值范围是()A.m≥1 B.m≤1 C.m>1 D.m<1二、填空题(本题共8小题.每题3分.共24分)9.(3分)因式分解:a2﹣2ab+b2=.10.(3分)我市今年对九年级学生进行了物理、化学实验操作考试.其中物实验操作考试有4个考题备选.分别记为A.B.C.D.学生从中机抽取一个考题进行测试.如果每一个考题抽到的机会均等.那么学生小林抽到考题B的概率是.11.(3分)分式方程=1的解为.12.(3分)如图.在等边三角形ABC中.点D是边BC的中点.则∠BAD=.13.(3分)如图.AB是⊙O的切线.点B为切点.若∠A=30°.则∠AOB=.14.(3分)如图.点E是AD延长线上一点.如果添加一个条件.使BC∥AD.则可添加的条件为.(任意添加一个符合题意的条件即可)15.(3分)《九章算术》是我国古代最重要的数学著作之一.在“匀股”章中记载了一道“折竹抵地”问题:“今有竹高一丈.末折抵地.去本三尺.问折者高几何?”翻译成数学问题是:如图所示.△ABC中.∠ACB=90°.AC+AB=10.BC=3.求AC的长.如果设AC=x.则可列方程为.16.(3分)阅读材料:若a b=N.则b=log a N.称b为以a为底N的对数.例如23=8.则log28=log223=3.根据材料填空:log39=.三、解答题(本题共10题.102分)17.(6分)计算:|﹣5|+(﹣1)2﹣()﹣1﹣.18.(6分)先化简.再求值:(1+)÷.其中x=3.19.(6分)随看航母编队的成立.我国海军日益强大.2018年4月12日.中央军委在南海海域降重举行海上阅兵.在阅兵之前我军加强了海上巡逻.如图.我军巡逻舰在某海域航行到A处时.该舰在观测点P的南偏东45°的方向上.且与观测点P 的距离PA为400海里;巡逻舰继续沿正北方向航行一段时间后.到达位于观测点P的北偏东30°方向上的B处.问此时巡逻舰与观测点P的距离PB为多少每里?(参考数据:≈1.414.≈1.732.结果精确到1海里).20.(6分)为进一步深化基教育课程改革.构建符合素质教育要求的学校课程体系.某学校自主开发了A书法、B阅读.C足球.D器乐四门校本选修课程供学生选择.每门课程被选到的机会均等.(1)学生小红计划选修两门课程.请写出所有可能的选法;(2)若学生小明和小刚各计划送修一门课程.则他们两人恰好选修同一门课程的概率为多少?21.(6分)今年我市将创建全国森林城市.提出了“共建绿色城”的倡议.某校积极响应.在3月12日植树节这天组织全校学生开展了植树活动.校团委对全校各班的植树情况道行了统计.绘制了如图所示的两个不完整的统计图.(1)求该校的班级总数;(2)将条形统计图补充完整;(3)求该校各班在这一活动中植树的平均数.22.(6分)如图.在正方形ABCD中.AF=BE.AE与DF相交于于点O.(1)求证:△DAF≌△ABE;(2)求∠AOD的度数.23.(8分)湘潭市继2017年成功创建全国文明城市之后.又准备争创全国卫生城市.某小区积极响应.决定在小区内安装垃圾分类的温馨提示牌和垃圾箱.若购买2个温馨提示牌和3个垃圾箱共需550元.且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱.如果购买温馨提示牌和垃圾箱共100个.且费用不超过10000元.请你列举出所有购买方案.并指出哪种方案所需资金最少?最少是多少元?24.(8分)如图.点M在函数y=(x>0)的图象上.过点M分别作x轴和y轴的平行线交函数y=(x>0)的图象于点B、C.(1)若点M的坐标为(1.3).①求B、C两点的坐标;②求直线BC的解析式;(2)求△BMC的面积.25.(10分)如图.AB是以O为圆心的半圆的直径.半径CO⊥AO.点M是上的动点.且不与点A、C、B重合.直线AM交直线OC于点D.连结OM与CM.(1)若半圆的半径为10.①当∠AOM=60°时.求DM的长;②当AM=12时.求DM的长.(2)探究:在点M运动的过程中.∠DMC的大小是否为定值?若是.求出该定值;若不是.请说明理由.26.(10分)如图.点P为抛物线y=x2上一动点.(1)若抛物线y=x2是由抛物线y=(x+2)2﹣1通过图象平移得到的.请写出平移的过程;(2)若直线l经过y轴上一点N.且平行于x轴.点N的坐标为(0.﹣1).过点P 作PM⊥l于M.①问题探究:如图一.在对称轴上是否存在一定点F.使得PM=PF恒成立?若存在.求出点F的坐标:若不存在.请说明理由.②问题解决:如图二.若点Q的坐标为(1.5).求QP+PF的最小值.湘潭市中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项.本题共8小题.每题3分.共24分)1.【解答】解:﹣2的相反数是:﹣(﹣2)=2.故选:A.2.【解答】解:该几何体的主视图是三角形.故选:C.3.【解答】解:估计全校体重超标学生的人数为2000×=150人.故选:B.4.【解答】解:点A的坐标(﹣1.2).点A关于y轴的对称点的坐标为:(1.2).故选:A.5.【解答】解:连接AC、BD.AC交FG于L.∵四边形ABCD是菱形.∴AC⊥BD.∵DH=HA.DG=GC.∴GH∥AC.HG=AC.同法可得:EF=AC.EF∥AC.∴GH=EF.GH∥EF.∴四边形EFGH是平行四边形.同法可证:GF∥BD.∴∠OLF=∠AOB=90°.∵AC∥GH.∴∠HGL=∠OLF=90°.∴四边形EFGH是矩形.故选:B.6.【解答】解:A、x2+x3.无法计算.故此选项错误;B、x2•x3=x5.正确;C、(﹣x2)3=﹣x6.故此选项错误;D、x6÷x2=x4.故此选项错误;故选:B.7.【解答】解:∵一次函数y=x+b中k=﹣1<0.b>0.∴一次函数的图象经过一、二、四象限.故选:C.8.【解答】解:∵方程x2﹣2x+m=0有两个不相同的实数根.∴△=(﹣2)2﹣4m>0.解得:m<1.故选:D.二、填空题(本题共8小题.每题3分.共24分)9.【解答】解:原式=(a﹣b)2故答案为:(a﹣b)210.【解答】解:∵物实验操作考试有4个考题备选.且每一个考题抽到的机会均等.∴学生小林抽到考题B的概率是:.故答案是:.11.【解答】解:两边都乘以x+4.得:3x=x+4.解得:x=2.检验:x=2时.x+4=6≠0.所以分式方程的解为x=2.故答案为:x=2.【解答】解:∵△ABC是等边三角形.∴∠BAC=60°.AB=AC.又点D是边BC的中点.∴∠BAD=∠BAC=30°.故答案是:30°.13.【解答】解:∵AB是⊙O的切线.∴∠OBA=90°.∴∠AOB=90°﹣∠A=60°.故答案为:60°.14.【解答】解:若∠A+∠ABC=180°.则BC∥AD;若∠C+∠ADC=180°.则BC∥AD;若∠CBD=∠ADB.则BC∥AD;若∠C=∠CDE.则BC∥AD;故答案为:∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE.(答案不唯一)15.【解答】解:设AC=x.∵AC+AB=10.∴AB=10﹣x.∵在Rt△ABC中.∠ACB=90°.∴AC2+BC2=AB2.即x2+32=(10﹣x)2.故答案为:x2+32=(10﹣x)2.16.【解答】解:∵32=9.∴log39=log332=2.故答案为2.三、解答题(本题共10题.102分)17.【解答】解:原式=5+1﹣3﹣2=1.18.【解答】解:(1+)÷=×=x+2.当x=3时.原式=3+2=5.19.【解答】解:在△APC中.∠ACP=90°.∠APC=45°.则AC=PC.∵AP=400海里.∴由勾股定理知.AP2=AC2+PC2=2PC2.即4002=2PC2.故PC=200海里.又∵在直角△BPC中.∠PCB=90°.∠BPC=60°.∴PB==2PC=400≈565.6(海里).答:此时巡逻舰与观测点P的距离PB约为565.6每里.20.【解答】解:(1)画树状图为:共有12种等可能的结果数;(2)画树状图为:共有16种等可能的结果数.其中他们两人恰好选修同一门课程的结果数为4.所以他们两人恰好选修同一门课程的概率==.21.【解答】解:(1)该校的班级总数=3÷25%=12.答:该校的班级总数是12;(2)植树11颗的班级数:12﹣1﹣2﹣3﹣4=2.如图所示:(3)(1×8+2×9+2×11+3×12+4×15)÷12=12(颗).答:该校各班在这一活动中植树的平均数约是12颗数.22.【解答】(1)证明:∵四边形ABCD是正方形.∴∠DAB=∠ABC=90°.AD=AB.在△DAF和△ABE中..∴△DAF≌△ABE(SAS).(2)由(1)知.△DAF≌△ABE.∴∠ADF=∠BAE.∵∠ADF+∠DAO=∠BAE+∠DAO=∠DAB=90°.∴∠AOD=180°﹣(∠ADF+DAO)=90°.23.【解答】解:(1)设温情提示牌的单价为x元.则垃圾箱的单价为3x元.根据题意得.2x+3×3x=550.∴x=50.经检验.符合题意.∴3x=150元.即:温馨提示牌和垃圾箱的单价各是50元和150元;(2)设购买温情提示牌y个(y为正整数).则垃圾箱为(100﹣y)个.根据题意得.意..∴≤y≤52.∵y为正整数.∴y为42.43.44.45.46.47.48.49.50.51.52.共11中方案;即:温馨提示牌42个.垃圾箱58个.温馨提示牌43个.垃圾箱57个.温馨提示牌44个.垃圾箱56个.温馨提示牌45个.垃圾箱55个.温馨提示牌46个.垃圾箱54个.温馨提示牌47个.垃圾箱53个.温馨提示牌48个.垃圾箱52个.温馨提示牌49个.垃圾箱51个.温馨提示牌50个.垃圾箱50个.温馨提示牌51个.垃圾箱49个.温馨提示牌52个.垃圾箱48个.根据题意.费用为30y+150(100﹣y)=﹣120y+15000.当y=52时.所需资金最少.最少是8760元.24.【解答】解:(1)①∵点M的坐标为(1.3)且B、C函数y=(x>0)的图象上∴点C横坐标为1.纵坐标为1点B纵坐标为3.横坐标为∴点C坐标为(1.1).点B坐标为(.3)②设直线BC解析式为y=kx+b把B、C点坐标代入得解得∴直线BC解析式为:y=﹣3x+4(2)设点M坐标为(a.b)∵点M在函数y=(x>0)的图象上∴ab=3由(1)点C坐标为(a.).B点坐标为(.b)∴BM=a﹣.MC=b﹣=∴S△BMC25.【解答】解:(1)①当∠AOM=60°时.∵OM=OA.∴△AMO是等边三角形.∴∠A=∠MOA=60°.∴∠MOD=30°.∠D=30°.∴DM=OM=10②过点M作MF⊥OA于点F.设AF=x.∴OF=10﹣x.∵AM=12.OA=OM=10.由勾股定理可知:122﹣x2=102﹣(10﹣x)2∴x=.∴AF=.∵MF∥OD.∴△AMF∽△ADO.∴.∴.∴AD=∴MD=AD﹣AM=(2)当点M位于之间时.连接BC.∵C是的重点.∴∠B=45°.∵四边形AMCB是圆内接四边形.此时∠CMD=∠B=45°.当点M位于之间时.连接BC.由圆周角定理可知:∠CMD=∠B=45°综上所述.∠CMD=45°26.【解答】解:(1)∵抛物线y=(x+2)2﹣1的顶点为(﹣2.﹣1)∴抛物线y=(x+2)2﹣1的图象向上平移1个单位.再向右2个单位得到抛物线y=x2的图象.(2)①存在一定点F.使得PM=PF恒成立.如图一.过点P作PB⊥y轴于点B设点P坐标为(a.a2)∴PM=PF=a2+1∵PB=a∴Rt△PBF中BF=∴OF=1∴点F坐标为(0.1)②由①.PM=PFQP+PF的最小值为QP+QM的最小值当Q、P、M三点共线时.QP+QM有最小值为点Q纵坐标5.∴QP+PF的最小值为5.。
以往湖南省湘潭市中考数学真题及答案

以往湖南省湘潭市中考数学真题及答案一、选择题(共8小题,每小题3分,满分24分)1.(2012•湘潭)下列运算正确的是()A.|﹣3|=3 B.C.( a2)3=a5D.2a•3a=6a考点:单项式乘单项式;相反数;绝对值;幂的乘方与积的乘方。
分析:A、根据绝对值的性质可知负数的绝对值是它的相反数;B、根据相反数的定义可知负数的相反数是正数;C、根据幂的乘方法则计算即可;D、根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.解答:解:A、|﹣3|=3,正确;B、应为﹣(﹣)=,故本选项错误;C、应为( a2)3=a2×3=a6,故本选项错误;D、应为2a•3a=6a2,故本选项错误.故选D.点评:综合考查了绝对值的性质,相反数的定义,幂的乘方和单项式乘单项式,是基础题型,比较简单.2.(2012•湘潭)已知一组数据3,a,4,5的众数为4,则这组数据的平均数为()A.3 B.4 C.5 D.6考点:算术平均数;众数。
分析:要求平均数只要求出数据之和再除以总个数即可;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.依此先求出a,再求这组数据的平均数.解答:解:数据3,a,4,5的众数为4,即的4次数最多;即a=4.则其平均数为( 3+4+4+5)÷4=4.故选B.点评:本题考查平均数与众数的意义.平均数等于所有数据之和除以数据的总个数;众数是一组数据中出现次数最多的数据.3.(2009•广州)下列函数中,自变量x的取值范围是x≥3的是()A.y=B.y=C.y=x﹣3 D.y=考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件。
分析:分式有意义,分母不等于0;二次根式有意义:被开方数是非负数就可以求出x的范围.解答:解:A、分式有意义,x﹣3≠0,解得:x≠3;B、二次根式有意义,x﹣3>0,解得x>3;C、函数式为整式,x是任意实数;D、二次根式有意义,x﹣3≥0,解得x≥3.故选D.点评:本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:( 1)当函数表达式是整式时,自变量可取全体实数;( 2)当函数表达式是分式时,考虑分式的分母不能为0;( 3)当函数表达式是二次根式时,被开方数非负.4.(2012•湘潭)如图,从左面看圆柱,则图中圆柱的投影是()A.圆B.矩形C.梯形D.圆柱考点:平行投影。
湖南省湘潭市中考数学试卷及答案(Word解析版)

湖南省湘潭市中考数学试卷一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1.(3分)(•湘潭)﹣5的相反数是()A.5B.C.﹣5 D.考点:相反数.专题:计算题.分析:只有符号不同的两个数叫做互为相反数,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.解答:解:﹣5的相反数是5.故选A.点评:本题主要考查相反数的概念和意义:只有符号不同的两个数叫做互为相反数,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.2.(3分)(•湘潭)一组数据1,2,2,3.下列说法正确的是()A.众数是3 B.中位数是2 C.极差是3 D.平均数是3考点:极差;算术平均数;中位数;众数.分析:根据极差、众数、中位数及平均数的定义,结合各选项进行判断即可.解答:解:A、众数为2,故本选项错误;B、中位数是2,故本选项正确;C、极差为2,故本选项错误;D、平均数为2,故本选项错误;故选B.点评:本题考查了极差、中位数、平均数、众数的知识,掌握基本定义即可解答本题,难度一般.3.(3分)(•湘潭)如图是由三个小方体叠成的一个立体图形,那么它的俯视图是()A.B.C.D.考点:简单组合体的三视图.分找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.析:解答:解:从上面看易得两个横向排列的正方形.故选B.点评:本题考查了三视图的知识,属于基础题,要求同学们掌握俯视图是从物体的上面看得到的视图.4.(3分)(•湘潭)下列图形中,是中心对称图形的是()A.平行四边形B.正五边形C.等腰梯形D.直角三角形考点:中心对称图形分析:根据中心对称的定义,结合所给图形即可作出判断.解答:解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,是轴对称图形,故本选项错误;C、不是中心对称图形,是轴对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点评:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.5.(3分)(•湘潭)一元二次方程x2+x﹣2=0的解为x1、x2,则x1•x2=()A.1B.﹣1 C.2D.﹣2考点:根与系数的关系.专题:计算题.分析:直接根据根与系数的关系求解.解答:解:根据题意得x1•x2==﹣2.故选D.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.6.(3分)(•湘潭)下列命题正确的是()A.三角形的中位线平行且等于第三边B.对角线相等的四边形是等腰梯形C.四条边都相等的四边形是菱形D.相等的角是对顶角考点:命题与定理分析:利用三角形中位线的性质,等腰梯形、菱形、对顶角的性质分别进行判断,即可得出答案.解答:解:A、三角形的中位线平行于三角形的第三边并且等于第三边的一半,故本选项错误;B、正方形,矩形对角线均相等,故本选项错误;C、四条边都相等的四边形是菱形,故本选项正确;D、相等的角不一定是对顶角,故本选项错误;故选C.点评:此题考查了命题与定理,熟练掌握各特殊四边形的判定和性质是解答此类问题的关键.7.(3分)(•湘潭)如图,点P(﹣3,2)是反比例函数(k≠0)的图象上一点,则反比例函数的解析式()A.B.C.D.考点:待定系数法求反比例函数解析式.分析:把P点坐标代入反比例函数解析式即可算出k的值,进而得到答案.解答:解:∵点P(﹣3,2)是反比例函数(k≠0)的图象上一点,∴k=﹣3×2=﹣6,∴反比例函数的解析式为y=,故选:D.点评:此题主要考查了待定系数法求反比例函数解析式,关键是掌握凡是反比例函数图象经过的点必能满足解析式.8.(3分)(•湘潭)如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()A.B D=CE B.A D=AE C.D A=DE D.B E=CD考点:等腰三角形的性质分析:根据全等三角形的判定与性质,等边对等角的性质对各选项分析判断后利用排除法求解.解答:解:A、添加BD=CE,可以利用“边角边”证明△ABD和△ACE全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误;B、添加AD=AE,根据等边对等角可得∠ADE=∠AED,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB=∠EAC,故本选项错误;C、添加DA=DE无法求出∠DAB=∠EAC,故本选项正确;D、添加BE=CD可以利用“边角边”证明△ABE和△ACD全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误.故选C.点评:本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,全等三角形的判定与性质,小综合题,熟练掌握全等三角形的判定与性质是解题的关键.二、填空题(本大题共8个小题,请将答案写在答题卡的相应位置上,每小题3分,满分24分)9.(3分)(•湘潭)|﹣3|=3.考点:绝对值分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|﹣3|=3.故答案为:3.点评:此题主要考查了绝对值的性质,正确记忆绝对值的性质是解决问题的关键.10.(3分)(•湘潭)如右图,已知:AB∥CD,∠C=25°,∠E=30°,则∠A=55°.考点:平行线的性质专题:计算题.分析:由AB与CD平行,利用两直线平行得到一对同位角相等,求出∠EFD的度数,而∠EFD为三角形ECF的外角,利用外角性质即可求出∠EFD的度数,即为∠A的度数.解答:解:∵∠EFD为△ECF的外角,∴∠EFD=∠C+∠E=55°,∵CD∥AB,∴∠A=∠EFD=55°.故答案为:55°点评:此题考查了平行线的性质,以及三角形的外角性质,熟练掌握平行线的性质是解本题的关键.11.(3分)(•湘潭)到底,湘潭地区总人口约为3020000人,用科学记数法表示这一数为 3.02×106.考点:科学记数法—表示较大的数分科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,析:要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将3020000用科学记数法表示为3.02×106.故答案为:3.02×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(•湘潭)湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人,如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完.设敬老院有x位老人,依题意可列方程为2x+16=3x.考点:由实际问题抽象出一元一次方程分析:根据“送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完”表示出牛奶的总盒数,进而得出答案.解答:解:设敬老院有x位老人,依题意可列方程:2x+16=3x,故答案为:2x+16=3x.点评:此题主要考查了由实际问题抽象出一元一次方程,根据已知表示出牛奶的总盒数是解题关键.13.(3分)(•湘潭)“五一”假期,科科随父母在韶山旅游时购买了10张韶山风景明信片(除图案外,形状大小、质地等都相同),其中4张印有主席故居图案,3张印有主席铜像图案,3张印有滴水洞风景图案,他从中任意抽取1张寄给外地工作的姑姑,则恰好抽中印有主席故居图案明信片的概率是.考点:概率公式分析:由在韶山旅游时购买了10张韶山风景明信片(除图案外,形状大小、质地等都相同),其中4张印有主席故居图案,3张印有主席铜像图案,3张印有滴水洞风景图案,直接利用概率公式求解即可求得答案.解答:解:∵在韶山旅游时购买了10张韶山风景明信片(除图案外,形状大小、质地等都相同),其中4张印有主席故居图案,3张印有主席铜像图案,3张印有滴水洞风景图案,∴恰好抽中印有主席故居图案明信片的概率是:=.故答案为:.点评:此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.14.(3分)(•湘潭)函数:中,自变量x的取值范围是x≠﹣1.考点:函数自变量的取值范围专计算题.题:分析:根据分式有意义的条件是分母不为0;分析原函数式可得关系式x+1≠0,解可得答案.解答:解:根据题意可得x+1≠0;解可得x≠﹣1;故答案为x≠﹣1.点评:求解析法表示的函数的自变量取值范围时:当函数表达式是分式时,要注意考虑分式的分母不能为0.15.(3分)(•湘潭)计算:=2.考点:实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:本题涉及零指数幂、特殊角的三角函数值、二次根式化简等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=×+1=1+1=2.故答案为2.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、特殊角的三角函数值、二次根式化简等考点的运算.16.(3分)(•湘潭)如图,根据所示程序计算,若输入x=,则输出结果为2.考点:函数值;估算无理数的大小专题:图表型.分析:根据>1选择左边的函数关系式进行计算即可得解.解答:解:∵x=>1,∴y=2﹣1=3﹣1=2.故答案为:2.点评:本题考查了函数值的计算,比较简单,准确选择函数关系式是解题的关键.三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应的位置上,满分72分)17.(6分)(•湘潭)解不等式组..考点:解一元一次不等式组分析:首先分别计算出两个不等式的解集,再根据“大小小大中间找”找出公共解集即可.解答:解:,由①得:x≥2,由②得:x≤4,不等式组的解集为:2≤x≤4.点评:此题主要考查了一元一次不等式组的解法,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.(6分)(•湘潭)先化简,再求值:,其中x=﹣2.考点:分式的化简求值.专题:计算题.分析:先根据分式混合运算的法则把原式进行化简,再把x=2代入进行计算即可.解答:解:原式=÷=×=,当x=﹣2时,原式=﹣=﹣1.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.(6分)(•湘潭)如图,C岛位于我南海A港口北偏东60方向,距A港口60海里处,我海监船从A港口出发,自西向东航行至B处时,接上级命令赶赴C岛执行任务,此时C岛在B处北偏西45°方向上,海监船立刻改变航向以每小时60海里的速度沿BC行进,则从B处到达C岛需要多少小时?考点:解直角三角形的应用-方向角问题分析:分别在Rt△ACD与Rt△BCD中,利用三角函数的性质,即可求得BC的长,继而求得答案.解答:解:∵在Rt△ACD中,∠CAD=30°,∴CD=×60=30海里,∵在Rt△BCD中,∠CBD=45°,∴BC=30×=60海里,60÷60=1(小时).答:从B处到达C岛需要1小时.点评:此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.20.(6分)(•湘潭)4月20日8时,四川省芦山县发生7.0级地震,某市派出抢险救灾工程队赶芦山支援,工程队承担了2400米道路抢修任务,为了让救灾人员和物资尽快运抵灾区,实际施工速度比原计划每小时多修40米,结果提前2小时完成,求原计划每小时抢修道路多少米?考点:分式方程的应用分析:首先设原计划每小时抢修道路x米,则实际施工速度为每小时抢修道路(x+40)米,根据题意可得等量关系:原计划修2400米道路所用时间﹣实际修2400米道路所用时间=2小时,根据等量关系,列出方程即可.解答:解:设原计划每小时抢修道路x米,由题意得:﹣=2,解得:x1=200,x2=﹣240,经检验:x1=200,x2=﹣240,都是原分式方程的解,x=﹣240不合题意,舍去,答:原计划每小时抢修道路200米.点评:此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,注意解出分式方程后要进行检验.21.(6分)(•湘潭)6月5日是世界环境日,今年“世界环境日”中国的主题为“同呼吸,共奋斗”,旨在释放和传递:建设美丽中国,人人共享、人人有责的信息,小文积极学习与宣传,并从四个方面A:空气污染,B:淡水资源危机,C:土地荒漠化,D:全球变暖,对全校同学进行了随机抽样调查,了解他们在这四个方面中最关注的问题(每人限选一项).以下是他收集数据后,绘制的不完整的统计图表:关注问题频数频率A 24 0.4B 12 0.2C n 0.1D 18 m合计 a1请你根据图表中提供的信息解答以下问题:(1)根据图表信息,可得a=60;(2)请你将条形图补充完整;(3)如果小文所在的学校有1200名学生,那么你根据小文提供的信息估计该校关注“全球变暖”的学生大约有多少人?考点:条形统计图;用样本估计总体;频数(率)分布表.分析:(1)根据空气污染的频数除以对应的频率即可求出a的值;(2)由a的值,减去其它频数求出n的值,补全条形统计图即可;(3)求出表格中m的值,乘以1200即可得到结果.解答:解:(1)根据题意得:24÷0.4=60,即a=60;故答案为:60;(2)根据题意得:n=60﹣(24+12+18)=6,补全条形统计图,如图所示;(3)由表格得:m=0.3,根据题意得:该校关注“全球变暖”的学生大约有1200×0.3=360(人).点评:此题考查了条形统计图,频数(率)分布表,以及用样本估计总体,弄清题意是解本题的关键.22.(6分)(•湘潭)莲城超市以10元/件的价格调进一批商品,根据前期销售情况,每天销售量y(件)与该商品定价x(元)是一次函数关系,如图所示.(1)求销售量y与定价x之间的函数关系式;(2)如果超市将该商品的销售价定为13元/件,不考虑其它因素,求超市每天销售这种商品所获得的利润.考点:一次函数的应用分析:(1)由图象可知y与x是一次函数关系,又由函数图象过点(11,10)和(15,2),则用待定系数法即可求得y与x的函数关系式;(2)根据(1)求出的函数关系式,再求出每件该商品的利润,即可求得求超市每天销售这种商品所获得的利润.解答:解:(1)设y=kx+b(k≠0),由图象可知,,解得,故销售量y与定价x之间的函数关系式是:y=﹣2x+32;(2)超市每天销售这种商品所获得的利润是:W=(﹣2x+32)(13﹣10)=﹣6x+96.点评:此题考查了一次函数的应用问题,此题综合性较强,难度一般,解题的关键是理解题意,根据题意求得函数解析式,注意待定系数法的应用,注意数形结合思想的应用.23.(8分)(•湘潭)5月12日是母亲节,小明去花店买花送给母亲,挑中了象征温馨、母爱的康乃馨和象征高贵、尊敬的兰花两种花,已知康乃馨每支5元,兰花每支3元,小明只有30元,希望购买花的支数不少于7支,其中至少有一支是康乃馨.(1)小明一共有多少种可能的购买方案?列出所有方案;(2)如果小明先购买一张2元的祝福卡,再从(1)中任选一种方案购花,求他能实现购买愿望的概率.考点:一元一次不等式组的应用分析:(1)设购买康乃馨x支,购买兰花y支,根据条件建立不等式组,运用分类讨论思想求出其解即可.(2)当小明先购买一张2元的祝福卡,小明购花的钱就只有28元了,求出能够购花的方案,就可以求出实现愿望的概率.解答:解:(1)设购买康乃馨x支,购买兰花y支,由题意,得,∵x、y为正整数,当x=1时,y=6,7,8符合题意,当x=2时,y=5,6符合题意,当x=3时,y=4,5符合题意,当x=4时,y=3符合题意,当x=5时,y=1舍去,当x=6时,y=0舍去.共有8种购买方案,方案1:购买康乃馨1支,购买兰花6支;方案2:购买康乃馨1支,购买兰花7支;方案3:购买康乃馨1支,购买兰花8支;方案4:购买康乃馨2支,购买兰花5支;方案5:购买康乃馨2支,购买兰花6支;方案6:购买康乃馨3支,购买兰花4支;方案7:购买康乃馨3支,购买兰花5支;方案8:购买康乃馨4支,购买兰花3支;(2)由题意,得,,购花的方案有:方案1:购买康乃馨1支,购买兰花6支;方案2:购买康乃馨1支,购买兰花7支;方案4:购买康乃馨2支,购买兰花5支;方案5:购买康乃馨2支,购买兰花6支;∴小明实现购买方案的愿望有5种,而总共有8中购买方案,∴小明能实现购买愿望的概率为P=.点评:本题考查了列不等式组及运用分类讨论思想解答方案设计的运用,概率在实际问题中的运用,解答时根据不等式组及分类讨论思想求出购买方案是关键.24.(8分)(•湘潭)在数学活动课中,小辉将边长为和3的两个正方形放置在直线l 上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.考点:正方形的性质;全等三角形的判定与性质.分析:(1)根据正方形的性质可得AO=CO,OD=OF,∠AOC=∠DOF=90°,然后求出∠AOD=∠COF,再利用“边角边”证明△AOD和△COF全等,根据全等三角形对应边相等即可得证;(2)与(1)同理求出CF=AD,连接DF交OE于G,根据正方形的对角线互相垂直平分可得DF⊥OE,DG=OG=OE,再求出AG,然后利用勾股定理列式计算即可求出AD.解答:解:(1)AD=CF.理由如下:在正方形ABCO和正方形ODEF中,AO=CO,OD=OF,∠AOC=∠DOF=90°,∴∠AOC+∠COD=∠DOF+∠COD,即∠AOD=∠COF,在△AOD和△COF中,,∴△AOD≌△COF(SAS),∴AD=CF;(2)与(1)同理求出CF=AD,如图,连接DF交OE于G,则DF⊥OE,DG=OG=OE,∵正方形ODEF的边长为,∴OE=×=2,∴DG=OG=OE=×2=1,∴AG=AO+OG=3+1=4,在Rt△ADG中,AD===,∴CF=AD=.点评:本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的应用,熟练掌握正方形的四条边都相等,四个角都是直角,对角线相等且互相垂直平分是解题的关键,(2)作辅助线构造出直角三角形是解题的关键.25.(10分)(•湘潭)如图,在坐标系xOy中,已知D(﹣5,4),B(﹣3,0),过D 点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,动点P从O点出发,沿x 轴以每秒1个单位长度的速度向右运动,运动时间为t秒.(1)当t为何值时,PC∥DB;(2)当t为何值时,PC⊥BC;(3)以点P为圆心,PO的长为半径的⊙P随点P的运动而变化,当⊙P与△BCD的边(或边所在的直线)相切时,求t的值.考相似形综合题点:分析:(1)过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,求出DC=5,OC=4,OB=3,根据四边形DBPC是平行四边形求出DC=BP=5,求出OP=2即可;(2)证△PCO∽△CBO,得出=,求出OP=即可;(3)设⊙P的半径是R,分为三种情况:①当⊙P与直线DC相切时,过P作PM⊥DC交DC延长线于M,求出PM、OP的长即可;②当⊙P与BC相切时,根据△COB∽△PBM得出=,求出R=12即可;③当⊙P与DB相切时,证△ADB∽△MPB得出=,求出R即可.解答:解:(1)∵D(﹣5,4),B(﹣3,0),过D点分别作DA、DC垂直于x轴,y 轴,垂足分别为A、C两点,∴DC=5,OC=4,OB=3,∵DC⊥y轴,x轴⊥y轴,∴DC∥BP,∵PC∥DC,∴四边形DBPC是平行四边形,∴DC=BP=5,∴OP=5﹣3=2,2÷1=2,即当t为2秒时,PC∥BD;(2)∵PC⊥BC,x轴⊥y轴,∴∠COP=∠COB=∠BCP=90∴,∴∠PCO+∠BCO=90°,∠CPO+∠PCO=90°,∴∠CPO=∠BCO,∴△PCO∽△CBO,∴=,∴=,∴OP=,÷1=,即当t为秒时,PC⊥BC;(3)设⊙P的半径是R,分为三种情况:①当⊙P与直线DC相切时,如图1,过P作PM⊥DC交DC延长线于M,则PM=OC=4=OP,4÷1=4,即t=4;②如图2,当⊙P与BC相切时,∵∠BOC=90°,BO=3,OC=4,由勾股定理得:BC=5,∵∠PMB=∠COB=90°,∠CBO=∠PBM,∴△COB∽△PBM,∴=,∴=,R=12,12÷1=12,即t=12秒;③根据勾股定理得:BD==2,如图3,当⊙P与DB相切时,∵∠PMB=∠DAB=90°,∠ABD=∠PBM,∴△ADB∽△MPB,∴=,∴=,R=6+12;(6+12)÷1=6+12,即t=(6+12)秒.点评:本题考查了勾股定理,切线的性质和判定,相似三角形的性质和判定的应用,主要考查学生的计算和推理能力.26.(10分)(•湘潭)如图,在坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),抛物线y=x2+bx﹣2的图象过C点.(1)求抛物线的解析式;(2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为相等的两部分?(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由.考点:二次函数综合题.分析:如解答图所示:(1)首先构造全等三角形△AOB≌△CDA,求出点C的坐标;然后利用点C的坐标求出抛物线的解析式;(2)首先求出直线BC与AC的解析式,设直线l与BC、AC交于点E、F,则可求出EF的表达式;根据S△CEF=S△ABC,列出方程求出直线l的解析式;(3)首先作出▱PACB,然后证明点P在抛物线上即可.解答:解:(1)如答图1所示,过点C作CD⊥x轴于点D,则∠CAD+∠ACD=90°.∵∠OBA+∠OAB=90°,∠OAB+∠CAD=90°,∴∠OAB=∠ACD,∠OBA=∠CAD.∵在△AOB与△CDA中,∴△AOB≌△CDA(ASA).∴CD=OA=1,AD=OB=2,∴OD=OA+AD=3,∴C(3,1).∵点C(3,1)在抛物线y=x2+bx﹣2上,∴1=×9+3b﹣2,解得:b=﹣.∴抛物线的解析式为:y=x2﹣x﹣2.(2)在Rt△AOB中,OA=1,OB=2,由勾股定理得:AB=.∴S△ABC=AB2=.设直线BC的解析式为y=kx+b,∵B(0,2),C(3,1),∴,解得k=﹣,b=2,∴y=﹣x+2.同理求得直线AC的解析式为:y=x﹣.如答图1所示,设直线l与BC、AC分别交于点E、F,则EF=(﹣x+2)﹣(x﹣)=﹣x.△CEF中,CE边上的高h=OD﹣x=3﹣x.由题意得:S△CEF=S△ABC,即:EF•h=S△ABC,∴(﹣x)•(3﹣x)=×,整理得:(3﹣x)2=3,解得x=3﹣或x=3+(不合题意,舍去),∴当直线l解析式为x=3﹣时,恰好将△ABC的面积分为相等的两部分.(3)存在.如答图2所示,过点C作CG⊥y轴于点G,则CG=OD=3,OG=1,BG=OB﹣OG=1.过点A作AP∥BC,且AP=BC,连接BP,则四边形PACB为平行四边形.过点P作PH⊥x轴于点H,则易证△PAH≌△BCG,∴PH=BG=1,AH=CG=3,∴OH=AH﹣OA=2,∴P(﹣2,1).抛物线解析式为:y=x2﹣x﹣2,当x=﹣2时,y=1,即点P在抛物线上.∴存在符合条件的点P,点P的坐标为(﹣2,1).点评:本题是二次函数综合题型,考查了二次函数的图象与性质、一次函数的图象与性质、待定系数法、全等三角形、平行四边形、等腰直角三角形等知识点.试题难度不大,但需要仔细分析,认真计算.。
2008年中考数学试题分类汇编方程组的应用题

方程(组)的应用题一.选择题1.(2008年浙江省衢州市)某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x,则下面所列方程正确的是( )A、 B、C、 D、答案:A2.(2008年四川巴中市)巴中日报讯:今年我市小春粮油再获丰收,全市产量预计由前年的45万吨提升到50万吨,设从前年到今年我市的粮油产量年平均增长率为,则可列方程为()A.B.C.D.答案:B3.(2008 河北)某县为发展教育事业,加强了对教育经费的投入,2007年投入3 000万元,预计2009年投入5 000万元.设教育经费的年平均增长率为,根据题意,下面所列方程正确的是()A.B.C.D.答案:A4.(2008湖北襄樊)某种药品零售价经过两次降价后的价格为降价前的81%,则平均每次降价()A.10%B.19%C.9.5%D.20%答案:A5.(2008四川达州市)某商品原价100元,连续两次涨价后售价为120元,下面所列方程正确的是()A.B.C.D.答案:B6.(2008年浙江省衢州)某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x,则下面所列方程正确的是( )A、 B、C、 D、答案:A7. (2008年荆州)甲、乙、丙三家超市为了促销一种定价均为m元的商品,甲超市连续两次降价20%,乙超市一次性降价40%,丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品最划算应到的超市是()A.甲B.乙C.丙D. 乙或丙答案:B8.(2008年庆阳市)某商品经过两次连续降价,每件售价由原来的55元降到了35元.设平均每次降价的百分率为x,则下列方程中正确的是()A.55 (1+x)2=35 B.35(1+x)2=55C.55 (1-x)2=35 D.35(1-x)2=55答案:C9.(2008齐齐哈尔)5月23日8时40分,哈尔滨铁路局一列满载着2400吨“爱心”大米的专列向四川灾区进发,途中除3次因更换车头等原因必须停车外,一路快速行驶,经过80小时到达成都.描述上述过程的大致图象是()答案:D10.(2008年四川省宜宾市)小明准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x月后他能捐出100元,则下列方程中能正确计算出x的是( )A. 10x+20=100B.10x-20=100C. 20-10x=100D.20x+10=100 答案:A11.(2008 湖北荆门)用四个全等的矩形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用x,y表示矩形的长和宽(x>y),则下列关系式中不正确的是( )(A) x+y=12 . (B) x-y=2.(C) xy=35. (D) x+y=144.答案:D12.(2008山东东营)某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为()A.26元 B.27元 C.28元D.29元答案:C13.(2008湖南株洲)5.“鸡兔同笼”是我国民间流传的诗歌形式的数学题:“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔?”解决此问题,设鸡为只,兔为只,则所列方程组正确的是A.B.C.D.答案:C二、填空题1. (2008新疆乌鲁木齐市)乌鲁木齐农牧区校舍改造工程初见成效,农牧区最漂亮的房子是学校.2005年市政府对农牧区校舍改造的投入资金是5786万元,2007年校舍改造的投入资金是8058.9万元,若设这两年投入农牧区校舍改造资金的年平均增长率为,则根据题意可列方程为.答案:2.(2008泰州市)一种药品经过两次降价,药价从原来每盒60元降至现在的48.6元,则平均每次降价的百分率是.答案:10%3.(2008 河南实验区)在一幅长50cm,宽30cm的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个规划土地的面积是1800cm,设金色纸边的宽为cm,那么满足的方程为答案:+40-75=04. (2008 山东临沂)某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到1210辆,则该厂四、五月份的月平均增长率为________.答案:10%5. (2008宁夏)某市对一段全长1500米的道路进行改造.原计划每天修米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了天.答案:6. (2008年山东省青岛市)为了帮助四川地震灾区重建家园,某学校号召师生自愿捐款.第一次捐款总额为20000元,第二次捐款总额为56000元,已知第二次捐款人数是第一次的2倍,而且人均捐款额比第一次多20元.求第一次捐款的人数是多少?若设第一次捐款的人数为,则根据题意可列方程为.答案:7. (08浙江温州)为了奖励兴趣小组的同学,张老师花92元钱购买了《智力大挑战》和《数学趣题》两种书.已知《智力大挑战》每本18元.《数学趣题》每本8元,则《数学趣题》买了本.答案:78.(08山东省日照市)书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为.答案:28元9.(2008年浙江省绍兴市)若买2支圆珠笔、1本日记本需4元;买1支圆珠笔、2本日记本需5元,则买4支圆珠笔、4本日记本需元.答案:1210.(2008年江苏省南通市)苹果的进价是每千克3.8元,销售中估计有5%的苹果正常损耗.为避免亏本,商家把售价应该至少定为每千克________元.答案:411.(2008 湖北恩施)一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本为元. 答案:12512.(2008 河北)图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是 g.答案:2013.(2008 河南)某商店一套夏装的进价为220元,按标价的80%销售可获利72元,则该服装的标价为元。
湖南省湘潭市2008年初中毕业学业考试物理试卷

湖南省湘潭市2008年初中毕业学业考试物 理(满分100分,考试时间90分钟)可能用到的物理量: 10/g N kg ρ=⋅水,331.010/kg m ρ=⨯水,30.1410J /(c kg =⨯⋅水银℃) 可能用到的公式:W F s =,0()Q cm t t =-,F gV ρ=排,1122F l F l ⨯=⨯,P U I =, W U It =,G mg =,2Q I Rt =,U I R =,F p S=,m Vρ=,100%W W η=⨯有总一、单项选择题(本大题共15小题,每小题2分,共30分)1.2008年6月5日,北京奥运火炬在湘潭传递,奥运冠军杨霞传递了第一棒。
她手握“祥云”火炬的质量是A .985 mgB .985 gC .985 kgD .985 t2.诗句“满眼风光多闪烁,看山恰似走来迎,仔细看山,山不动,是船行。
”其中“看山恰似走来迎”和“是船行”所选的参照物A .分别是船和山B .分别是山和船C .都是船D .都是山3.在湖边,小丽看到了平静的湖水中金鱼游弋于蓝天白云之间,她看到的金鱼和白云A .都是经水折射而成的像B .分别经水面反射和水折射而成的像C .都是经水面反射而成的像D .分别经水折射和水面反射而成的像4.将灯泡1L (“PZ220—25”)和灯泡2L (“PZ220—40”)串联后接入家庭电路中, 则A .1L 消耗的功率大B .两灯都能正常发光C .2L 消耗的功率大D .通过2L 的电流大5.下列家用电器中,工作原理与其它三个不同的是A .电烙铁B .电熨斗C .电风扇D .电取暖器6.如果把一个玻璃球分割成五块,其截面如图所示,再将这五块玻璃a 、b 、c 、d 、e 分别放在太阳光下,那么能使光线发散的是A .aB .bC .cD .d7.下列能源中,在使用时最安全、最清洁的是A .煤气B .核能C .电能D .太阳能8.旧白炽灯在工作时,灯丝容易在最细处熔断,这是因为与相同长度的灯丝较粗处相比,在灯丝最细处A .电压最小B .功率最小C .电阻最大D .电流最大9.小亮家的卫生间按图的电路安装了照明灯和换气扇,它们A .工作时通过的电流一定相等B.工作时两端的电压一定相等C.只能各自独立工作,而不能同时工作D.只能同时工作,而不能各自独立工作10.6月4日,据中央电视台报导:高温超导磁悬浮商业营运列车将在湖北动工兴建,投资金额达120多亿元。
2008年湘潭初中毕业学业考试

2008 年湘潭市初中毕业学业考试语文试题卷(考试时间:120 分钟满分:120 分)亲爱的同学:你好!这份试卷是对你初中阶段语文复习情况的一份检测。
相信自己,你一定会交出一份令人满意的答卷。
注意:1、本试卷分试题卷和答题卡两部分。
试题卷共四道大题,26道小题,考试终了请将试题卷、答题卡一并交回。
2、本试卷所有答案均须填涂或书写在答题卡相应位置上。
否则不予计分。
一、积累与运用(32 分)1、请根据下列句子中的注音,把相应的汉字依次填写在答题卷上的田字格内。
(4 分)①夏天什么时候跨了门槛进来我竟不知道,在我的记忆中,昨天灿烂的mú()样还是那样的清晰。
②天灾无情,人间有爱。
每一笔捐赠,每一项帐篷,每一包方便面,都是献给灾区人民赤c héng ( )的心。
③我们的母亲河湘江汩汩南来,滔滔北去,浩浩荡荡,不舍昼夜。
浩淼的洞庭湖在前面等着她,无yín()的大海在远方呼唤着她。
④点燃激情,传递梦想。
北京2008 年奥运会火炬创意灵感来自“渊源共生,和谐共融”的xiáng ( )云图案。
2、下列加点词语在句子中意思的理解,准确的一项是(2 分)()A、我身体平安,唯膀子疼痛厉害,举箸.提笔,诸多不便。
(本意是竹简,句中指代书籍。
B、但理想有时候又是海天相吻的弧线,可望不可即.,折磨着你那进取的心。
(靠近,接触)。
C、朔方..的雪花在纷飞之后,却永远如粉,如沙。
(句中指家乡)D、我以一个客人的身份挨桌看去,很多人都像面善..,可叫不出名字。
(面相善良)3、下列句子中横线上填写的词语,最恰当的一项是(2 分)()①汶川大地震发生以后,社会各界纷纷捐款捐物,各种急需的物资运往灾区。
②一方面人人都有实现温饱自足并谋求发展的,但另一方面,市场经济又必将导致一部分人在竞争中落后。
③什么是“艺术”?专家们没有一个权威的解释,更何况普通老百姓了。
A、浑源不断权利况且 C 、络绎不绝权力况且B、络绎不绝权利既然D、源源不断权利既然4、下列句子中没有语病的一项是(2 分)()A、革命英烈的后代们一走下汽车,就受到了韶山人民的热情接待与热烈欢迎.B、球馆设施齐全,可以为乒乓球爱好者提供球拍、球衣、球鞋和衣柜等乒乓器材。
中考数学试题及解析 湖南湘潭-解析版

湖南省湘潭市中考数学试卷一、选择题(本大题共8个小题,每小题3分,满分24分)1、(•湘潭)下列等式成立是( )A 、|﹣2|=2B 、﹣(﹣1)=﹣1C 、1÷(﹣3)=13D 、﹣2×3=6考点:有理数的混合运算。
分析:A ,﹣2的绝对值为2,正确;B ,负负得正,得数应为1,故错误;C ,正负乘除得正,错误;D ,同选项C ,故错误.解答:解:A 、﹣2的绝对值为2,故本选项正确;B 、负负得正,得数应为1,故本选项错误;C 、正负乘除得正,故本选项错误;D 、同选项C ,故本选项错误.故选A .点评:本题考查了有理数的混合运算,选项A ,负数的绝对值为正数,正确;B ,负负得正,得数应为1,故错误;C ,正负乘除得正,错误;D ,同选项C ,故错误.本题很容易选得A .2、(•湘潭)数据:1,3,5的平均数与极差分别是( )A 、3,3B 、3,4C 、2,3D 、2,4考点:极差;算术平均数。
专题:计算题。
分析:根据极差和平均数的定义即可求得.解答:解:x =1+3+53=3, 由题意可知,极差为5﹣1=4.故选B .点评:极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.注意:①极差的单位与原数据单位一致.②如果数据的平均数、中位数、极差都完全相同,此时用极差来反映数据的离散程度就显得不准确.3、(•湘潭)不等式组{x >1x ≤2的解集在数轴上表示为( ) A 、 B 、 C 、 D 、 考点:在数轴上表示不等式的解集;解一元一次不等式组。
专题:存在型。
分析:先根据在数轴上表示不等式组解集的方法表示出不等式组的解集,再找出符合条件的选项即可. 解答:解:不等式组{x >1x ≤2在数轴上表示为:故选A .点评:本题考查的是在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示. 4、(•湘潭)一个几何体的三视图如下图所示,这个几何体是( )A 、球B 、圆柱C 、长方体D 、圆锥考点:由三视图判断几何体。
2008年中考数学试题及答案解析

2008年中等学校招生统一考试数学试卷*考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共24分)1.沈阳市计划从2008年到2012年新增林地面积253万亩,253万亩用科学记数法表示正确的是( ) A .525.310⨯亩B .62.5310⨯亩C .425310⨯亩D .72.5310⨯亩2)3.下列各点中,在反比例函数2y x=-图象上的是()A .(21),B .233⎛⎫⎪⎝⎭,C .(21)--,D .(12)-,4.下列事件中必然发生的是( )A .抛两枚均匀的硬币,硬币落地后,都是正面朝上B .掷一枚质地均匀的骰子,朝上一面的点数是3C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5.一次函数y kx b =+的图象如图所示,当0y <时,x 的取 值范围是( ) A .0x > B .0x <C .2x >D .2x <6.若等腰三角形中有一个角等于50,则这个等腰三角形的顶角的度数为( ) A .50B .80C .65或50D .50或807.二次函数22(1)3y x =-+的图象的顶点坐标是( )A .(13),B .(13)-,C .(13)-,D .(13)--, 8.如图所示,正方形ABCD 中,点E 是CD 边上一点,连接AE , 交对角线BD 于点F ,连接CF ,则图中全等三角形共有( )正面第2题图A .B .C .D .第5题图xADCEFB第8题图A .1对B .2对C .3对D .4对二、填空题(每小题3分,共24分)9.已知A ∠与B ∠互余,若70A ∠=,则B ∠的度数为 . 10.分解因式:328m m -= .11.已知ABC △中,60A ∠=,ABC ∠,ACB ∠的平分线交于点O ,则BOC ∠的度数为 .12.如图所示,菱形ABCD 中,对角线AC BD ,相交于点O ,若再补 充一个条件能使菱形ABCD 成为正方形,则这个条件是 (只填一个条件即可). 13.不等式26x x -<-的解集为 .14.如图所示,某河堤的横断面是梯形ABCD ,BC AD ∥,迎水坡AB 长13米,且12tan 5BAE ∠=,则河堤的高BE 为 米.15.观察下列图形的构成规律,根据此规律,第8第15题图16.在平面直角坐标系中,点A 的坐标为(11),,点B 的坐标为(111),,点C 到直线AB 的距离为4,且ABC △是直角三角形,则满足条件的点C 有 个.三、(第17小题6分,第18,19小题各8分,第20小题10分,共32分)17.计算:101(1)52-⎛⎫π-+-+- ⎪⎝⎭18.解分式方程:1233xx x=+--.19.先化简,再求值:222()()2y x y x y x y ++---,其中13x =-,3y =.第1个 ……第2个 第3个 第4个ADC BO 第12题图 B C DA 第14题图20.如图所示,在66⨯的方格纸中,每个小方格都是边长为1的正方形,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形,如图①中的三角形是格点三角形. (1)请你在图①中画一条直线将格点三角形分割成两部分,将这两部分重新拼成两个不同的格点四边形,并将这两个格点四边形分别画在图②,图③中; (2)直接写出这两个格点四边形的周长.四、(每小题10分,共20分)21.如图所示,AB 是O 的一条弦,OD AB ⊥,垂足为C ,交O 于点D ,点E 在O 上.(1)若52AOD ∠=,求DEB ∠的度数;(2)若3OC =,5OA =,求AB 的长.22.小刚和小明两位同学玩一种游戏.游戏规则为:两人各执“象、虎、鼠”三张牌,同时各出一张牌定胜负,其中象胜虎、虎胜鼠、鼠胜象,若两人所出牌相同,则为平局.例如,小刚出象牌,小明出虎牌,则小刚胜;又如,两人同时出象牌,则两人平局. (1)一次出牌小刚出“象”牌的概率是多少?(2)如果用A B C ,,分别表示小刚的象、虎、鼠三张牌,用1A ,1B ,1C 分别表示小明的象、虎、鼠三张牌,那么一次出牌小刚胜小明的概率是多少?用列表法或画树状图(树形图)法加以说明.图① 第20题图图②图③第21题图 小刚 小明A 1B 1C 1A B C 第22题图23.在学校组织的“喜迎奥运,知荣明耻,文明出行”的知识竞赛中,每班参加比赛的人数相同,成绩分为A B C D ,,,四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在C 级以上(包括C 级)的人数为 ; (2)请你将表格补充完整:(3)请从下列不同角度对这次竞赛成绩的结果进行分析:①从平均数和中位数的角度来比较一班和二班的成绩; ②从平均数和众数的角度来比较一班和二班的成绩;③从B 级以上(包括B 级)的人数的角度来比较一班和二班的成绩. 六、(本题12分)24.一辆经营长途运输的货车在高速公路的A 处加满油后,以每小时80千米的速度匀速行驶,前往与A 处相距636千米的B 地,下表记录的是货车一次加满油后油箱内余油量y (升)与行驶时间x (1)请你认真分析上表中所给的数据,用你学过的一次函数、反比例函数和二次函数中的一种来表示y 与x 之间的变化规律,说明选择这种函数的理由,并求出它的函数表达式;(不要求写出自变量的取值范围)(2)按照(1)中的变化规律,货车从A 处出发行驶4.2小时到达C 处,求此时油箱内余油多少升?(3)在(2)的前提下,C 处前方18千米的D 处有一加油站,根据实际经验此货车在行驶中油箱内至少保证有10升油,如果货车的速度和每小时的耗油量不变,那么在D处至少加多少升油,才能使货车到达B 地.(货车在D 处加油过程中的时间和路程忽略不计)第23题图 一班竞赛成绩统计图 二班竞赛成绩统计图25.已知:如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,BAC DAE ∠=∠,且点B A D ,,在一条直线上,连接BE CD M N ,,,分别为BE CD ,的中点. (1)求证:①BE CD =;②AMN △是等腰三角形.(2)在图①的基础上,将ADE △绕点A 按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立; (3)在(2)的条件下,请你在图②中延长ED 交线段BC 于点P .求证:PBD AMN △∽△.八、(本题14分) 26.如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,OB =ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,. (1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.2008年沈阳市中等学校招生统一考试C E ND A BM图① C A EM B D N图② 第25题图第26题图数学试题参考答案及评分标准一、选择题(每小题3分,共24分) 1.B 2.A 3.D 4.C 5.C 6.D7.A8.C二、填空题(每小题3分,共24分) 9.2010.2(2)(2)m m m +-11.12012.90BAD ∠=(或AD AB ⊥,AC BD =等)13.4x >14.1215.65 16.8 三、(第17小题6分,第18,19小题各8分,第20小题10分,共32分)17.解:原式1(2)5=+-+- ···························································· 4分125=-+- ··················································································· 5分6= ······································································································ 6分18.解:12(3)x x =-- ·················································································· 2分126x x =--7x = ··········································································································· 5分 检验:将7x =代入原方程,左边14==右边 ························································ 7分所以7x =是原方程的根 ·················································································· 8分 (将7x =代入最简公分母检验同样给分)19.解:原式2222222xy y x xy y x y =++-+-- ················································ 4分 xy =- ········································································································· 6分 当13x =-,3y =时,原式1313⎛⎫=--⨯= ⎪⎝⎭······················································································ 8分 20.解:(1)答案不唯一,如分割线为三角形的三条中位线中任意一条所在的直线等.································· 2分拼接的图形不唯一,例如下面给出的三种情况:图① 图② 图③ 图④图①~图④,图⑤~图⑦,图⑧~图⑨,画出其中一组图中的两个图形. ······················ 6分 (2)对应(1)中所给图①~图④的周长分别为4+8,4+4+ 图⑤~图⑦的周长分别为10,8+8+图⑧~图⑨的周长分别为2+4+ ···································· 10分 四、(每小题10分,共20分) 21.解:(1)OD AB ⊥,AD DB ∴= ··························································· 3分 11522622DEB AOD ∴∠=∠=⨯= ································································· 5分 (2)OD AB ⊥,AC BC ∴=,AOC △为直角三角形, 3OC =,5OA =,由勾股定理可得4AC == ·············································· 8分 28AB AC ∴== ························································································· 10分 22.解:(1)1()3P =一次出牌小刚出象牌“” ··················································· 4分(2)树状图(树形图):·············································································· 8分图⑤ 图⑥图⑦图⑧ 图⑨A 1B 1C 1 AA 1B 1C 1 BA 1B 1C 1C开始小刚 小明或列表···························································· 8分 由树状图(树形图)或列表可知,可能出现的结果有9种,而且每种结果出现的可能性相同,其中小刚胜小明的结果有3种. ········································································ 9分1()3P ∴=一次出牌小刚胜小明. ····································································· 10分 五、(本题12分) 23.解:(1)21······························································································ 2分 (2)一班众数为90,二班中位数为80 ······························································· 6分 (3)①从平均数的角度看两班成绩一样,从中位数的角度看一班比二班的成绩好,所以一班成绩好; ···································································································· 8分 ②从平均数的角度看两班成绩一样,从众数的角度看二班比一班的成绩好,所以二班成绩好; ················································································································· 10分 ③从B 级以上(包括B 级)的人数的角度看,一班人数是18人,二班人数是12人,所以一班成绩好. ······························································································· 12分 六、(本题12分) 24.解:(1)设y 与x 之间的关系为一次函数,其函数表达式为y kx b =+ ················ 1分将(0100),,(180),代入上式得, 10080b k b =⎧⎨+=⎩ 解得20100k b =-⎧⎨=⎩20100y x ∴=-+ ·························································································· 4分验证:当2x =时,20210060y =-⨯+=,符合一次函数; 当 2.5x =时,20 2.510050y =-⨯+=,也符合一次函数.∴可用一次函数20100y x =-+表示其变化规律,而不用反比例函数、二次函数表示其变化规律. ··················································· 5分 y ∴与x 之间的关系是一次函数,其函数表达式为20100y x =-+ ··························· 6分 (2)当 4.2x =时,由20100y x =-+可得16y =即货车行驶到C 处时油箱内余油16升. ····························································· 8分 (3)方法不唯一,如:方法一:由(1)得,货车行驶中每小时耗油20升, ············································· 9分 设在D 处至少加油a 升,货车才能到达B 地.依题意得,63680 4.220101680a -⨯⨯+=+, ··················································· 11分 解得,69a =(升) ····················································································· 12分方法二:由(1)得,货车行驶中每小时耗油20升, ············································· 9分 汽车行驶18千米的耗油量:1820 4.580⨯=(升) D B ,之间路程为:63680 4.218282-⨯-=(千米)汽车行驶282千米的耗油量:2822070.580⨯=(升) ················································································· 11分 70.510(16 4.5)69+--=(升) ···································································· 12分 方法三:由(1)得,货车行驶中每小时耗油20升, ············································· 9分设在D 处加油a 升,货车才能到达B 地.依题意得,63680 4.220101680a -⨯⨯++≤,解得,69a ≥ ····························································································· 11分 ∴在D 处至少加油69升,货车才能到达B 地. ················································· 12分七、(本题12分) 25.证明:(1)①BAC DAE ∠=∠ BAE CAD ∴∠=∠AB AC =,AD AE = ABE ACD ∴△≌△BE CD ∴= ·································································································· 3分 ②由ABE ACD △≌△得ABE ACD ∠=∠,BE CD =M N ,分别是BE CD ,的中点,BM CN ∴= ················································· 4分 又AB AC = ABM ACN ∴△≌△AM AN ∴=,即AMN △为等腰三角形 ···························································· 6分 (2)(1)中的两个结论仍然成立. ···································································· 8分 (3)在图②中正确画出线段PD由(1)同理可证ABM ACN △≌△ CAN BAM ∴∠=∠ BAC MAN ∴∠=∠ 又BAC DAE ∠=∠MAN DAE BAC ∴∠=∠=∠AMN ∴△,ADE △和ABC △都是顶角相等的等腰三角形 ································· 10分 PBD AMN ∴∠=∠,PDB ADE ANM ∠=∠=∠PBD AMN ∴△∽△ ···················································································· 12分 八、(本题14分)26.解:(1)点E 在y 轴上 ·············································································· 1分 理由如下:连接AO ,如图所示,在Rt ABO △中,1AB =,BO =2AO ∴=1sin 2AOB ∴∠=,30AOB ∴∠= 由题意可知:60AOE ∠=306090BOE AOB AOE ∴∠=∠+∠=+=点B 在x 轴上,∴点E 在y 轴上. ································································· 3分 (2)过点D 作DM x ⊥轴于点M1OD =,30DOM ∠=∴在Rt DOM △中,12DM =,2OM =点D 在第一象限,∴点D 的坐标为12⎫⎪⎪⎝⎭, ················································································ 5分 由(1)知2EO AO ==,点E 在y 轴的正半轴上∴点E 的坐标为(02),∴点A的坐标为( ·················································································· 6分抛物线2y ax bx c =++经过点E ,2c ∴=由题意,将(A ,12D ⎫⎪⎪⎝⎭,代入22y ax bx =++中得32131242a a ⎧+=⎪⎨+=⎪⎩解得89a b ⎧=-⎪⎪⎨⎪=⎪⎩∴所求抛物线表达式为:2829y x x =--+ ·················································· 9分(3)存在符合条件的点P ,点Q . ································································· 10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湘潭市2008年初中毕业学业考试数 学 试 题 卷考试时量:120分钟 满分:120分亲爱的同学,你好!今天是展示你的才能的时候了,请你仔细审题,认真答题,发挥自己的正常水平,轻松一点,相信自己的实力!考生注意:本试卷分试题卷和答题卡两部分,全卷共三道大题,26道小题;请考生将解答过程全部填(涂)或写在答题卡上,写在试题卷上无效,考试结束后,将试题卷和答题卡一并上交. 一、选择题(本题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分) 1.55°角的余角是( ) A. 55° B.45° C. 35° D. 125° 2.如图,数轴上A 、B 两点所表示的两数的( ) A. 和为正数 B. 和为负数 C. 积为正数 D. 积为负数3.如图,已知D 、E 分别是ABC ∆的AB 、 AC 边上的点,,DE BC //且1ADE DBCE S S :=:8,四边形 那么:AE AC 等于( ) A .1 : 9 B .1 : 3 C .1 : 8 D .1 : 24.已知样本数据1,2,4,3,5,下列说法不正确...的是( ) A .平均数是3 B .中位数是4C .极差是4D .方差是2 第3题图 5.已知ABC ∆中,AC =4,BC =3,AB =5,则sin A =( )A. 35B. 45C. 53D. 346.将五张分别印有北京2008年奥运会吉祥物 “贝贝,晶晶,欢欢,迎迎,妮妮”的卡片(卡片的形状、大小一样,质地相同)放入盒中,从中随机抽取一张卡片印有“妮妮”的概率为( )A. 12B. 13C. 14D. 15第6题图B A DEA B O -37.下列式子,正确的是( ) A. 3232+= B. (21)(21)1+-=C. 122-=-D. 2222()x xy y x y +-=-8.下列命题是假.命题的是( ) A. 若x y <,则x +2008<y +2008 B. 单项式2347x y -的系数是-4C. 若21(3)0,x y -+-=则1,3x y ==D. 平移不改变图形的形状和大小二、填空题(本题共8个小题,请将答案写在答题卡相应的位置上,每小题3分,满分24分) 9.计算:(3)2-⨯= _______.10.如右图,已知170,270,360,∠=︒∠=︒∠=︒则4∠=______︒. 11.已知双曲线ky x=经过点(2,5),则k = . 12.如下图,将一副七巧板拼成一只小猫,则下图中AOB ∠= .13.分式方程513x =+的解是______. 14.利民商店中有3种糖果,单价及重量如下表:品 种 水果糖 花生糖 软糖 单价(元/千克) 10 12 16 重量(千克)334商店将以上糖果配成什锦糖,则这种什锦糖果的单价是每千克_____元.15.今年5月12日,四川汶川发生8.0级强烈地震,给灾区带来了深重的灾难,全世界人民时刻关注着灾区人民,踊跃为灾区人民捐款,到6月3日止各地共捐款约423.64亿元,请你用科学记数法表示捐款数约为______元.(保留两个有效数字) 16.兴隆蔬菜基地建圆弧形蔬菜大棚的剖面如右图所示,已知AB =16m,半径 OA =10m,高度CD 为_____m .AOBDBACbac d 123 4三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应的位置上,满分72分) 17.(本题满分6分)计算:0111(3)()2π--+-- .18.(本题满分6分)如图方格纸中每个小方格都是边长为 1 个单位的正方形,在建立平面直角坐标系后,∆ABC 的顶点在格点上,点B 的坐标为(5,-4),请你作出A B C '''∆,使A B C '''∆与∆ABC 关于y 轴对称,并写出B '的坐标.19.(本题满分6分) 先化简,再求值:2221121x x x x x x --⋅+-+,其中x 满足2320x x -+=.20.(本题满分6分)如图,四边形ABCD 是矩形,E 是AB 上一点,且DE =AB , 过C 作CF ⊥DE ,垂足为F . (1)猜想:AD 与CF 的大小关系; (2)请证明上面的结论.AD EF21.(本题满分6分)四川的强烈地震,牵动着花蕊小朋友的心. 花蕊小朋友用280元,买了每支0.2元的铅笔和每支5元的钢笔一共200支,寄给灾区的小朋友,请你计算出她买的铅笔和钢笔的支数.22.(本题满分6分) 阅读材料:如果1x ,2x 是一元二次方程20ax bx c ++=的两根,那么有1212,b cx x x x a a +=-=.这是一元二次方程根与系数的关系,我们利用它可以用来解题,例12,x x 是方程2630x x +-=的两根,求2212x x +的值.解法可以这样:126,x x +=-123,x x =-则222212112()2x x x x x x +=+-=2(6)2(3)42--⨯-=. 请你根据以上解法解答下题:已知12,x x 是方程2420x x -+=的两根,求: (1)1211x x +的值; (2)212()x x -的值.23.(本题满分8分)某县七年级有15000名学生参加安全应急预案知识竞赛活动,为了了解本次知识竞赛的成绩分布情况,从中抽取了400名学生的得分(得分取正整数,满分100分)进行统计:请你根据不完整的频率分布表. 解答下列问题: (1)补全频率分布表; (2)补全频数分布直方图;成绩(分)(3)若将得分转化为等级,规定得分低于59.5分评为“D”,59.5~69.5分评为“C”,69.5~89.5分评为“B”,89.5~100.5分评为“A”,这次15000名学生中约有多少人评为“D”?如果随机抽取一名参赛学生的成绩等级,则这名学生的成绩评为“A”、“B”、“C”、“D”哪一个等级的可能性大?请说明理由.24.(本题满分8分)如图所示,O的直径AB=4,点P是AB延长线上的一点,过P点作O的切线,切点为C,连结AC.(1)若∠CP A=30°,求PC的长;(2)若点P在AB的延长线上运动,∠CP A的平分线交AC于点M. 你认为∠CMP的大小是否发生变化?若变化,请说明理由;若不变化,求出∠CMP的大小.25.(本题满分10分)我市花石镇组织10辆汽车装运完A、B、C三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下表提供的信息,解答以下问题:每辆汽车运载量(吨) 12 10 8每吨湘莲获利(万元) 3 4 2(1)设装运A种湘莲的车辆数为x,装运B种湘莲的车辆数为y,求y与x之间的函数关系式;(2)如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.26.(本题满分10分)已知抛物线2y ax bx c=++经过点A(5,0)、B(6,-6)和原点.(1)求抛物线的函数关系式;(2)若过点B的直线y kx b'=+与抛物线相交于点C(2,m),请求出∆OBC的面积S的值.(3)过点C作平行于x轴的直线交y轴于点D,在抛物线对称轴右侧位于直线DC下方的抛物线上,任取一点P,过点P作直线PF平行于y轴交x轴于点F,交直线DC于点E. 直线PF与直线DC及两坐标轴围成矩形OFED(如图),是否存在点P,使得∆OCD与∆CPE相似?若存在,求出点P的坐标;若不存在,请说明理由.湘潭市2008年初中毕业学业考试数学参考答案及评分标准一、选择题:x yF-2-4-6AC EPDB521246G二、填空题:9. 6- 10. 60 11. 10 12.90° 13.2x = 14. 13 15.104.210⨯ 16. 4 三、解答题:17、解:0111(3)()2π--+--=112+- ······························································· 4分 =0 ·································································································· 6分 18、作图(略) ································································································ 4分 点B '的坐标为(-5,-4) ················································································· 6分19、解:2221121x x x x x x --⋅+-+ =2(1)(1)(1)1(1)x x x x x x x -+-⋅=+- ································································· 3分 2320,(2)(1)0x x x x -+=∴--=1,x ∴=或 2.x = ················································································ 5分 当1x =时,2(1)0,x -=分式22121x x x --+无意义.∴原式的值为2. ················································································· 6分20、解:(1)AD CF =. ··················································································· 2分 (2)四边形ABCD 是矩形,,AED FDC DE AB CD ∴∠=∠∴== ············································ 3分 又,90,CF DE CFD A ⊥∴∠=∠=︒ ················································· 4分 ADE FCD ∴≅∆ ······································································ 5分 AD CF ∴= ················································································ 6分 21、解:设买的铅笔为x 支,买的钢笔为y 支. ························································ 1分 根据题意得:2000.25280x y x y +=⎧⎨+=⎩ ····················································· 3分解得15050x y =⎧⎨=⎩ ··················································································· 5分答:略 ································································································ 6分22、解:12124,2x x x x +== ·········································································· 2分① ②(1)12121211422x x x x x x ++=== ·································································· 4分 (2)222121212()()44428x x x x x x -=+-=-⨯= ······································ 6分23、解:(1)略 ································································································· 3分(2)略 ·································································································· 5分 (3)150000.05750⨯=(人) ····································································· 6分 B 的频率为0.20.310.51+=,大于A 、C 、D 的频率,故这名学生评为B 等的可能性最大. ··················································································· 8分 24、解:(1)连结OC ,4,2,AB OC =∴=PC 为O 的切线,30,CPO ∠=︒tan 303OC PC ∴===︒··········· 4分(2)CMP ∠ 的大小没有变化 ····································································· 5分 CMP A MPA ∠=∠+∠ ··································································· 6分1122COP CPO =∠+∠ ···································································· 7分 1()2COP CPO =∠+∠190452=⨯︒=︒················································································ 8分25、解(1)装A 种为x 辆,装B 种为y 辆,装C 种为10-x-y 辆, ································· 1分由题意得:12108(10)100x y x y ++--= ················································· 2分 102y x ∴=- ·················································································· 3分(2)1010(102)x y x x x --=---= ·························································· 4分 故装C 种车也为 x 辆.21022x x ⎧∴⎨-⎩≥≥ ···················································· 5分解得2 4.x ≤≤ x 为整数, 2,3,4x ∴= ··················································· 6分 故车辆有3种安排方案,方案如下:方案一:装A 种2辆车, 装B 种6辆车, 装C 种2辆车; 方案二:装A 种3辆车, 装B 种4辆车, 装C 种3辆车; ···································· 7分 方案三:装A 种4辆车, 装B 种2辆车, 装C 种4辆车. (3)设销售利润为W(万元),则W=312410(102)28x x x ⨯+⨯⨯-+⨯=28400x -+ ···················································································· 9分 故W 是 x 是的一次函数,且x 增大时,W 减少.故2x =时,max W =400-282344⨯=(万元) ·················································· 10分26、解:(1)由题意得:255036600a b c a b c c ++=⎧⎪++=⎨⎪=⎩ ·················· 2分解得150a b c =-⎧⎪=⎨⎪=⎩·········································· 3分故抛物线的函数关系式为25y x x =-+ ··········· 4分 (2)C 在抛物线上,2252,6m m ∴-+⨯=∴= ······· 5分 C ∴点坐标为(2,6),B 、C 在直线y kx b '=+上 ∴6266k b k b '=+⎧⎨'-=+⎩ 解得3,12k b '=-= ∴直线BC 的解析式为312y x =-+ ····························································· 6分设BC 与x 轴交于点G ,则G 的坐标为(4,0)1146462422OBCS∴=⨯⨯+⨯⨯-= ························································· 7分 (3)存在P ,使得OCD ∽CPE ········································································· 8分设P (,)m n ,90ODC E ∠=∠=︒故2,6CE m EP n =-=-若要OCD ∽CPE ,则要OD DC CE EP =或OD DCEP CE=即6226m n =--或6262n m =-- 解得203m n =-或123n m =-又(,)m n 在抛物线上,22035m n n m m =-⎧⎨=-+⎩或21235n mn m m=-⎧⎨=-+⎩ 解得12211023,,6509m m n n ⎧=⎪=⎧⎪⎨⎨=⎩⎪=⎪⎩或121226,66m m n n ==⎧⎧⎨⎨==-⎩⎩xy-4-6C EPDB51 24 6 FA G 2 -2故P点坐标为1050()39,和(6,6)······························································ 10分(只写出一个点的坐标记9分)。