2019年中考数学复习【垂径定理的应用】专项精练卷及答案解析

合集下载

部编数学九年级上册专题24.2垂径定理的应用(重点题专项讲练)(人教版)(解析版)含答案

部编数学九年级上册专题24.2垂径定理的应用(重点题专项讲练)(人教版)(解析版)含答案

专题24.2 垂径定理的应用【典例1】如图,有一座圆弧形拱桥,桥下水面宽度AB为12m,拱高CD为4m.(1)求拱桥的半径;(2)有一艘宽为5m的货船,船舱顶部为长方形,并高出水面3.4m,则此货船是否能顺利通过此圆弧形拱桥,并说明理由.(1)根据垂径定理和勾股定理求解;(2)连接ON,OB,根据勾股定理即可得到结论.解:(1)如图,连接ON,OB.∵OC⊥AB,∴D为AB中点,∵AB=12m,∴BD=12AB=6m.又∵CD=4m,设OB=OC=ON=r,则OD=(r﹣4)m.在Rt△BOD中,根据勾股定理得:r2=(r﹣4)2+62,解得r=6.5.∴拱桥的半径为6.5m.(2)∵CD=4m,船舱顶部为长方形并高出水面3.4m,∴CE=4﹣3.4=0.6(m),∴OE=r﹣CE=6.5﹣0.6=5.9(m),在Rt△OEN中,EN2=ON2﹣OE2=6.52﹣5.92=7.44,∴EN m).∴MN=2EN=2×≈5.4m>5m.∴此货船能顺利通过这座拱桥.1.(2022•南海区校级一模)如图,武汉晴川桥可以近似地看作半径为250m的圆弧,桥拱和路面之间用数根钢索垂直相连,其正下方的路面AB长度为300m,那么这些钢索中最长的一根为( )A.50m B.45m C.40m D.60m【思路点拨】设圆弧的圆心为O,过O作OC⊥AB于C,交AB于D,连接OA,先由垂径定理得AC=BC=12AB=150,再由勾股定理求出OC=200,然后求出CD的长即可.【解题过程】解:设圆弧的圆心为O,过O作OC⊥AB于C,交AB于D,连接OA,如图所示:则OA=OD=250,AC=BC=12AB=150,∴OC=200,∴CD=OD﹣OC=250﹣200=50(m),即这些钢索中最长的一根为50m ,故选:A .2.(2022•旌阳区二模)筒车是我国古代发明的一种水利灌溉工具,如图1,筒车盛水桶的运行轨道是以轴心O 为圆心的圆,如图2,已知圆心O 在水面上方,且⊙O 被水面截得弦AB 长为4米,⊙O 半径长为3米.若点C 为运行轨道的最低点,则点C 到弦AB 所在直线的距离是( )A .1米B .2米C .米D .(3+米【思路点拨】连接OC ,OC 交AB 于D ,由垂径定理得AD =BD =12AB =2(米),再由勾股定理得OD 后求出CD 的长即可.【解题过程】解:连接OC ,OC 交AB 于D ,由题意得:OA =OC =3米,OC ⊥AB ,∴AD =BD =12AB =2(米),∠ADO =90°,∴OD ==∴CD=OC﹣OD=(3即点C到弦AB所在直线的距离是(3故选:C.3.(2022•宣州区二模)如图所示的是一圆弧形拱门,其中路面AB=2m,拱高CD=3m,则该拱门的半径为( )A.53m B.2m C.83m D.3m【思路点拨】取圆心为O,连接OA,由垂径定理设⊙O的半径为rm,则OC=OA=rm,由拱高CD=3m,OD=(3﹣r)m,OD⊥AB,由垂径定理得出AD=1m,由勾股定理得出方程r2=12+(3﹣r)2,解得:r=53,得出该拱门的半径为53m,即可得出答案.【解题过程】解:如图,取圆心为O,连接OA,设⊙O的半径为rm,则OC=OA=rm,∵拱高CD=3m,∴OD=(3﹣r)m,OD⊥AB,∵AB=2m,∴AD=BD=12AB=1m,∵OA2=AD2+OD2,∴r2=12+(3﹣r)2,解得:r=5 3,∴该拱门的半径为53 m,故选:A.4.(2021秋•海淀区校级期中)数学活动课上,同学们想测出一个残损轮子的半径,小的解决方案如下:如图,在轮子圆弧上任取两点A,B,连接AB,再作出AB的垂直平分线,交AB于点C,交AB于点D,测出AB,CD的长度,即可计算得出轮子的半径.现测出AB=40cm,CD=10cm,则轮子的半径为( )A.50cm B.35cm C.25cm D.20cm【思路点拨】由垂径定理,可得出BC的长;连接OB,在Rt△OBC中,可用半径OB表示出OC的长,进而可根据勾股定理求出得出轮子的半径,即可得出轮子的直径长.【解题过程】解:设圆心为O,连接OB.Rt△OBC中,BC=12AB=20cm,根据勾股定理得:OC2+BC2=OB2,即:(OB﹣10)2+202=OB2,解得:OB=25;故轮子的半径为25cm.故选:C.5.(2021秋•曾都区期中)在圆柱形油槽内装有一些油,油槽直径MN为10分米.截面如图,油面宽AB 为6分米,如果再注入一些油后,当油面宽变为8分米,油面AB上升( )A.1分米B.4分米C.3分米D.1分米或7分米【思路点拨】实质是求两条平行弦之间的距离.根据勾股定理求弦心距,作和或差分别求解.【解题过程】解:连接OA.作OG⊥AB于G,则在直角△OAG中,AG=3分米,因为OA=5cm,根据勾股定理得到:OG=4分米,即弦AB的弦心距是4分米,同理当油面宽AB为8分米时,弦心距是3分米,当油面没超过圆心O时,油上升了1分米;当油面超过圆心O时,油上升了7分米.因而油上升了1分米或7分米.故选:D.6.(2021秋•宁波期末)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=6cm,则球的半径为( )A.3cm B.134cm C.154cm D.174cm【思路点拨】设球的平面投影圆心为O,过点O作ON⊥AD于点N,延长NO交BC于点M,连接OF,由垂径定理得:NF=EN=12EF=3(cm),设OF=xcm,则OM=(4﹣x)cm,再在Rt△MOF中由勾股定理求得OF的长即可.【解题过程】解:设球的平面投影圆心为O,过点O作ON⊥AD于点N,延长NO交BC于点M,连接OF,如图所示:则NF=EN=12EF=3(cm),∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDNM是矩形,∴MN=CD=6cm,设OF=xcm,则OM=OF,∴ON=MN﹣OM=(6﹣x)cm,在Rt△ONF中,由勾股定理得:ON2+NF2=OF2,即:(6﹣x)2+32=x2,解得:x=15 4,即球的半径长是154cm,故选:C.7.(2022•鄂州)工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A、B、E三个接触点,该球的大小就符合要求.图(2)是过球心及A、B、E三点的截面示意图,已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC⊥CD、BD⊥CD,若CD=16cm,AC=BD=4cm,则这种铁球的直径为( )A .10cmB .15cmC .20cmD .24cm【思路点拨】连接OE ,交AB 于点F ,连接OA ,∵AC ⊥CD 、BD ⊥CD ,由矩形的判断方法得出四边形ACDB 是矩形,得出AB ∥CD ,AB =CD =16cm ,由切线的性质得出OE ⊥CD ,得出OE ⊥AB ,得出四边形EFBD 是矩形,AF =12AB =12×16=8(cm ),进而得出EF =BD =4cm ,设⊙O 的半径为rcm ,则OA =rcm ,OF =OE ﹣EF =(r ﹣4)cm ,由勾股定理得出方程r 2=82+(r ﹣4)2,解方程即可求出半径,继而求出这种铁球的直径.【解题过程】解:如图,连接OE ,交AB 于点F ,连接OA ,∵AC ⊥CD 、BD ⊥CD ,∴AC ∥BD ,∵AC =BD =4cm ,∴四边形ACDB 是平行四边形,∴四边形ACDB 是矩形,∴AB ∥CD ,AB =CD =16cm ,∵CD 切⊙O 于点E ,∴OE ⊥CD ,∴OE ⊥AB ,∴四边形EFBD 是矩形,AF =12AB =12×16=8(cm ),∴EF =BD =4cm ,设⊙O 的半径为rcm ,则OA =rcm ,OF =OE ﹣EF =(r ﹣4)cm ,在Rt△AOF中,OA2=AF2+OF2,∴r2=82+(r﹣4)2,解得:r=10,∴这种铁球的直径为20cm,故选:C.8.(2022•上海)如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的面积为 400π .(结果保留π)【思路点拨】根据垂径定理,勾股定理求出OB2,再根据圆面积的计算方法进行计算即可.【解题过程】解:如图,连接OB,过点O作OD⊥AB于D,∵OD⊥AB,OD过圆心,AB是弦,∴AD=BD=12AB=12(AC+BC)=12×(11+21)=16,∴CD=BC﹣BD=21﹣16=5,在Rt△COD中,OD2=OC2﹣CD2=132﹣52=144,在Rt△BOD中,OB2=OD2+BD2=144+256=400,∴S⊙O=π×OB2=400π,故答案为:400π.9.(2021秋•溧水区期末)在一个残缺的圆形工件上量得弦BC=8cm,BC的中点D到弦BC的距离DE=2cm,则这个圆形工件的半径是 5 cm.【思路点拨】由垂径定理的推论得圆心在直线DE上,设圆心为0,连接OB,半径为R,再由垂径定理得BE=CE=12 BC=4(cm),然后由勾股定理得出方程,解方程即可.【解题过程】解:∵DE⊥BC,DE平分弧BC,∴圆心在直线DE上,设圆心为O,半径为Rcm,如图,连接OB,则OD⊥BC,OE=R﹣DE=(R﹣2)cm,∴BE=CE=12BC=4(cm),在Rt△OEB中,OB2=BE2+OE2,即R2=42+(R﹣2)2,解得:R=5,即这个圆形工件的半径是5cm,故答案为:5.10.(2022•柯桥区一模)《九章算术》是中国传统数学重要的著作之一,奠定了中国传统数学的基本框架.其中卷九中记载了一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”其意思是:如图,AB为⊙O的直径,弦CD⊥AB于点E,BE=1寸,CD=1尺,那么直径AB的长为多少寸?(注:1尺=10寸)根据题意,该圆的直径为 26 寸.【思路点拨】连接OC,由直径AB与弦CD垂直,根据垂径定理得到E为CD的中点,由CD的长求出DE的长,设OC =OA=x寸,则AB=2x寸,OE=(x﹣1)寸,由勾股定理得出方程,解方程求出半径,即可得出直径AB 的长.【解题过程】解:连接OC,∵弦CD⊥AB,AB为圆O的直径,∴E为CD的中点,又∵CD=10寸,∴CE=DE=12CD=5寸,设OC=OA=x寸,则AB=2x寸,OE=(x﹣1)寸,由勾股定理得:OE2+CE2=OC2,即(x﹣1)2+52=x2,解得x=13,∴AB=26寸,即直径AB的长为26寸,故答案为:26.11.(2021秋•瑞安市期末)某公路上有一隧道,顶部是圆弧形拱顶,圆心为O,隧道的水平宽AB为24m,AB离地面的高度AE=10 m,拱顶最高处C离地面的高度CD为18m,在拱顶的M,N处安装照明灯,且M,N离地面的高度相等都等于17m,则MN= 10 m.【思路点拨】根据题意和垂径定理得到CG=8m,AG=12m,CH=1m,根据勾股定理求得半径,进而利用勾股定理求得MH,即可求得MN.【解题过程】解:设CD于AB交于G,与MN交于H,∵CD=18m,AE=10m,AB=24m,HD=17m,∴CG=8m,AG=12m,CH=1m,设圆拱的半径为r,在Rt△AOG中,OA2=OG2+AG2,∴r2=(r﹣8)2+122,解得r=13,∴OC=13m,∴OH=13﹣1=12m,在Rt△MOH中,OM2=OH2+MH2,∴132=122+MH2,解得MH2=25,∴MH=5m,∴MN=10m,故答案为10.12.(2022•荆州)如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB=20cm,底面直径BC=12cm,球的最高点到瓶底面的距离为32cm,则球的半径为 7.5 cm(玻璃瓶厚度忽略不计).【思路点拨】设球心为O,过O作OM⊥AD于M,连接OA,设球的半径为rcm,由垂径定理得AM=DM=12AD=6(cm)然后在Rt△OAM中,由勾股定理得出方程,解方程即可.【解题过程】解:如图,设球心为O,过O作OM⊥AD于M,连接OA,设球的半径为rcm,由题意得:AD=12cm,OM=32﹣20﹣r=(12﹣r)(cm),由垂径定理得:AM=DM=12AD=6(cm),在Rt△OAM中,由勾股定理得:AM2+OM2=OA2,即62+(12﹣r)2=r2,解得:r=7.5,即球的半径为7.5cm,故答案为:7.5.13.(2021秋•温州校级月考)如图是郑州圆形“戒指桥”,其数学模型为如图所示.已知桥面跨径AB=20米,D为圆上一点,DC⊥AB于点C,且CD=BC=14米,则该圆的半径长为 26 米.【思路点拨】过O作ON⊥AB于N,过D作DM⊥ON于M,由垂径定理得AN=BN=12AB=10(米),再证四边形DCNM是矩形,则MN=CD=14米,DM=CN=BC+BN=24(米),设该圆的半径长为r米,然后由题意列出方程组,解方程组即可.【解题过程】解:过O作ON⊥AB于N,过D作DM⊥ON于M,如图所示:则AN=BN=12AB=10(米),∠ONC=∠DMN=90°,∵DC⊥AB,∴∠DCN=90°,∴四边形DCNM是矩形,∴MN=CD=14米,DM=CN=BC+BN=24(米),设该圆的半径长为r米,由题意得:ON2=r2−102 OM2=r2−242 OM=ON−14,解得:r=26ON=24 OM=10,即该圆的半径长为26米,故答案为:26.14.(2021秋•金安区校级期末)往直径为680mm的圆柱形油槽内装入一些油以后,截面如图所示,若油面宽AB=600mm,求油的最大深度.【思路点拨】连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD 的长,进而可得出CD的长.【解题过程】解:过点O作OC⊥AB于点D,交弧AB于点C.∵OC⊥AB于点D∴BD=12AB=12×600=300mm,∵⊙O的直径为680mm∴OB=340mm…(5分)∵在Rt△ODB中,OD=160(mm),∴DC=OC﹣OD=340﹣160=180(mm);答:油的最大深度为180mm.15.(2021秋•惠城区校级期中)如图,⊙O为水管横截面,水面宽AB=24cm,水的最大深度为18cm,求⊙O的半径.【思路点拨】由垂径定理可知AD=12cm,设⊙O的半径为rcm,则OD=(18﹣r)cm,在Rt△AOd中,再利用勾股定理即可求出r的值.【解题过程】解:作OD⊥AB于D,交⊙O于E,连接OA,∴AD=12AB=12×24=12cm,设⊙O的半径为rcm,则OD=ED﹣OE=(18﹣r)cm,在Rt△AOD中,由勾股定理得:OA2=OD2+AD2,即r2=(18﹣r)2+122,解得:r=13,即⊙O的半径为13cm.16.(2021秋•奈曼旗期中)如图所示,测得AB是8mm,测得钢珠顶端离零件表面的距离为8mm,求这个圆的直径.【思路点拨】过O作OC⊥AB于C,交优弧AB于D,连接AO,由垂径定理得AC=BC=12AB=4(mm),设⊙O的半径为rmm,则OC=CD﹣OD=(8﹣r)mm,然后在Rt△AOC中,由勾股定理得出方程,解方程即可.【解题过程】解:如图,过O作OC⊥AB于C,交优弧AB于D,连接AO,则AC=BC=12AB=4(mm),CD=8mm,设⊙O的半径为rmm,则OC=CD﹣OD=(8﹣r)mm,在Rt△AOC中,由勾股定理得:42+(8﹣r)2=r2,解得:r=5,即⊙O的半径为5mm,∴⊙O的直径为10mm.17.(2021秋•阜阳月考)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就,它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸).问这块圆形木材的直径(AC)是多少?”如图所示,请根据所学的知识解答上述问题.【思路点拨】设⊙O的半径为x寸.在Rt△ADO中,AD=5寸,OD=(x﹣1)寸,OA=x寸,则有x2=(x﹣1)2+52,解方程即可.【解题过程】解:设⊙O的半径为x寸,∵OE⊥AB,AB=10寸,∴AD=BD=12AB=5寸,在Rt△AOD中,OA=x,OD=x﹣1,由勾股定理得x2=(x﹣1)2+52,解得x=13,∴⊙O的直径AC=2x=26(寸),答:这块圆形木材的直径(AC)是26寸.18.(2021秋•高新区期中)某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面图;(要求尺规作图,保留作图痕迹,不写作法)(2)若这个输水管道有水部分的水面宽AB=32cm,水最深处的地方高度为8cm,求这个圆形截面的半径.【思路点拨】(1)根据尺规作图的步骤和方法做出图即可;(2)先过圆心O作半径OD⊥AB,交AB于点D,设半径为r,得出AD、OD的长,在Rt△AOD中,根据勾股定理求出这个圆形截面的半径.【解题过程】解:(1)如图所示;(2)作OD⊥AB于D,并延长交⊙O于C,则D为AB的中点,∵AB=32cm,∴AD=12AB=16.设这个圆形截面的半径为xcm,又∵CD=8cm,∴OC=x﹣8,在Rt△OAD中,∵OD2+AD2=OA2,即(x﹣8)2+162=x2,解得,x=20.∴圆形截面的半径为20cm.19.(2021秋•黔西南州期末)如图,在一座圆弧形拱桥,它的跨度AB为60m,拱高PM为18m,当洪水泛滥到跨度只有30m时,就要采取紧急措施,若某次洪水中,拱顶离水面只有4m,即PN=4m时,试通过计算说明是否需要采取紧急措施.【思路点拨】由垂径定理可知AM=BM、A′N=B′N,利用AB=60,PM=18,可先求得圆弧所在圆的半径,再计算当PN =4时A′B′的长度,与30米进行比较大小即可.【解题过程】解:设圆弧所在圆的圆心为O,连接OA、OA′,设半径为x米,则OA=OA′=OP,由垂径定理可知AM=BM,A′N=B′N,∵AB=60米,∴AM=30米,且OM=OP﹣PM=(x﹣18)米,在Rt△AOM中,由勾股定理可得AO2=OM2+AM2,即x2=(x﹣18)2+302,解得x=34,∴ON=OP﹣PN=34﹣4=30(米),在Rt△A′ON中,由勾股定理可得A′N=16(米),∴A′B′=32米>30米,∴不需要采取紧急措施.20.(2021秋•余干县期中)如图是某蔬菜基地搭建一座圆弧型蔬菜棚,跨度AB=3.2米,拱高CD=0.8米(C为AB的中点,D为弧AB的中点).(1)求该圆弧所在圆的半径;(2)在距蔬菜棚的一端0.4米处竖立支撑杆EF,求支撑杆EF的高度.【思路点拨】(1)设弧AB所在的圆心为O,D为弧AB的中点,CD⊥AB于C,延长DC至O点,设⊙O的半径为R,利用勾股定理求出即可;(2)利用垂径定理以及勾股定理得出HF的长,再求出EF的长即可.【解题过程】解:(1)设弧AB所在的圆心为O,D为弧AB的中点,CD⊥AB于C,延长DC经过O点,则BC=12AB=1.6(米),设⊙O的半径为R,在Rt△OBC中,OB2=OC2+CB2,∴R2=(R﹣0.8)2+1.62,解得R=2,即该圆弧所在圆的半径为2米;(2)过O作OH⊥FE于H,则OH=CE=1.6﹣0.4=1.2=65(米),OF=2米,在Rt△OHF中,HF== 1.6(米),∵HE=OC=OD﹣CD=2﹣0.8=1.2(米),∴EF=HF﹣HE=1.6﹣1.2=0.4(米),即支撑杆EF的高度为0.4米.21.如图①,圆形拱门屏风是中国古代家庭中常见的装饰隔断,既美观又实用,彰显出中国元素的韵味.图②是一款拱门的示意图,其中C为AB中点,D为拱门最高点,线段CD经过圆心,已知拱门的半径为1.5m,拱门最下端AB=1.8m.(1)求拱门最高点D到地面的距离;(2)现需要给房间内搬进一个长和宽为2m,高为1.2m的桌子,已知搬桌子的两名工人在搬运时所抬高度相同,且高度为0.5m 2.236)【思路点拨】(1)如图②中,连接AO.利用勾股定理求出OC即可;(2)如图②﹣1,弦EF=2m,且EF⊥CD,连接OE.求出CJ即可.【解题过程】解:(1)如图②中,连接AO.∵CD⊥AB,CD经过圆心O,∴AC=CB=0.9m,∴OC= 1.2(m),∴CD=OD+PC=1.5+1.2=2.7(m),∴拱门最高点D到地面的距离为2.7m;(2)如图②﹣1,弦EF=2m,且EF⊥CD,连接OE.∵CD⊥EF,CD经过圆心,∴EJ=JF=1m,≈1.118,∴OJ=2∴CJ=1.2﹣1.118=0.082(m),∵0.5>0.082,∴搬运该桌子时能够通过拱门.22.(2021秋•姑苏区校级月考)诗句“君到姑苏见,人家尽枕河”所描绘的就是有东方威尼斯之称的水城苏州.小勇要帮忙船夫计算一艘货船是否能够安全通过一座圆弧形的拱桥,现测得桥下水面AB宽度16m时,拱顶高出水平面4m,货船宽12m,船舱顶部为矩形并高出水面3m.(1)请你帮助小勇求此圆弧形拱桥的半径;(2)小勇在解决这个问题时遇到困难,请你判断一下,此货船能顺利通过这座拱桥吗?说说你的理由.【思路点拨】(1)根据垂径定理和勾股定理求解;(2)连接ON,利用勾股定理求出EN,得出MN的长,即可得到结论.【解题过程】解:(1)如图,连接OB.∵OC⊥AB,∴D为AB中点,∵AB=16m,∴BD=12AB=8(m),又∵CD=4m,设OB=OC=r,则OD=(r﹣4)m.在Rt△BOD中,根据勾股定理得:r2=(r﹣4)2+82,解得r=10.答:此圆弧形拱桥的半径为10m.(2)此货船不能顺利通过这座拱桥,理由如下:连接ON,∵CD=4m,船舱顶部为长方形并高出水面3m,∴CE=4﹣3=1(m),∴OE=r﹣CE=10﹣1=9(m),在Rt△OEN中,由勾股定理得:EN∴MN=2EN=<12m.∴此货船B不能顺利通过这座拱桥.。

中考数学专题复习《垂径定理》测试卷-附带答案

中考数学专题复习《垂径定理》测试卷-附带答案

中考数学专题复习《垂径定理》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________ 1.如图 在O 中 直径AB 垂直弦CD 于点E 连接,,AC AD BC 作CF AD ⊥于点F 交线段OB 于点G (不与点,O B 重合) 连接OF .(1)若1BE = 求GE 的长.(2)求证:2BC BG BO =⋅.(3)若FO FG = 猜想CAD ∠的度数 并证明你的结论.2.如图 AB 是O 直径 直线l 经过O 上一点C 过点A 作直线l 的垂线.垂足为D .连接AC .已知AC 平分DAB ∠.(1)求证:直线l 与O 相切(2)若70DAB ∠=︒ 3CD = 求O 的半径.(参考数据:sin350.6︒≈cos350.8︒≈.tan350.7︒≈)3.如图 AC 与BD 相交于点E 连接AB CD CD DE =.经过A B C 三点的O 交BD 于点F 且CD 是O 的切线.(1)连接AF 求证:AF AB =(2)求证:2AB AE AC =⋅(3)若2AE = 6EC = 4BE = 则O 的半径为 . 4.如图 四边形ABCD 内接于O 对角线,AC BD 交于点E 连接OE .若,AC BD O ⊥的半径为,r OE m =.(1)若ABC BAD ∠=∠ 求证:OE 平分AEB ∠(2)试用含,r m 的式子表示22AC BD +的值(3)记ADE BCE ABE CDE 的面积分别为1S 2S 3S 4S 当求证:AC BD =.5.如图 AB 是O 的直径 ,C D 是O 上两点 且AD CD = 连接BC 并延长与过点D 的O 的切线相交于点E 连接OD .(1)证明:OD 平分ADC ∠(2)若44,tan 3DE B == 求CD 的长. 6.已知BC 是O 的直径 点D 是BC 延长线上一点 AB AD = AE 是O 的弦 30AEC ∠=︒.(1)求证:直线AD 是O 的切线(2)若AE BC ⊥ 垂足为M O 的半径为10 求AE 的长.7.已知 在O 中 AB 为弦 点C 在圆内 连接AC BC OC 、、,ACO BCO ∠=∠.(1)如图1 求证:AC BC =(2)如图2 延长AC BC 、交O 于点E D 、 连接DE 求证:AB DE ∥(3)如图3 在(2)的条件下 设O 的半径为,3R DE R = 弦FG 经过点C 连接BG BF 、 72,3,33DBF DBG CG R ∠=∠== 求线段CF 的长. 8.已知点,,A B C 在O 上.(1)如图① 过点A 作O 的切线EF 交BC 延长线于点,E D 是弧BC 的中点 连接DO 并延长 交BC 于点G 交O 于点H 交切线EF 于点F 连接,BA BH .若24ABH ∠=︒ 求E ∠的大小(2)如图① 若135AOC B ∠+∠=︒ O 的半径为5 8BC = 求AB 的长. 9.如图 A B C D 分别为O 上一点 连AB AC BC BD CD AC 垂直于BD 于E AC BC = 连CO 并延长交BD 于F .(1)求证:CD CF =(2)若10BC = 6BE = 求O 的半径.10.如图 在 Rt ABC △中 90C ∠=︒,AD 平分 BAC ∠ 交 BC 于点D 点O 是边 AB 上的点 以点O 为圆心 OD 长为半径的圆恰好经过点A 交AC 于点E 弦 EF AB ⊥于点G .(1)求证:BC 是O 的切线.(2)若 12AG EG ==,,求O 的半径.(3)设O 与AB 的另一个交点为 H 猜想AH AE CE 之间的数量关系 并说明理由. 11.如图 在ABC 中 90ACB ∠=︒ 5AB = 1AD = BD BC = 以BD 为直径作O 交BC 于点E 点F 为AC 边上一点 连接EF 过点A 作AG EF ⊥ 垂足为点G =BAC GAF ∠∠.(1)求证:EG 为O 的切线(2)求BE 的长.12.如图 四边形ABCD 中 90B C ∠=∠=︒ 点E 是边BC 上一点 且DE 平分AEC ∠ 作ABE的外接圆O.(1)求证:DC是O的切线(2)若O的半径为5 2CE=求BE与DE的长.13.如图1 在直角坐标系中以原点O为圆心半径为10作圆交x轴于点A B,(点A⊥(点D在点E上方)连在点B的左边).点C为直径AB上一动点过点C作弦DE AB∥交圆O于另一点记为点F.直线EF交x轴于点G连接接AE过点D作DF AE,,.OE BF AD(1)若80∠=︒求ADFBOE∠的度数(2)求证:OE BF∥(3)若2=请直接写出点C横坐标.OG CG14.如图AB为O的弦C为AB的中点D为OC延长线上一点连接BO并延长交O于点E交直线DA于点F B D∠=∠.(1)求证:DA为O的切线(2)若42EF=求弦AB的长度.AF=2⊥交O于B C两点.连15.如图在O中M为半径OA上一点.过M作弦BC OA=.接BO并延长交O于点D连接AD交BC于点E.已知EB ED(1)求证:60CD =︒(2)探究线段CE EM 长度之间的数量关系 并证明.参考答案:1.(1)1(3)45︒2.(2)2583.4.(2)()222242AC BD r m +=-5.(2)6.(2)AE =7.(3)21349CF =8.(1)48E ∠=︒ (2)9.51010.(2)52(3)2AH AE CE =+11.(2)16512.(2)6BE = 25DE =13.(1)100︒(3)点C 555-14.28215.(2)2CE EM =。

部编数学九年级上册专题24.1垂径定理(重点题专项讲练)(人教版)(解析版)含答案

部编数学九年级上册专题24.1垂径定理(重点题专项讲练)(人教版)(解析版)含答案

专题24.1 垂径定理【典例1】如图,在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点.(1)求证:AC=BD;(2)连接OA、OC,若OA=6,OC=4,∠OCD=60°,求AC的长.(1)过O作OH⊥CD于H,根据垂径定理得到CH=DH,AH=BH,即可得出结论;(2)过O作OH⊥CD于H,连接OD,由垂径定理得CH=DH=12CD,再证△OCD是等边三角形,得CD=OC=4,则CH=2,然后由勾股定理即可解决问题.(1)证明:过O作OH⊥CD于H,如图1所示:∵OH⊥CD,∴CH=DH,AH=BH,∴AH﹣CH=BH﹣DH,∴AC=BD;(2)解:过O作OH⊥CD于H,连接OD,如图2所示:则CH=DH=12 CD,∵OC=OD,∠OCD=60°,∴△OCD是等边三角形,∴CD=OC=4,∴CH=2,∴OH=∴AH∴AC=AH﹣CH=2.1.(2022•芜湖一模)已知⊙O的直径CD=10,AB是⊙O的弦,AB=8,且AB⊥CD,垂足为M,则AC 的长为( )A.B.C.D.【思路点拨】连接OA,由AB⊥CD,根据垂径定理得到AM=4,再根据勾股定理计算出OM=3,然后分类讨论:当如图1时,CM=8;当如图2时,CM=2,再利用勾股定理分别计算即可.【解题过程】解:连接OA,∵AB⊥CD,∴AM=BM=12AB=12×8=4,在Rt△OAM中,OA=5,∴OM=3,当如图1时,CM=OC+OM=5+3=8,在Rt△ACM中,AC=当如图2时,CM=OC﹣OM=5﹣3=2,在Rt△ACM中,AC=故选:C.2.(2022春•江夏区校级月考)如图,在⊙O中,弦AB=5,点C在AB上移动,连结OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为( )A.5B.2.5C.3D.2【思路点拨】连接OD,如图,利用勾股定理得到CD,利用垂线段最短得到当OC⊥AB时,OC最小,再求出CD即可.【解题过程】解:连接OD,如图,∵CD⊥OC,∴∠DCO=90°,∴CD=当OC的值最小时,CD的值最大,而OC⊥AB时,OC最小,此时D、B两点重合,∴CD=CB=12AB=12×5=2.5,即CD的最大值为2.5,故选:B.3.(2022•山海关区一模)已知⊙O的直径CD=10,CD与⊙O的弦AB垂直,垂足为M,且AM=4.8,则直径CD上的点(包含端点)与A点的距离为整数的点有( )A.1个B.3个C.6个D.7个【思路点拨】利用勾股定理得出线段AD和AC的长,根据垂线段的性质结合图形判断即可.【解题过程】解:∵CD是直径,∴OC=OD=12CD=12×10=5,∵AB⊥CD,∴∠AMC=∠AMD=90°,∵AM=4.8,∴OM==1.4,∴CM=5+1.4=6.4,MD=5﹣1.4=3.6,∴AC=8,AD=6,∵AM=4.8,∴A点到线段MD的最小距离为4.8,最大距离为6,则A点到线段MD的整数距离有5,6,A点到线段MC的最小距离为4.8,最大距离为8,则A点到线段MC的整数距离有5,6,7,8,直径CD上的点(包含端点)与A点的距离为整数的点有6个,故选:C.4.(2022•博山区一模)如图,在平面直角坐标系中,半径为5的⊙E与y轴交于点A(0,﹣2),B(0,4),与x轴交于C,D,则点D的坐标为( )A.0)B.(−4+0)C.(−40)D.0)【思路点拨】过O点作EH⊥AB于H,EF⊥CD于F,连接ED,如图,根据垂径定理得到CF=DF,AH=BH=3,所以OH=1,再利用勾股定理计算出EH=4,则EF=1,OF=4,接着利用勾股定理计算出FD,然后计算出OD,从而得到D点坐标.【解题过程】解:过O点作EH⊥AB于H,EF⊥CD于F,连接ED,如图,则CF=DF,AH=BH∵A(0,﹣2),B(0,4),∴AB=6,∴BH=3,∴OH=1,在Rt△BHE中,EH4,∵四边形EHOF为矩形,∴EF=OH=1,OF=EH=4,在Rt△OEF中,FD==∴OD=FD﹣OF=4,∴D(4,0).故选:B .5.(2022•新洲区模拟)如图,点A ,C ,D 均在⊙O 上,点B 在⊙O 内,且AB ⊥BC 于点B ,BC ⊥CD 于点C ,若AB =4,BC =8,CD =2,则⊙O 的面积为( )A .125π4B .275π4C .125π9D .275π9【思路点拨】利用垂径定理和勾股定理建立方程求出ON ,再求出半径后,根据圆面积的计算方法进行计算即可.【解题过程】解:如图,连接OA 、OC ,过点O 作OM ⊥CD 于M ,MO 的延长线于AB 延长线交于N ,则四边形BCMN 是矩形,∵OM ⊥CD ,CD 是弦,∴CM =DM =12CD =1=BN ,∴AN =AB +BN =4+1=5,设ON =x ,则OM =8﹣x ,在Rt △AON 、Rt △COM 中,由勾股定理得,OA 2=AN 2+ON 2,OC 2=OM 2+CM 2,∵OA =OC ,∴AN 2+ON 2=OM 2+CM 2,即52+x 2=(8﹣x )2+12,解得x =52,即ON =52,∴OA 2=52+(52)2=1254,∴S⊙O=π×OA2=1254π,故选:A.6.(2021秋•延平区校级期末)在Rt△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3,若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为( )A.910B.65C.85D.125【思路点拨】由题意可知,C、O、G三点在一条直线上OG最小,MN最大,再由勾股定理求得AB,然后由三角形面积求得CF,最后由垂径定理和勾股定理即可求得MN的最大值.【解题过程】解:过O作OG⊥AB于G,连接OC、OM,∵DE=3,∠ACB=90°,OD=OE,∴OC=12DE=32,只有C、O、G三点在一条直线上OG最小,∵OM=3 2,∴只有OG最小,GM才能最大,从而MN有最大值,过C作CF⊥AB于F,∴G和F重合时,MN有最大值,∵∠ACB=90°,BC=3,AC=4,∴AB==5,∵12AC•BC=12AB•CF,∴CF=AC×BCAB=4×35=125,∴OG=CF﹣OC=125−32=910,∴MG===6 5,∴MN=2MG=12 5,故选:D.7.(2022•吴忠模拟)如图,AB是⊙O的直径,且CD⊥AB于E,若AE=1,∠D=30°,则AB= 4 .【思路点拨】根据含30度角的直角三角形的性质求出AD,根据垂径定理求出AC=AD,求出AC=AD=2,根据圆周角定理求出∠ACB=90°,∠B=∠D=30°,再根据含30度角的直角三角形的性质得出AB=2AC即可.【解题过程】解:∵CD⊥AB,∴∠AED=90°,∵AE=1,∠D=30°,∴AD=2AE=2,∠ABC=∠D=30°,∵AB⊥CD,AB过圆心O,∴AC=AD,∴AC=AD=2,∵AB是⊙O的直径,∴∠ACB=90°,∴AB=2AC=2×2=4,故答案为:4.8.(2022•烟台模拟)如图,AB是⊙O的直径,弦CD交AB于点P,AP=4,BP=12,∠APC=30°,则CD的长为【思路点拨】过O作OI⊥CD于I,连接OD,求出半径OD=OA=8,求出OP,根据含30度角的直角三角形的性质求出OI,根据勾股定理求出DI,根据垂径定理求出DI=CI,再求出CD即可.【解题过程】解:过O作OI⊥CD于I,连接OD,则∠OID=∠OIP=90°,∵AP=4,BP=12,∴直径AB=4+12=16,即半径OD=OA=8,∴OP=OA﹣AP=8﹣4=4,∵∠IPO=∠APC=30°,∴OI=12OP=12×4=2,由勾股定理得:DI==∵OI⊥CD,OI过圆心O,∴DI=CI=即CD=DI+CI=故答案为:9.(2022•桥西区校级模拟)如图,AB是⊙C的弦,直径MN⊥AB于点O,MN=10,AB=8,如图以O为原点建立坐标系.我们把横纵坐标都是整数的点叫做整数点,则线段OC长是 3 ,⊙C上的整数点有 12 个.【思路点拨】过C作直径UL∥x轴,连接AC,根据垂径定理求出AO=BO=4,根据勾股定理求出OC,再得出答案即可.【解题过程】解:过C作直径UL∥x轴,连接CA,则AC=12×10=5,∵MN过圆心C,MN⊥AB,AB=8,∴AO=BO=4,∠AOC=90°,由勾股定理得:CO3,∴ON=5﹣3=2,OM=5+3=8,即A(﹣4,0),B(4,0),M(0,8),N(0,﹣2),同理还有弦QR=AB=8,弦WE=TS=6,且WE、TS、QR都平行于x轴,Q(﹣4,6),R(4,6),W(﹣3,7),E(3,7),T(﹣3,﹣1),S(3,﹣1),U(﹣5,3),L (5,3),即共12个点,故答案为:3;12.10.(2022•商城县三模)如图所示的网格中,每个小正方形的边长均为1,点A、B、C均在小正方形的顶点上,点C 同时也在AB 上,若点P 是BC 的一个动点,则△ABP 面积的最大值是 −8 .【思路点拨】作AB 的垂直平分线交AB 于D ,交AB 于E ,圆心为0,则点O 在DE 上,连接AE 、BE ,CF ⊥OE 于F ,如图,设⊙O 的半径为r ,OD =x ,利用勾股定理得到r 2=x 2+42①,r 2=(x +2)2+22②,则利用②﹣①可求出得x =2,所以r =DE =2,然后根据三角形面积公式,点P 点与点E 重合时,△ABP 面积的最大值.【解题过程】解:作AB 的垂直平分线交AB 于D ,交AB 于E ,圆心为0,则点O 在DE 上,连接AE 、BE ,CF ⊥OE 于F ,如图,设⊙O 的半径为r ,OD =x ,在Rt △BOD 中,r 2=x 2+42①,在Rt △OCF 中,r 2=(x +2)2+22②,②﹣①得4+4x +4﹣16=0,解得x =2,∴OD =2,∴r =∴DE =OE ﹣OD =2,∵点P 是BC 的一个动点,∴点P 点与点E 重合时,△ABP 面积的最大值,最大值为12×8×(2)=8.故答案为:8.11.(2022春•徐汇区校级期中)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦AB于点E,且CE=CB,若BE=2AE,CD=5,那么⊙O的半径为【思路点拨】先证明△AFO和△BCE是等边三角形,设DE=x,根据CD=5列方程,求出x得到AD【解题过程】解:如图,记DC与⊙O交于点F,连接AF、OF、OB,过点C作CT⊥AB于点T,连接OE,OT.∵D为半径OA的中点,CD⊥OA,∴FD垂直平分AO,∴FA=FO,又∵OA=OF,∴△AOF是等边三角形,∴∠OAF=∠AOF=∠AFO=60°,∵CE=CB,CT⊥EB,∴ET=TB,∵BE=2AE,∴AE=ET=BT,∵AD=OD,∴DE∥OT,∴∠AOT=∠ADE=90°,∴OE=AE=ET,∵OA=OB,∴∠OAE=∠OBT,∵AO=BO,AE=BT,∴△AOE≌△BOT(SAS),∴OE=OT,∴OE=OT=ET,∴∠ETO=60°,∴∠OAB=∠OBA=30°,∠AED=∠CEB=60°,∴△CEB是等边三角形,∴CE=CB=BE,设DE=x,∴AE=2x,BE=CE=4x,∴CD=5x=5,∴x=1,∴AD∴AO=故答案为:12.(2022•盐城)证明:垂直于弦AB的直径CD平分弦以及弦所对的两条弧.【思路点拨】先根据已知画图,然后写出已知和求证,再进行证明即可.【解题过程】如图,CD为⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为M.求证:AM=BM,AC=BC,AD=BD.证明:连接OA、OB,∵OA=OB,∴△OAB是等腰三角形,∵AB⊥CD,∴AM=BM,∠AOC=∠BOC,∴AC=BC,AD=BD.13.(2021秋•鼓楼区校级期末)如图,AB是⊙O的直径,弦CD⊥AB于点E,若BE=5,CD=6,求AE 的长.【思路点拨】根据垂径定理和勾股定理求出圆的半径,进而求出AE的长即可.【解题过程】解:如图,连接OC,∵CD⊥AB,AB是直径,∴CE=DE=12CD=3,在Rt△COE中,设半径为r,则OE=5﹣r,OC=r,由勾股定理得,OE2+CE2=OC2,即(5﹣r)2+32=r2,解得r =3.4,∴AE =AB ﹣BE =3.4×2﹣5=1.8,答:AE 的长为1.8.14.(2021秋•芜湖月考)如图,在△ABC 中AB =5,AC =4,BC =2,以A 为圆心,AB 为半径作⊙A ,延长BC 交⊙A 于点D ,试求CD 的长.【思路点拨】过点A 作AE ⊥BD 于点E ,如图,则DE =BE ,利用双勾股得到AC 2﹣CE 2=AB 2﹣BE 2,即42﹣(BE ﹣2)2=52﹣BE 2,解方程得到BE =134,然后计算BD ﹣BC 即可.【解题过程】解:过点A 作AE ⊥BD 于点E ,连接AD ,如图,则DE =BE ,在Rt △ACE 中,AE 2=AC 2﹣CE 2,在Rt △ABE 中,AE 2=AB 2﹣BE 2,∴AC 2﹣CE 2=AB 2﹣BE 2,即42﹣(BE ﹣2)2=52﹣BE 2,解得BE =134,∴CD =BD ﹣BC =2BE ﹣2=2×134−2=92.答:CD 的长为92.15.(2022•江西开学)如图,在⊙O 中,弦AB ∥CD ,AB =8,CD =6,AB ,CD 之间的距离为1.(1)求圆的半径.(2)将弦AB 绕着圆心O 旋转一周,求弦AB 扫过的面积.【思路点拨】(1)过点O作OF⊥CD于点F,交AB于点E,连接OA、OD,即可得出DF=CF=3,再因为AB∥CD,则可得到OE⊥AB,进而得到AE=BE=4,最后根据勾股定理计算即可;(2)先判断出将弦AB绕着圆心O旋转一周,得到的图形,再根据圆面积公式计算即可.【解题过程】解:(1)如图,过点O作OF⊥CD于点F,交AB于点E,连接OA、OD,则DF=CF=3,∵AB∥CD,∴OE⊥AB,∴AE=BE=4,设OE=x,则OF=x+1,根据题意可得:x2+42=(x+1)2+32,∴x=3,∴=5;(2)将弦AB绕着圆心O旋转一周,得到的图形是以点O为圆心,以3为半径的圆与以5为半径的圆所围成的环形,故弦AB扫过的面积为π×52﹣π×32=16π.16.(2021秋•玄武区校级月考)如图,AB是⊙O直径,弦CD⊥AB于点E,过点C作DB的垂线,交AB 的延长线于点G,垂足为点F,连结AC.(1)求证:AC=CG;(2)若CD=EG=8,求⊙O的半径.【思路点拨】(1)利用等角的余角证明∠D=∠G,再根据圆周角定理得到∠A=∠D,所以∠A=∠G,从而得到结论;(2)连接OC,如图,设⊙O的半径为r,根据等腰三角形的性质和垂径定理得到AE=EG=8,EC=ED=4,则OE=8﹣r,利用勾股定理得r2=(8﹣r)2+42,然后解方程即可.【解题过程】(1)证明:∵DF⊥CG,CD⊥AB,∴∠DEB=∠BFG=90°,∵∠DBE=∠GBF,∴∠D=∠G,∵∠A=∠D,∴∠A=∠G,∴AC=CG;(2)解:连接OC,如图,设⊙O的半径为r.∵CA=CG,CD⊥AB,∴AE=EG=8,EC=ED=4,∴OE=AE﹣OA=8﹣r,在Rt△OEC中,∵OC2=OE2+EC2,∴r2=(8﹣r)2+42,解得r=5,∴⊙O的半径为5.17.(2022•白云区二模)已知:如图,A,B是半圆O上的两点,CD是⊙O的直径,∠AOD=80°,B是AD 的中点.(1)在CD上求作一点P,使得AP+PB最短;(2)若CD=4cm,求AP+PB的最小值.【思路点拨】(1)作出B关于CD的对称点B′,连接AB′,交CD于P点,P就是所求的点;(2)延长AO交圆与E,连接OB′,B′E,可以根据圆周角定理求得∠AOB′的度数,根据等腰三角形的性质求得∠A的度数,然后在直角△AEB′中,解直角三角形即可求解.【解题过程】解:(1)作BB′⊥CD,交圆于B′,然后连接AB′,交CD于P点,P就是所求的点;(2)延长AO交圆于E,连接OB′,B′E.∵BB′⊥CD∴BD=B′D,∵∠AOD=80°,B是AD的中点,∴∠DOB′=12∠AOD=40°.∴∠AOB′=∠AOD+∠DOB′=120°,又∵OA=OB′,∴∠A=180°−∠AOB′2=30°.∵AE是圆的直径,∴∠AB′E=90°,∴直角△AEB′中,B′E=12AE=12×4=2,∴AB′=.18.(2022•中山市模拟)已知:如图,在⊙O中,AB、AC为互相垂直的两条弦,OD⊥AB,OE⊥AC,D、E 为垂足.(1)若AB=AC,求证:四边形ADOE为正方形.(2)若AB>AC,判断OD与OE的大小关系,并证明你的结论.【思路点拨】(1)连接OA,根据垂径定理得出AE=CE,AD=BD,根据AB=AC求出AE=AD,再根据矩形的判定和正方形的判定推出即可;(2)根据勾股定理得出OE2=OA2﹣AE2,OD2=OA2﹣AD2,根据AB>AC求出AD>AE,再得出答案即可.【解题过程】(1)证明:连接OA,∵OD⊥AB,OE⊥AC,OD和OE都过圆心O,∴∠OEA=∠ODA=90°,AE=CE,AD=BD,∵AC=AB,∴AE=AD,∵AB、AC为互相垂直的两条弦,∴∠EAD=90°,即∠OEA=∠EAD=∠ODA=90°,∴四边形EADO是正方形(有一组邻边相等的矩形是正方形);(2)解:OD<OE,证明:∵AB>AC,AE=CE,AD=BD,∴AD>AE,在Rt△ODA和Rt△OEA中,由勾股定理得:OE2=OA2﹣AE2,OD2=OA2﹣AD2,∴OD2<OE2,即OD<OE.19.(2022•全椒县一模)如图,⊙O中两条互相垂直的弦AB,CD交于点E.(1)OM⊥CD于点M,CD=24,⊙O的半径长为OM的长.(2)点G在BD上,且AG⊥BD交CD于点F,求证:CE=EF.【思路点拨】(1)连接OD,由垂径定理和勾股定理可得答案;(2)连接AC,由垂直的定义及等腰三角形的性质可得结论.【解题过程】(1)解:如图,连接OD,∵OM⊥CD,OM过圆心,CD=24,∴DM=CM=12CD=12,∠OMD=90°,由勾股定理得,OM=4,即OM的长为4;(2)证明:如图,连接AC,∵AG⊥BD,∴∠DGF=90°,∴∠DFG+∠D=90°,∵AB⊥CD,∴∠CEA=90°,∴∠C+∠EAC=90°,∵∠EAC=∠D,∠DFG=∠AFC,∴∠C=∠AFC,∴AF=AC,∵AB⊥CD,∴CE=EF.20.(2022•合肥模拟)如图,在⊙O中,AB,AC为弦,CD为直径,AB⊥CD于E,BF⊥AC于F,BF与CD相交于G.(1)求证:ED=EG;(2)若AB=8,OG=1,求⊙O的半径.【思路点拨】(1)连接BD,容易得到∠GBE和∠DBE相等,利用ASA证明△BGE和△BDE全等即可;(2)连接OA,设OA=r,则DG=r+1,根据ED=EG容易求出OE=r−12,再根据垂径定理求出AE的值,最后在Rt△OAE中根据勾股定理求出r的值即可.【解题过程】(1)证明:如图:连接BD,∵AB⊥CD于E,BF⊥AC于F,∴∠CFG=∠GEB,∵∠CGF=∠BGE,∴∠C=∠GBE,∵∠C=∠DBE,∴∠GBE=∠DBE,∵AB⊥CD于E,∴∠GEB=∠DEB,在△GBE和△DBE中,∠GEB=∠DEBBE=BE∠GBE=∠DBE,∴△BGE≌△BDE(ASA),∴ED=EG.(2)解:如图:连接OA,设OA=r,则DG=r+1,由(1)可知ED=EG,∴OE=r−1 2,∵AB⊥CD于E,AB=8,∴AE=BE=4,∴在Rt△OAE中,根据勾股定理得:OE2+AE2=OA2,即(r−12)2+42=r2,解得:r=13 3,即⊙O的半径为13 3.21.(2021•遵义一模)在《折叠圆形纸片》综合实践课上,小东同学展示了如下的操作及问题:(1)如图1,⊙O1的半径为4cm,通过折叠圆形纸片,使得劣弧AB沿弦AB折叠后恰好过圆心O1,求,AB长;(2)如图2,O2C⊥弦AB,垂足为点C,劣弧AB沿弦AB折叠后经过O2C的中点D,AB=10cm,求⊙O 的半径.【思路点拨】(1)过点O1作O1F⊥AB于F,得出O1F=12O1F,再根据勾股定理,即可得出结论;(2)同(1)的方法先判断出O2C=2rcm,再根据勾股定理建立方程求解,即可得出结论.【解题过程】解:(1)如图1,过点O1作O1F⊥AB于F,并延长O1F交虚线劣弧AB于E,∴AB=2AF,由折叠知,EF=O1F=12O1E=12×4=2(cm),连接O1A,在Rt△O1FA中,O1A=4,根据勾股定理得,AF cm),∴AB=2AF=;(2)如图2,延长O2C交虚线劣弧AB于G,由折叠知,CG=CD,∵D是O2C的中点,∴CD=O2D,∴CG=CD=O2D,设⊙O2的半径为3rcm,则O2C=2r(cm),∵O2C⊥弦AB,∴AC=12AB=5(cm),连接O2A,在Rt△ACO2中,根据勾股定理得,(3r)2﹣(2r)2=25,∴r∴O2A=3r=cm),即⊙O2的半径为.22.(2021•浙江自主招生)以O为圆心,1为半径的圆内有一定点A,过A引互相垂直的弦PQ,RS.求PQ+RS的最大值和最小值.【思路点拨】设OA=a(定值),过O作OB⊥PQ,OC⊥RS,B、C为垂足,设OB=x,OC=y,0≤x≤a,(0≤y≤a),由勾股定理得出x,y,a的关系,再由垂径定理PQ和RS,最后由完全平方公式求得最大值和最小值.【解题过程】解:如图,设OA=a(定值),过O作OB⊥PQ,OC⊥RS,B、C为垂足,设OB=x,OC=y,0≤x≤a,(0≤y≤a),且x2+y2=a2.所以PQ=2PB=RS=所以PQ+RS=2∴(PQ+RS)2=4(2﹣a2而x2y2=x2(a2﹣x2)=﹣(x2−a22)2+a44.当x2=a22时,(x2y2)最大值=a4 4.此时PQ+RS=当x2=0或x2=a2时,(x2y2)最小值=0,=2(1+此时(PQ+RS)最小值。

初三垂径定理练习试题和答案解析

初三垂径定理练习试题和答案解析

垂径定理一.选择题★1.如图1,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,那么弦AB的长是()A.4 B.6 C.7 D.8答案:D★★2.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的一个动点,则线段OM 长的最小值为()A.2 B.3 C.4 D.5答案:B★★3.过⊙O内一点M的最长弦为10 cm,最短弦长为8cm,则OM的长为()A.9cm B.6cm C.3cm D.cm41答案:C★★4.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA、OB在O 点钉在一起,并使它们保持垂直,在测直径时,把O点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为()A.12个单位 B.10个单位 C.1个单位 D.15个单位答案:B★★5.如图,O⊙的直径AB垂直弦CD于P,且P是半径OB的中点,6cmCD ,则直径AB的长是()A. B. C. D.答案:D★★6.下列命题中,正确的是()A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必经过这条弦所在圆的圆心D.在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心答案:D★★★7.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( )A.5米 B.8米 C.7米 D.53米答案:B★★★8.⊙O的半径为5cm,弦AB//CD,且AB=8cm,CD=6cm,则AB与CD之间的距离为( )A. 1 cm B. 7cm C. 3 cm或4 cm D. 1cm 或7cm答案:D★★★9.已知等腰△ABC的三个顶点都在半径为5的⊙O上,如果底边BC的长为8,那么BC边上的高为( )A.2 B.8 C.2或8 D.3答案:C二.填空题★1.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为 cm 答案:5 cm★2.在直径为10cm的圆中,弦AB的长为8cm,则它的弦心距为 cm答案:3 cm★3.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于答案:6★★4.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为 cm 答案:5 cm★★5.如图,⊙O的直径AB垂直于弦CD,垂足为E,若∠COD=120°,OE=3厘米,则CD=厘米图 4答案:★★6.半径为6cm的圆中,垂直平分半径OA的弦长为 cm.答案:★★7.过⊙O内一点M的最长的弦长为6cm,最短的弦长为4cm,则OM的长等于cm★★8.已知AB是⊙O的直径,弦CD⊥AB,E为垂足,CD=8,OE=1,则AB=____________ 答案:★★9.如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD =l,则弦AB的长是答案:6★★10.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,则中间柱CD的高度为 m答案:4★★11.如图,在直角坐标系中,以点P为圆心的圆弧与轴交于A、B两点,已知P(4,2)和A(2,0),则点B的坐标是答案:(6,0)★★12.如图,AB 是⊙O 的直径,OD ⊥AC 于点D ,BC=6cm ,则OD= cm答案:3★★13.如图,矩形ABCD 与圆心在AB 上的圆O 交于点G 、B 、F 、E ,GB=10,EF=8,那么AD=答案:3★★14.如图,⊙O 的半径是5cm ,P 是⊙O 外一点,PO=8cm ,∠P=30º,则AB= cmPBAO答案:6★★★15.⊙O 的半径为13 cm ,弦AB ∥CD ,AB =24cm ,CD =10cm ,那么AB 和CD 的距离是 Cm 答案:7cm 或17cm★★★16.已知AB 是圆O 的弦,半径OC 垂直AB ,交AB 于D ,若AB=8,CD=2,则圆的半径为 答案:5★★★17.一个圆弧形门拱的拱高为1米,跨度为4米,那么这个门拱的半径为米 答案:52★★★18.在直径为10厘米的圆中,两条分别为6厘米和8厘米的平行弦之间的距离是厘米 答案:7或1★★★19.如图,是一个隧道的截面,如果路面AB 宽为8米,净高CD 为8米,那么这个 隧道所在圆的半径OA 是___________米答案:5★★★20.如图,AB 为半圆直径,O 为圆心,C 为半圆上一点,E 是弧AC 的中点,OE 交弦AC 于点D 。

垂径定理练习题答案

垂径定理练习题答案

垂径定理练习题答案垂径定理练习题答案垂径定理是解决几何问题的重要定理之一,它在许多几何证明和计算中起着重要的作用。

本文将通过几个垂径定理的练习题来探讨其应用。

练习题一:在一个直角三角形ABC中,AB = 5 cm,BC = 12 cm。

点D是AC 边上的一个点,使得BD是三角形ABC的高。

求BD的长度。

解答:根据垂径定理,如果一条线段与另一条线段垂直且过其中点,那么这条线段就是另一条线段的垂径。

在这个问题中,BD是三角形ABC的高,所以BD 与AC垂直。

又因为BD过AC的中点,所以BD是AC的垂径。

根据垂径定理,AC的长度等于BD的两倍。

所以AC = 2BD。

根据勾股定理,可以得到AC的长度:AC² = AB² + BC²AC² = 5² + 12²AC² = 25 + 144AC² = 169AC = √169AC = 13 cm将AC的长度代入前面的等式中,可以得到:13 = 2BDBD = 13 / 2BD = 6.5 cm所以BD的长度为6.5 cm。

练习题二:在一个平行四边形ABCD中,对角线AC与BD相交于点O。

已知AB = 8 cm,AD = 6 cm,求AC的长度。

解答:根据垂径定理,如果一条线段与另一条线段垂直且过其中点,那么这条线段就是另一条线段的垂径。

在这个问题中,对角线AC与BD相交于点O,所以AC与BD垂直。

又因为AC过BD的中点,所以AC是BD的垂径。

根据垂径定理,BD的长度等于AC的两倍。

所以BD = 2AC。

根据平行四边形的性质,对角线互相平分。

所以AO = OC,BO = OD。

根据勾股定理,可以得到AO和BO的长度:AO² = AB² + BO²AO² = 8² + (AC/2)²AO² = 64 + (AC/2)²BO² = AD² + BD²BO² = 6² + (2AC)²BO² = 36 + 4AC²由于AO = OC,所以AO² = OC²。

中考数学复习:垂径定理(圆)(综合提升训练必备)(含解析)

中考数学复习:垂径定理(圆)(综合提升训练必备)(含解析)

2019年中考数学复习:垂径定理(圆)一、选择题(共15小题)1、如图,A点是半圆上一个三等分点,B点是弧AN的中点,P点是直径MN上一动点,⊙O的半径为1,则AP+BP的最小值为( )A。

1ﻩB、ﻩC、D、2、如图,梯形ABCD中,AB∥DC,AB⊥BC,AB=2cm,CD=4cm、以BC上一点O 为圆心的圆经过A、D两点,且∠AOD=90°,则圆心O到弦AD的距离是( )A、cmﻩB、cm C、cmﻩD、cm3。

如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是( )A、4ﻩB、ﻩC、D、4、已知⊙O的半径为10,P为⊙O内一点,且OP=6,则过P点,且长度为整数的弦有( )A。

5条ﻩB。

6条ﻩC、8条D。

10条5、已知⊙O的半径OA=2,弦AB,AC的长分别是2,2,则∠BAC的度数为()A、15°B、75°C、15°或75°ﻩD、15°或45°6、如图,四边形PAOB是扇形OMN的内接矩形,顶点P在上,且不与M,N重合,当P点在上移动时,矩形PAOB的形状、大小随之变化,则AB的长度()A、变大B、变小C、不变D。

不能确定7、给出下列四个命题:(1)假如某圆锥的侧面展开图是半圆,则其轴截面一定是等边三角形;(2)若点A在直线y=2x﹣3上,且点A到两坐标轴的距离相等,则点A在第一或第四象限;(3)半径为5的圆中,弦AB=8,则圆周上到直线AB的距离为2的点共有四个; (4)若A(a,m)、B(a﹣1,n)(a〉0)在反比例函y=的图象上,则m〈n、其中,正确命题的个数是( )A、1个ﻩB。

2个C、3个ﻩD、4个8、已知⊙O的半径为10cm,弦AB∥CD,AB=12cm,CD=16cm,则AB和CD 的距离为( )A、2cmﻩB。

14cmﻩC、2cm或14cmﻩD、10cm或20cm9、已知⊙O的半径为3,△ABC内接于⊙O,AB=3,AC=3,D是⊙O上一点,且AD =3,则CD的长应是( )A。

2019届北师大版九年级数学下册练习:3.3 垂径定理

2019届北师大版九年级数学下册练习:3.3 垂径定理

3.3 垂径定理基础题知识点1 垂径定理1.如图所示,⊙O 的半径为13,弦AB 的长度是24,ON ⊥AB ,垂足为N ,则ON =(A)A .5B .7C .9D .112.(2017·阿坝)如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,若⊙O 的半径为5,AB =8,则CD 的长是(A)A .2B .3C .4D .54.如图,已知⊙O 的直径AB ⊥CD 于点E ,则下列结论一定错误的是(B)A .CE =DEB .AE =OEC.BC ︵=BD ︵ D .△OCE ≌△ODE5.(2017·大连)如图,在⊙O 中,弦AB =8 cm ,OC ⊥AB ,垂足为C ,OC =3 cm ,则⊙O 的半径为5cm.6.(2017·长沙)如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =6,EB =1,则⊙O 的半径为5.知识点2 垂径定理的推论7.如图,⊙O 的半径为10,M 是AB 的中点,且OM =6,则⊙O 的弦AB 等于(D)A .8B .10C .12D .16知识点3 垂径定理的应用8.(2017·金华)如图,在半径为13 cm 的圆形铁片上切下一块高为8 cm 的弓形铁片,则弓形弦AB 的长为(C)A .10 cmB .16 cmC .24 cmD .26 cm9.如图,水平放置的圆柱形排水管道的截面直径是1 m ,其中水面的宽AB为0.8 m ,则排水管内水的深度为0.8m.10.(教材P76练习T1变式)如图所示,某窗户由矩形和弓形组成,已知弓形的跨度AB =3 m ,弓形的高EF =1 m ,现计划安装玻璃,请帮工程师求出AB ︵所在⊙O 的半径r.解:∵弓形的跨度AB =3 m ,EF 为弓形的高,∴OE ⊥AB.∴AF =12AB =32m.∵AB ︵所在⊙O 的半径为r ,弓形的高EF =1 m ,∴AO =r ,OF =r -1.在Rt △AOF 中,AO 2=AF 2+OF 2,即r 2=(32)2+(r -1)2.解得r =138.故r =138 m.易错点 忽略垂径定理的推论中的条件“不是直径”11.下列说法正确的是(D)A .过弦的中点的直径平分弦所对的两条弧B .弦的垂直平分线平分它所对的两条弧,但不一定过圆心C .过弦的中点的直径垂直于弦D .平分弦所对的两条弧的直径平分弦中档题12.已知⊙O 的半径OA =10 cm ,弦AB =16 cm ,P 为弦AB 上的一个动点,则OP 的最短距离为(B)A .5 cmB .6 cmC .8 cmD .10 cm13.(2017·呼和浩特)如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为M.若AB =12,OM ∶MD =5∶8,则⊙O 的周长为(B)A .26πB .13π C.96π5 D.3910π514.(2017·阿坝)如图,将半径为2 cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为(D)A .2 cm B. 3 cm C .2 5 cm D .2 3 cm15.如图1,小敏利用课余时间制作了一个脸盆架,图2是它的截面图,垂直放置的脸盆与架子的交点为A ,B ,AB =40 cm ,脸盆的最低点C 到AB 的距离为10 cm ,则该脸盆的半径为25cm.16.(2018·孝感)已知⊙O 的半径为10 cm ,AB ,CD 是⊙O 的两条弦,AB ∥CD ,AB =16 cm ,CD =12 cm ,则弦AB 和CD 之间的距离是2或14cm17.(教材P77习题T3变式)已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆心O到直线AB的距离为6,求AC的长.解:(1)证明:过点O作OE⊥AB,垂足为E,则AE=BE,CE=DE,∴AE-CE=BE-DE,即AC=BD.(2)由(1)可知,OE⊥AB,OE⊥CD,连接OC,OA.∵OE=6,∴CE=OC2-OE2=82-62=27,AE=OA2-OE2=102-62=8.∴AC=AE-CE=8-27.3.3 垂径定理 答案基础题知识点1 垂径定理1.如图所示,⊙O 的半径为13,弦AB 的长度是24,ON ⊥AB ,垂足为N ,则ON =(A)A .5B .7C .9D .112.(2017·阿坝)如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,若⊙O 的半径为5,AB =8,则CD 的长是(A)A .2B .3C .4D .54.如图,已知⊙O 的直径AB ⊥CD 于点E ,则下列结论一定错误的是(B)A .CE =DEB .AE =OEC.BC ︵=BD ︵ D .△OCE ≌△ODE5.(2017·大连)如图,在⊙O 中,弦AB =8 cm ,OC ⊥AB ,垂足为C ,OC =3 cm ,则⊙O 的半径为5cm.6.(2017·长沙)如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =6,EB =1,则⊙O 的半径为5.知识点2 垂径定理的推论7.如图,⊙O 的半径为10,M 是AB 的中点,且OM =6,则⊙O 的弦AB 等于(D)A .8B .10C .12D .16知识点3 垂径定理的应用8.(2017·金华)如图,在半径为13 cm 的圆形铁片上切下一块高为8 cm 的弓形铁片,则弓形弦AB 的长为(C)A .10 cmB .16 cmC .24 cmD .26 cm9.如图,水平放置的圆柱形排水管道的截面直径是1 m ,其中水面的宽AB为0.8 m ,则排水管内水的深度为0.8m.10.(教材P76练习T1变式)如图所示,某窗户由矩形和弓形组成,已知弓形的跨度AB =3 m ,弓形的高EF =1 m ,现计划安装玻璃,请帮工程师求出AB ︵所在⊙O 的半径r.解:∵弓形的跨度AB =3 m ,EF 为弓形的高,∴OE ⊥AB.∴AF =12AB =32m. ∵AB ︵所在⊙O 的半径为r ,弓形的高EF =1 m ,∴AO =r ,OF =r -1.在Rt △AOF 中,AO 2=AF 2+OF 2,即r 2=(32)2+(r -1)2.解得r =138.故r =138 m.易错点 忽略垂径定理的推论中的条件“不是直径”11.下列说法正确的是(D)A .过弦的中点的直径平分弦所对的两条弧B .弦的垂直平分线平分它所对的两条弧,但不一定过圆心C .过弦的中点的直径垂直于弦D .平分弦所对的两条弧的直径平分弦中档题12.已知⊙O 的半径OA =10 cm ,弦AB =16 cm ,P 为弦AB 上的一个动点,则OP 的最短距离为(B)A .5 cmB .6 cmC .8 cmD .10 cm13.(2017·呼和浩特)如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为M.若AB =12,OM ∶MD =5∶8,则⊙O 的周长为(B)A .26πB .13π C.96π5 D.3910π514.(2017·阿坝)如图,将半径为2 cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为(D)A .2 cm B. 3 cm C .2 5 cm D .2 3 cm15.如图1,小敏利用课余时间制作了一个脸盆架,图2是它的截面图,垂直放置的脸盆与架子的交点为A ,B ,AB =40 cm ,脸盆的最低点C 到AB 的距离为10 cm ,则该脸盆的半径为25cm.16.(2018·孝感)已知⊙O 的半径为10 cm ,AB ,CD 是⊙O 的两条弦,AB ∥CD ,AB =16 cm ,CD =12 cm ,则弦AB 和CD 之间的距离是2或14cm17.(教材P77习题T3变式)已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆心O到直线AB的距离为6,求AC的长.解:(1)证明:过点O作OE⊥AB,垂足为E,则AE=BE,CE=DE,∴AE-CE=BE-DE,即AC=BD.(2)由(1)可知,OE⊥AB,OE⊥CD,连接OC,OA.∵OE=6,∴CE=OC2-OE2=82-62=27,AE=OA2-OE2=102-62=8.∴AC=AE-CE=8-27.。

垂径定理-练习题 含答案

垂径定理-练习题 含答案

垂径定理副标题题号一二总分得分一、选择题(本大题共4小题,共12.0分)1.如图所示,的半径为13,弦AB的长度是24,,垂足为N,则A. 5B. 7C. 9D.11【答案】A【解析】解:由题意可得,,,,,,故选A.根据的半径为13,弦AB的长度是24,,可以求得AN的长,从而可以求得ON的长.本题考查垂径定理,解题的关键是明确垂径定理的内容,利用垂径定理解答问题.2.如图,AB是的直径,弦于点E,,的半径为5cm,则圆心O到弦CD的距离为A.B. 3cmC.D. 6cm【答案】A【解析】解:连接CB.是的直径,弦于点E,圆心O到弦CD的距离为OE;同弧所对的圆周角是所对的圆心角的一半,,;在中,,,.故选A.根据垂径定理知圆心O到弦CD的距离为OE;由圆周角定理知,已知半径OC的长,即可在中求OE的长度.本题考查了垂径定理、圆周角定理及解直角三角形的综合应用解答这类题一些学生不会综合运用所学知识解答问题,不知从何处入手造成错解.3.如图,已知半径OD与弦AB互相垂直,垂足为点C,若,,则的半径为A. 5B.C.D. 4【答案】C【解析】解:连结OA,如图,设的半径为r,,,在中,,,,,解得.故选C.连结OA,如图,设的半径为r,根据垂径定理得到,再在中利用勾股定理得到,然后解方程求出r即可.本题考查了的是垂径定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.4.如图,线段AB是的直径,弦CD丄AB,,则等于A.B.C.D.【答案】C【解析】解:线段AB是的直径,弦CD丄AB,,,,.故选:C.利用垂径定理得出,进而求出,再利用邻补角的性质得出答案.此题主要考查了圆周角定理以及垂径定理等知识,得出的度数是解题关键.二、解答题(本大题共2小题,共16.0分)5.如图,在四边形ABCD中,,,AD不平行于BC,过点C作交的外接圆O于点E,连接AE.求证:四边形AECD为平行四边形;连接CO,求证:CO平分.【答案】证明:由圆周角定理得,,又,,,,,,四边形AECD为平行四边形;作于M,于N,四边形AECD为平行四边形,,又,,,又,,平分.【解析】本题考查的是三角形的外接圆与外心,掌握平行四边形的判定定理、垂径定理、圆周角定理是解题的关键.根据圆周角定理得到,得到,根据平行线的判定和性质定理得到,证明结论;作于M,于N,根据垂径定理、角平分线的判定定理证明.6.如图,AB为直径,C为上一点,点D是的中点,于E,于F.判断DE与的位置关系,并证明你的结论;若,求AC的长度.【答案】解:与相切.证明:连接OD、AD,点D是的中点,,,,,,,,,与相切.连接BC交OD于H,延长DF交于G,由垂径定理可得:,,,,弦心距,是直径,,,是的中位线,.【解析】先连接OD、AD,根据点D是的中点,得出,进而根据内错角相等,判定,最后根据,得出DE与相切;先连接BC交OD于H,延长DF交于G,根据垂径定理推导可得,再根据AB是直径,推出OH是的中位线,进而得到AC的长是OH长的2倍.本题主要考查了直线与圆的位置关系,在判定一条直线为圆的切线时,当已知条件中明确指出直线与圆有公共点时,通常连接过该公共点的半径,证明该半径垂直于这条直线本题也可以根据与相似,求得AC的长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年中考数学复习【垂径定理的应用】专项精练卷一.填空题1.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积=(弦×矢+矢2).弧田(如图阴影部分面积)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为120°,半径等于4的弧田,按照上述公式计算出弧田的面积为.2.位于黄岩西城的五洞桥桥上老街目前正在修复,其中一处中式圆形门,它的平面示意图,已知AB过圆心O,且垂直CD于点B,测得门洞高度AB为1.8米,门洞下沿CD宽为1.2米,则该圆形门洞的半径为.3.在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”其大意为:如图,AB为⊙O的直径,弦CD⊥AB于点E,若AE=1寸,CD=10寸,则⊙O的直径等于寸.4.如图是一个圆环形黄花梨木摆件的残片,为求其外圆半径,小林在外圆上任取一点A,然后过点A作AB与残片的内圆相切于点D,作CD⊥AB交外圆于点C,测得CD=15cm,AB=60cm,则这个摆件的外圆半径是cm.5.如图,某种鱼缸的主视图可视为弓形,该鱼缸装满水时的最大深度CD为18cm,半径OC为13cm,则鱼缸口的直径AB=cm.6.如图是一块圆环形玉片的残片,作外圆的弦AB与内圆相切于点C,量得AB=8cm、点C与的中点D 的距离CD=2cm.则此圆环形玉片的外圆半径为cm.7.如图,有一块矩形木板ABCD,AB=13dm,BC=8dm,工人师傅在该木板上锯下一块宽为xdm的矩形木板MBCN,并将其拼接在剩下的矩形木板AMND的正下方,其中M′、B′、C′、N′分别与M、B、C、N 对应.现在这个新的组合木板上画圆,要使这个圆最大,则x的取值范围是,且最大圆的面积是dm2.8.小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是cm.二.选择题9.一条排水管的截面如图所示,已知排水管的截面圆的半径OB=10dm,水面宽AB是16dm,则截面水深CD是()A.3 dm B.4 dm C.5 dm D.6 dm10.如图,半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10 cm B.16 cm C.24 cm D.26 cm11.乌镇是著名的水乡,如图,圆拱桥的拱顶到水面的距离CD为8m,水面宽AB为8m,则桥拱半径OC 为()A.4m B.5m C.6m D.8m12.如图是一个隧道的截面图,为⊙O的一部分,路面AB=10米,净高CD=7米,则此圆半径长为()A.5米B.7米C.米D.米13.如图为球形灯笼的截面图,过圆心的CD垂直弦AB于D,AB=2dm,CD=4dm,则⊙O半径为()A.2dm B. dm C. dm D. dm14.如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的直径是()A. cm B.5cm C.6cm D.10cm15.《九章算术》是我国古代著名数学经典,其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺.如图,已知弦AB=1尺,弓形高CD=1寸,(注:1尺=10寸)问这块圆柱形木材的直径是()A.13寸B.6.5寸C.26寸D.20寸16.某品牌婴儿罐装奶粉圆形桶口如图所示,它的内直径(⊙O直径)为10cm,弧AB的度数约为90°,则弓形铁片ACB(阴影部分)的面积约为()A.(π﹣)cm2B.(π﹣25)cm2C.(π﹣)cm2D.(25π﹣)cm217.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆柱形木材的直径是多少?”如图所示,请根据所学知识计算:圆柱形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸18.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A.2cm B.2.5cm C.3cm D.4cm19.如图,把一个宽度为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么光盘的直径是()A.5 cm B.8 cm C.10 cm D.12 cm20.某校科技实践社团制作实践设备,小明的操作过程如下:①小明取出老师提供的圆形细铁环,先通过在圆一章中学到的知识找到圆心O,再任意找出圆O的一条直径标记为AB(如图1),测量出AB=4分米;②将圆环进行翻折使点B落在圆心O的位置,翻折部分的圆环和未翻折的圆环产生交点分别标记为C、D(如图2);③用一细橡胶棒连接C、D两点(如图3);④计算出橡胶棒CD的长度.小明计算橡胶棒CD的长度为()A.2分米B.2分米C.3分米D.3分米三.解答题21.如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=80cm.沿AD 方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=40cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,求出D1D2的长度..22.一些不便于直接测量的圆形孔道的直径可以用如下方法测量.如图,把一个直径为10mm的小钢球紧贴在孔道边缘,测得钢球顶端离孔道外端的距离为8mm,求这个孔道的直径AB.23.在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现代语言表述为:如图,AB为⊙O的直径,弦CD⊥AB 于点E,AE=1寸,CD=10寸,求直径AB的长.请你解答这个问题.24.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE=4米时,是否要采取紧急措施?25.图1是某奢侈品牌的香水瓶.从正面看上去(如图2),它可以近似看作⊙O割去两个弓形后余下的部分与矩形ABCD组合而成的图形(点B、C在⊙O上),其中BC∥EF;从侧面看,它是扁平的,厚度为1.3cm.(1)已知⊙O的半径为2.6cm,BC=2cm,AB=3.02cm,EF=3.12cm,求香水瓶的高度h.(2)用一张长22cm、宽19cm的矩形硬纸板按照如图3进行裁剪,将实线部分折叠制作成一个底面积为S MNPQ=9cm2的有盖盒子(接缝处忽略不计).请你计算这个盒子的高度,并且判断上述香水瓶能否装入这个盒子里.26.赵州桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙.如图,若桥跨度AB约为40米,主拱高CD约10米,(1)如图1,尺规作图,找到桥弧所在圆的圆心O(保留作图痕迹);(2)如图2,求桥弧AB所在圆的半径R.参考答案一.填空题(共8小题)1..2. 1米3. 26.4. 37.5.5. 24.6. 5.7. 2≤x≤3,25π.8. 10二.选择题9-20:BCBDC DCACB CB三.解答题(共6小题)21.解:(1)如图1中,连接B1C1交AD1于H.∵AD1=D1B1=40cm,∴D1是所在圆的圆心,在Rt△B1HD1中,HB1=40•sin60°=20,∴B1C1=2HB1=40(cm),故答案为40.(2)如图2中,连接B1C1交AD1于H,连接B2C2交AD2于T.由题意:=π•B2T,∴AT=B2T=(cm),在Rt△B2TD2中,D2T==,∵AH=HD1=20,∴HT=﹣20=,∴D1D2=HD2﹣HD1=+﹣20=﹣.22.解:连接OA,过点O作OD⊥AB于点D,则AB=2AD,∵钢珠的直径是10mm,∴钢珠的半径是5mm,∵钢珠顶端离零件表面的距离为8mm,∴OD=3mm,在Rt△AOD中,∵AD===4mm,∴AB=2AD=2×4=8mm.23.解:如图所示,连接OC.∵弦CD⊥AB,AB为圆O的直径,∴E为CD的中点,又∵CD=10寸,∴CE=DE=CD=5寸,设OC=OA=x寸,则AB=2x寸,OE=(x﹣1)寸,由勾股定理得:OE2+CE2=OC2,即(x﹣1)2+52=x2,解得:x=13,∴AB=26寸,即直径AB的长为26寸.24.解:(1)连结OA,由题意得:AD=AB=30,OD=(r﹣18)在Rt△ADO中,由勾股定理得:r2=302+(r﹣18)2,解得,r=34;(2)连结OA′,∵OE=OP﹣PE=30,∴在Rt△A′EO中,由勾股定理得:A′E2=A′O2﹣OE2,即:A′E2=342﹣302,解得:A′E=16.∴A′B′=32.∵A′B′=32>30,∴不需要采取紧急措施.25.解:(1)作OG⊥BC于G,延长GO交EF于H,连接BO、EO.∵EF∥BC,∴OH⊥EF,∴BG=BC,EH=EF∴GO==2.4;OH==2.08,∴h=2.4+2.08+3.02=7.5cm.(2)设盒子的高为xcm.由题意:(22﹣2x)•=9解得x=8或12.5(舍弃),∴MQ=6,MN=1.5∵2.6×2=5.2<6;1.3<1.5;7.5<8,∴能装入盒子.26.解:(1)如图1所示;(2)连接OA.如图2.由(1)中的作图可知:△AOD为直角三角形,D是AB的中点,CD=10,∴AD=AB=20.∵CD=10,∴OD=R﹣10.在Rt△AOD中,由勾股定理得,OA2=AD2+OD2,∴R2=202+(R﹣10)2.解得:R=25.即桥弧AB所在圆的半径R为25米.。

相关文档
最新文档