变频器矢量控制与VF控制区别
矢量与VF区别

变频器矢量控制与V/F控制区别V/F控制矢量控制母线电压利用率86% 98%低频带载能力0.5Hz带100%负载0.5Hz带150%负载动态响应对瞬态变化响应慢,在负载突变时,转矩和转速震荡对瞬态变化快速响应,保持转矩和转速的平稳V/F控制:就是保证输出电压跟频率成正比的控制这样可以使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生,多用于风机、泵类节能型变频器用压控振荡器实现。
异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。
因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。
V/F控制-控制简单,通用性强,经济性好,用于速度精度要求不十分严格或负载变动较小的场合。
从本质上讲,V/F控制实际上控制的是三相交流电的电压大小和频率大小,然而交流电有三要素,就是除了电压大小和频率之外,还存在相位。
V/F控制没有对电压的相位进行控制,这就导致在瞬态变化过程中,例如突加负载的时候,电机转速受冲击会变慢,但是电机供电频率也就是同步速还是保持不变,这样异步电机会产生瞬时失步,从而引起转矩和转速振荡,经过一段时间后在一个更大转差下保持平衡。
这个瞬时过程中没有对相位进行控制,所以恢复过程较慢,而且电机转速会随负载变化,这就是所谓VF控制精度不高和响应较慢的原因。
我们公司变频器为V/F控制时,参数调节简单,提高VF控制性能的主要方法有:低频力矩补偿、死区补偿、震荡抑制、转速跟踪、滑差补偿等,可以适用于80%以上的工况。
可以通过F1.15~F1.23参数任意设置V/F曲线,满足不同条件下的需求。
矢量控制:是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流) 和产生转矩的电流分量(转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。
变频器矢量控制与VF控制区别

变频器矢量控制与VF控制区别一、V/F控制方式变频器采用V/F控制方式时,对电机参数依赖不大,一般强调“空载电流”的大小。
由于我们采用矢量化的V/F控制方式,故做电机参数静止自整定还是有必要的。
不同功率段的变频器,自学习后的空载电流占额定电流大小百分比也是不同的。
一般有如下百分比数据:5.5kW~15 kW,空载电流P9.05的值为30%~50%的电机额定电流;3.7 kW及以下的,空载电流P9.05的值为50%左右的电机额定电流;特殊情况时,0.4 kW、0.75 kW、1.5 kW,空载电流P9.05的值为70%~80%的电机额定电流;有的0.75 kW功率段,参数自整定后空载电流为电机额定电流的90%。
空载电流很大,励磁也越大。
何为矢量化的V/F控制方式,就是在V/F控制时也将输入电流量进行解耦控制,使控制更加精确。
变频器输出电流包括两个值:空载电流和力矩电流,输出电流I的值为空栽电流Im和力矩电流It平方和后开2次方。
故空载电流是影响变频器输出电流的主要因素之一。
V/F控制时输出电压与运行频率之比为一定值:即U/F=K(K为常数),P0.12=最大输出电压U,P0.15=基频F。
上图中有个公式,描述转矩、转速、功率之间的关系。
变频器在基频以下运行时,随着速度增快,可以输出恒定的转矩,速度增大不会影响转矩的输出;变频器在基频以上运行时,只能保证输出额定的功率,随着转速增大,变频器不能很好的输出足够大的力;有时候变频器速度更快,高速运行时,处于弱磁区,我们必须设置相应的参数,以便让变频器适应弱磁环境。
速度与出力,高速或者低速时,两者不可兼得,这里有个数据概念:调速范围,指满足额定转矩出力的最低频率与最高频率的比值。
以前一般的VF 控制方式调试范围为1:20~1:40,我司产品V/F控制调速范围可以达到1:100,能够满足更多范围的行业应用。
在开环矢量时可以达到1:200,闭环矢量时达到1:1000,接近伺服的性能。
转矩控制、矢量控制和VF控制解析

转矩控制、矢量控制和VF控制解析转矩控制、矢量控制和VF控制解析1.变转矩就是负载转矩随电机转速增大而增大,是非线性变化的,如风机水泵恒转矩就是负载转矩不随电机转速增大而增大,一般是相对于恒功率控制而言。
如皮带运输机提升机等机械负载2.VF控制就是变频器输出频率与输出电压比值为恒定值或正比。
例如:50HZ时输出电压为380V,25HZ时输出电压为190V即恒磁通控制;转矩不可控,系统只是一个以转速物理量做闭环的单闭环控制系统,他只能控制电机的转速根据电机原理可知,三相异步电机定子每相电动势的有效值:E1=4.44f1N1Φm式中:E1--定子每相由气隙磁通感应的电动势的有效值,V ;f1--定子频率,Hz;N1——定子每相绕组有效匝数;Φm-每极磁通量由式中可以看出,Φm的值由E1/f1决定,但由于E1难以直接控制,所以在电动势较高时,可忽略定子漏阻抗压降,而用定子相电压U1代替。
那么要保证Φm不变,只要U1/f1始终为一定值即可。
这是基频以下调时速的基本情况,为恒压频比(恒磁通)控制方式,属于恒转矩调速。
基准频率为恒转矩调速区的最高频率,基准频率所对应的电压为即为基准电压,是恒转矩调速区的最高电压,在基频以下调速时,电压会随频率而变化,但两者的比值不变。
在基频以上调速时,频率从基频向上可以调至上限频率值,但是由于电机定子不能超过电机额定电压,因此电压不再随频率变化,而保持基准电压值不变,这时电机主磁通必须随频率升高而减弱,转矩相应减小,功率基本保持不变,属于恒功率调速区。
3.矢量控制,把输出电流分励磁和转矩电流并分别控制,转矩可控,系统是一个以转矩做内环,转速做外环的双闭环控制系统。
它既可以控制电机的转速,也可以控制电机的扭矩。
矢量控制时的速度控制(ASR)通过操作转矩指令,使得速度指令和速度检出值(PG 的反馈或速度推定值)的偏差值为0。
带PG 的V/f 控制时的速度控制通过操作输出频率,使得速度指令和速度检出值(PG 的反馈或速度推定值)的偏差值为0。
变转矩和恒转矩、矢量控制和VF控制的区别1

简单举例变转矩就是负载转矩随增大电机转速而增大,如风机水泵恒转矩就是负载转矩不随电机转速增大而增大,如皮带运输机提升机等机械负载VF控制就是变频器输出频率与输出电压比值为恒定值或正比例50HZ时输出电压为380V,25HZ时输出电压为190V即恒磁通控制矢量控制,把输出电流分励磁和转矩电流并分别控制矢量控制时的速度控制(ASR)通过操作转矩指令,使得速度指令和速度检出值(PG 的反馈或速度推定值)的偏差值为0。
带PG 的V/f 控制时的速度控制通过操作输出频率,使得速度指令和速度检出值(PG 的反馈或速度推定值)的偏差值为0。
一、V/F控制方式变频器采用V/F控制方式时,对电机参数依赖不大,一般强调“空载电流”的大小。
由于我们采用矢量化的V/F控制方式,故做电机参数静止自整定还是有必要的。
不同功率段的变频器,自学习后的空载电流占额定电流大小百分比也是不同的。
一般有如下百分比数据:5.5kW~15 kW,空载电流P9.05的值为30%~50%的电机额定电流;3.7 kW及以下的,空载电流P9.05的值为50%左右的电机额定电流;特殊情况时,0.4 kW、0.75 kW、1.5 kW,空载电流P9.05的值为70%~80%的电机额定电流;有的0.75 kW功率段,参数自整定后空载电流为电机额定电流的90%。
空载电流很大,励磁也越大。
何为矢量化的V/F控制方式,就是在V/F控制时也将输入电流量进行解耦控制,使控制更加精确。
变频器输出电流包括两个值:空载电流和力矩电流,输出电流I的值为空栽电流Im和力矩电流It平方和后开2次方。
故空载电流是影响变频器输出电流的主要因素之一。
V/F控制时输出电压与运行频率之比为一定值:即U/F=K(K为常数),P0.12=最大输出电压U,P0.15=基频F。
上图中有个公式,描述转矩、转速、功率之间的关系。
变频器在基频以下运行时,随着速度增快,可以输出恒定的转矩,速度增大不会影响转矩的输出;变频器在基频以上运行时,只能保证输出额定的功率,随着转速增大,变频器不能很好的输出足够大的力;有时候变频器速度更快,高速运行时,处于弱磁区,我们必须设置相应的参数,以便让变频器适应弱磁环境。
变频器矢量控制与VF控制

矢量控制概念:矢量控制目的是设法将交流电机等效为直流电机,从而获得较高的调速性能。
矢量控制方法就是将交流三相异步电机定子电流矢量分解为产生磁场的电流分量(励磁电流) 和产生转矩的电流分量(转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,这样即可等效于直流电机。
矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。
矢量控制理论模型如下图矢量控制特点:变频器矢量控制,按照是否需要转速反馈环节,一般分为无反馈矢量控制和有反馈矢量控制。
1、无反馈矢量控制。
无反馈矢量控制方式优点是:a)、使用方便,用户不需要增加任何附加器件。
b)、机械特性较硬。
机械特性由于V/F控制方式,且不会发生电机磁路饱和问题,调试方便(个人观点,请大家批评指正)缺点是:调速范围和动态响应能力不及有反馈控制方式;2、有反馈矢量控制方式。
有反馈矢量控制方式的主要优点是: a)、调速性能优于无反馈矢量控制方式及V/F控制。
缺点:需要在电机上安装测速装置(大多为旋转编码器),电机变频改造比较麻烦,成本也高。
故有反馈矢量控制一般应用场合为:a)、要求有较大调速范围的场合(如:具有铣、磨功能的龙门刨床); b)、对动态响应性能要求较高的场合;c)、对安全运行要求较高场合。
矢量控制的适用范围:a)、矢量控制只能用于一台变频器控制一台电机。
当一台变频器控制多台电机时,矢量控制无效;b)、电机容量与变频器要求配置的电机容量之间,最多只能相差一个档次。
(如:变频器要求配置电机容量为7.5KW,那么实际电机最小容量为5.5KW,对于3.7kw电机就不行了);c)、电机磁极数一般以2、4、6极为宜,极数较多时建议查阅变频器说明书;d)、力矩电机、深槽电机、双鼠笼电机等特殊电机不能用矢量控制功能。
//(个人观点,请大家批评指正)V/F控制:如果电机电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。
VF控制和矢量控制的区别

VF统造战矢量统造的一些辨别之阳早格格创做尔是搞变频器开垦的一线人员,有过完备的针对付三相同步电机战永磁共步电机变频器开垦经历,产品也正在商场上卖,教力圆里,正在海内正规书籍院拿到了电机工程的博士教位(无炫耀之意,不过证明正在那个范畴比较认识),陈伯真老先死的书籍基础翻烂过,也战陈老先死共桌吃过饭.瞅到计划比较热烈,也去收个止,道道对付变频器VF统造、矢量统造的认识.针对付同步电机,为了包管电机磁通战着力稳定,电机改变频次时,需保护电压V战频次F的比率近似稳定,所以那种办法称为恒压频比(VF)统造.VF统造-统造简朴,通用性强,经济性好,用于速度细度央供不格中庄重大概背载变动较小的场合.从真量上道,VF统造本量上统造的是三相接流电的电压大小战频次大小,然而接流电有三果素,便是除了电压大小战频次除中,还存留相位.VF统造不对付电压的相位举止统造,那便引导正在瞬态变更历程中,比圆突加背载的时间,电机转速受冲打会变缓,然而是电机供电频次也便是共步速仍旧脆持稳定,那样同步电机会爆收瞬时得步,进而引起转矩战转速振荡,通过一段时间后正在一个更大转好下脆持仄稳.那个瞬时历程中不对付相位举止统造,所以回复历程较缓,而且电机转速会随背载变更,那便是所谓VF统造细度不下战赞同较缓的本果.矢量统造海中也喊磁场定背统造,本去量是正在三相接流电的电压大小战频次大小统造的前提上,还加上了相位统造,那个相位正在简曲支配中体现为一个角度,简朴的道便是电机定子电流相对付于转子的位子角.咱们了解,电机定子三相对付称接流电的概括效验是一个转动磁铁,通电后那个转动磁场通过感触正在转子上死成三相接流电流,那个电流也等效成一个磁铁,那样便相称于定子磁铁拖着转子磁铁转动了,那个是电机转动的基根源基本理.那里有个问题,便是惟有定子磁铁战转子磁铁的相对付位子靠得迩去,爆收的力矩才最大,所以怎么样正在电机三相定子绕组上通电赢得最大转矩,本量上还战转子位子有闭的.矢量统造会通过真测回去的电流分离电机参数,真时估计出转子位子,那个历程便是所谓的“磁场定背”,而后真时决断三相定子绕组上电压的相位,那样表里上不妨搞到共样的电流下爆收的转矩最劣,进而减小电机背载变更时的瞬态历程.别的,矢量统造逆便还会根据转子位子供出转速,利用电机参数对付转速举止瞬时补偿,进一步劣化了统造本能.综上,尔感触矢量统造战VF统造的最真量的辨别便是加进了电压相位统造上.从支配层里上瞅,矢量统造普遍把电流收会成转矩电流战励磁电流,那里转矩电流战励磁电流的比率便是由转子位子角度(也便是定子电压相位)决断的,那时转矩电流战励磁电流共共爆收的转矩是最好.简曲真止不妨参照陈老先死的书籍战其余所有一本道矢量统造的书籍.宏瞅上瞅,矢量统造战VF统造的电压,电流,频次正在电机宁静运止时出进不大,皆是三相对付称接流,基础上皆谦脚压频比闭系,不过正在瞬态历程如突加、突减背载的情况下,矢量统造会随着速度的变更自动安排所加电压、频次的大小战相位,使那个瞬时历程更快回复仄稳.至于矢量统造内里那些坐标变更,是一种便于明白战形貌的脚法,不是真量问题.从电机表里去瞅,正在dq共步转动坐标系里,三相正弦接流量不妨变更成二相曲流量,那样不妨简化运算,便于数字处理,本量上真正在系统里本去不存留转矩电流战励磁电流的,那些是一种数教抽象,算完了统造完毕后最后仍旧要体目前本量三相接流电上.好比咱们数教里的推普推斯变更,不妨把微分圆程形成代数圆程简化运算,运算完了后再反变更回去是一个原理.刘志斌教授大概对付矢量统造明白有误,大概者大概书籍上出把物理真量道得很收会.刘志斌教授的第一面“1、电感的电流降后电压90度,您能统造那个角度吗?”那句话利害常细确,电感的电流降后电压90度,对付杂电感而止那个90角度是不可能统造的,然而是不克不迭推出“9、所谓对付定子电流解耦,对付有功电流、无功电流分别统造是句谎止,大概者是无知的笑话!”.对付电机而止,尔念那个论坛里很多人该当教过电机教,了解三相同步电机的等效电路,三相同步电机电感不妨认为是稳定的,然而是转子的等效电阻不妨瞅成二部分,一部分是转子自己的本量电阻r2,不思量温度什么的那个不妨认为稳定,另一个是背载等效电阻(1s)r2/s(s是转好率),那个本量上战转好有闭,也便是道跟电机的共步速、背载等果素有闭了,那样转子的等效电阻本量上是可变的,电机电感战电阻的比率闭系本去不是牢固的,那么通过改变共步速战相映的电压、相位,对付有功电流、无功电流的分别统造是可止的,而矢量统造便是提供了那样一种道路.那里尔要澄浑一下,“对付有功电流、无功电流的分别统造”,本去不是道您能把有功电流、无功电流统造到任性值,念怎么统造便怎么统造,对付同步电机而止,无功电流永近是感性,那是本理决断的,您不可能把它统造成容性无功,而且有功电流、无功电流的推拢爆收的转矩必须战背载仄稳,那个是拘束条件.矢量统造的目标,本量上是“通过对付有功电流、无功电流的分别统造真止劣化推拢”,达到瞬时转矩最劣,动背历程最短的脚法.而VF统造少了那样一个对付电流瞬时统造的历程,是细线条的统造,表里上便要好些.好比您让一个小弟搞活,VF统造便是“小弟,您把那个物品搞出去”,给出一个央供便止了;矢量统造便是您不不过报告小弟把那个物品搞出去,而且还要报告他,第一步怎么搞,第二步怎么搞,细节怎么处理,那样隐而后者得到的截止要细细些.上头是一些表里收会,从本量去瞅,VF统造是暂时变频器合流统造要收,辅以适合的补偿要收不妨普及其本能.暂时普及VF统造本能的主要要收有:矮频力矩补偿、死区补偿、动背磁通统造、追踪自开用等,不妨适用于80%以上的工况.正在某些对付动背央供很下的场合,则需要使用矢量统造,如伺服、印刷等.矢量统造是根据丈量到的电流、电压战磁通等数据,分离电机内里的电阻电感等参数估计出目前的转速战位子,并举止需要的建正,进而正在分歧频次下运止时,得到更好的统造模式.由于估计量较大,且需要了解电机内里参数,所需数据中的相称部分,普遍用户是很罕见到的.那给矢量统造的应用戴去了艰易.对付此,变频器皆必须摆设自动检测电效果参数的功能.总体而止,矢量统造不妨得到更好的本能,矮频转矩大,动背赞同好,然而应用比较不便当,如果参数分歧适大概还不克不迭宁静运止,使用范畴受到一些节造.本量中推荐用户能用VF统造便尽管不必矢量统造.究竟上大普遍情况减少了转矩提下、死区补偿、滑好补偿的下本能的VF能谦脚绝大部分央供,而且宁静性更好.暂时矢量统造的主要问题是适用性不如VF强,VF基础上什么同步电机皆能上,然而是矢量统造正在博用电机能达到的最下火仄让VF视尘莫及.尔到西门子瞅赏的时间,他们对付电机的统造到了令人震惊的程度,那便是用三台电机分别启动一台时钟的秒针、分针战时针!念念是什么观念:12小时转一圈啊,那种超矮速统造是尔念皆无法念的.那便是技能好同!那千万于代表了天下上电机统造的最下火仄,而基根源基本理便是矢量统造.至于ABB的间接转矩统造,天下上独此一家.老真道,尔简曲尝试过波形,是正在无法明白是怎么样真止的,特地是细节部分,体现出的波形跟教科书籍上的真足纷歧样.只可道自己孤陋鳏闻.。
变转矩和恒转矩、矢量控制和VF控制的区别

简单举例变转矩就是负载转矩随增大电机转速而增大,如风机水泵恒转矩就是负载转矩不随电机转速增大而增大,如皮带运输机提升机等机械负载VF控制就是变频器输出频率与输出电压比值为恒定值或正比例50HZ时输出电压为380V,25HZ时输出电压为190V即恒磁通控制矢量控制,把输出电流分励磁和转矩电流并分别控制矢量控制时的速度控制(ASR)通过操作转矩指令,使得速度指令和速度检出值(PG 的反馈或速度推定值)的偏差值为0。
带PG 的V/f 控制时的速度控制通过操作输出频率,使得速度指令和速度检出值(PG 的反馈或速度推定值)的偏差值为0。
一、V/F控制方式变频器采用V/F控制方式时,对电机参数依赖不大,一般强调“空载电流”的大小。
由于我们采用矢量化的V/F控制方式,故做电机参数静止自整定还是有必要的。
不同功率段的变频器,自学习后的空载电流占额定电流大小百分比也是不同的。
一般有如下百分比数据:5.5kW~15 kW,空载电流P9.05的值为30%~50%的电机额定电流;3.7 kW及以下的,空载电流P9.05的值为50%左右的电机额定电流;特殊情况时,0.4 kW、0.75 kW、1.5 kW,空载电流P9.05的值为70%~80%的电机额定电流;有的0.75 kW功率段,参数自整定后空载电流为电机额定电流的90%。
空载电流很大,励磁也越大。
何为矢量化的V/F控制方式,就是在V/F控制时也将输入电流量进行解耦控制,使控制更加精确。
变频器输出电流包括两个值:空载电流和力矩电流,输出电流I的值为空栽电流Im和力矩电流It平方和后开2次方。
故空载电流是影响变频器输出电流的主要因素之一。
V/F控制时输出电压与运行频率之比为一定值:即U/F=K(K为常数),P0.12=最大输出电压U,P0.15=基频F。
上图中有个公式,描述转矩、转速、功率之间的关系。
变频器在基频以下运行时,随着速度增快,可以输出恒定的转矩,速度增大不会影响转矩的输出;变频器在基频以上运行时,只能保证输出额定的功率,随着转速增大,变频器不能很好的输出足够大的力;有时候变频器速度更快,高速运行时,处于弱磁区,我们必须设置相应的参数,以便让变频器适应弱磁环境。
VF控制模式与矢量控制模式时有什么区别

VF控制模式与矢量控制模式时有什么区别变频器支持以下四种控制模式:无/有PG VF控制模式,无/有PG矢量控制模式。
PG 是指旋转编码器。
这四种控制模式主要的技术指标如下表所示。
无PG VF控制有PG VF控制无PG矢量控制 有PG矢量控制调速范围 1:40 1:40 1:100 1:1000速度控制精度 ±2~3% ±0.03% ±0.2% ±0.02%起动转矩 3Hz时150% 3Hz时150% 1Hz时150% 0rpm时150%从上表可以看出,无/有PG主要影响速度控制精度;VF/矢量控制主要影响变频器的低频(3Hz以下)时的输出转矩。
无PG VF控制模式一般用于起动转矩不高,对速度精度没特别要求的场合,如风机、泵类负载类型等等。
有PG VF控制模式一般用于对转矩要求不高,对稳态速度精度有一定的要求的场合。
这种控制方式对编码器的要求比较低,只需要有单相输出的编码器,所以成本较低。
但由于编码器价格本身不高,并且绝大多数编码器均有A/B相输出,所以基本上很少使用有PG VF 控制模式,而直接使用有PG矢量控制模式,提高了系统的动态响应性能。
无PG矢量控制模式由于不需要编码器,使用时简单快捷方便,控制性能又能满足大多数应用场合,所以现在大多数场合都使用该控制方式。
事实上,无PG矢量控制模式时,变频器通过检测输出电流及电压,并经矢量变换,可以检测出电机的磁场相位,进而间接获得电机的转速,所以能获得很高的低频起动转矩及动态力矩响应,基本适合所有的负载类型。
如:轧钢机械、印刷机械、纺织印染设备、起重设备等等。
无PG矢量控制在矢量变换时需要准确的电机参数,因此,在运行前需要通过自学习获得电机的参数。
有PG矢量控制模式,能获得更高的速度控制精度及更快的动态力矩响应性能,一般应用于需要精确控制速度或力矩的同步控制场合,也应用于需要电机的运转速度脉冲反馈的场合,如电梯的控制,通过获得反馈脉冲,可以精确控制电梯的平层位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频器矢量控制与VF控制区别
一、V/F控制方式
变频器采用V/F控制方式时,对电机参数依赖不大,一般强调“空载电流”的大小。
由于我们采用矢量化的V/F控制方式,故做电机参数静止自整定还是有必要的。
不同功率段的变频器,自学习后的空载电流占额定电流大小百分比也是不同的。
一般有如下百分比数据:5.5kW~15 kW,空载电流P9.05的值为30%~50%的电机额定电流;3.7 kW及以下的,空载电流P9.05的值为50%左右的电机额定电流;特殊情况时,0.4 kW、0.75 kW、1.5 kW,空载电流P9.05的值为70%~80%的电机额定电流;有的0.75 kW功率段,参数自整定后空载电流为电机额定电流的90%。
空载电流很大,励磁也越大。
何为矢量化的V/F控制方式,就是在V/F控制时也将输入电流量进行解耦控制,使控制更加精确。
变频器输出电流包括两个值:空载电流和力矩电流,输出电流I的值为空栽电流Im和力矩电流It平方和后开2次方。
故空载电流是影响变频器输出电流的主要因素之一。
V/F控制时输出电压与运行频率之比为一定值:即U/F=K(K为常数),P0.12=最大输出电压U,P0.15=基频F。
三菱变频器资讯
上图中有个公式,描述转矩、转速、功率之间的关系。
变频器在基频以下运行时,随着速度增快,可以输出恒定的转矩,速度增大不会影响转矩的输出;变频器在基频以上运行时,只能保证输出额定的功率,随着转速增大,变频器不能很好的输出足够大的力;有时候变频器速度更快,高速运行时,处于弱磁区,我们必须设置相应的参数,以便让变频器适应弱磁环境。
速度与出力,高速或者低速时,两者不可兼得,这里有个数据概念:调速范围,指满足额定转矩出力的最低频率与最高频率的比值。
以前一般的VF控制方式调试范围为1:20~1:40,我司产品V/F控制调速范围可以达到1:100,能够满足更多范围的行业应用。
在开环矢量时可以达到1:200,闭环矢量时达到1:1000,接近伺服的性能。
变频器V/F控制系统运行时,有两种方式进行转矩的提升:
1、自动转矩提升:
必须在P0.16=0且P4.00=0时,自动转矩提升才有效。
其作用为:变频器V/F控制低频运行时,提高输出电压,抵消定子压降以产生足够的转矩,保证电机正常运行。
自动转矩提升与变频器设置“空载电流”和静止学习的“定子电阻”有关系,变频器必须作电机参数静止自整定,才能更好的控制电机运行。
变频器作自动转矩提升控制电机时,见上图所示输出电压和频率的线性关系,运行中因为负载变化对电压输出作适当的增减,由于响应时间的快慢,所以会出现出力不稳定因素。
2、手动转矩提升
设置P0.16为某一数值时,或者设置P4.00为非零时,手动转矩提升才有效。
手动转矩提升只与变频器设置“空载电流”有关系,受电机其他参数设置影响较小。
如下图所示,为手动转矩提升曲线图。
变频器输出作手动转矩提升,其转矩出力在原来基础上成线性增加,所以出力稳定,不受负载变化的影响,出力稳定。
但是转矩提升不益太大,转矩提升的幅度应根据负载情况适当设定,提升过多,在启动过程中将产生较大的电流冲击。
自动转矩提升只能满足一拖一的输出情况,当涉及一台变频器拖动多台电机时,V/F控制时必须采用手动转矩提升,即设置P0.16为非0值。
V/F控制时的有关性能参数调试:
PA.02为V/F控制转差补偿增益,设置此参数时,可以参考电机额定转速P9.02来设定参数。
该功能有助于变频器在负载波动及重载情况下保持电机转速恒定,即补偿由于负载波动而导致的电机转速增减,但是由于补偿本身的响应时间问题,导致系统出现不稳定因素增多,在系统波动较大的情况下,此功能码设置为0有一定效果。
PA.04、PA.05为电流限定功能,由于瞬时负载过大而导致系统没法正常运行,可以适当增大PA.05限定值。
三菱变频器资讯
V/F控制涉及到以上注意要点和关键功能码。
二、矢量控制方式
变频器作矢量控制时,对电机参数的依赖很大,所以必须对电机作旋转自整定,参数自整定前,必须设置正确的电机机型参数,完全脱开电机负载。
Pd.01、Pd.02、Pd.03、Pd.04、Pd.05、Pd.15、Pd.16参数说明:
下图所示为速度环比例增益与积分时间、电流环比例系数与积分系数调节。
Pd.01~ Pd.05为速度环比例增益与积分时间调节参数,设置Pd.05=5HZ,当电机运行频率大于5HZ的时候,Pd.01、Pd.02调节参数起作用;当电机运行频率小于5HZ的时候,Pd.03、Pd.04调节参数起作用。
运行参数输出T与比例增益P成正比,与积分时间I成反比,所以Pd.01~ Pd.04四组参数,P设置越大,I设置越小,那么T就越大,变频器控制电机动态响应就越快,此时速度环输入频率与反馈频率一旦有频率差,系统就响应迅速。
但是响应太快了会导致电机出现震荡非常厉害。
举例:某现场,Pd.01和Pd.03为出厂值2或3,此两参数设置在5HZ上下时的比例增益P。
开始调试,进行参数自学习,作矢量控制,设置P0.03=4,点运行,此时电机震动非常厉害,电流很大,运行根本不正常。
后来设置Pd.01=1和Pd.03=1,然后再运行电机,运行很稳定,无任何异常情况。
这里我们让动态响应变慢了,那么系统响应慢些了,频率及电流输出就稳定些了。
但是调试基本原则是,“在系统无震荡的前提下”,响应越快越好,也就是Pd.01和Pd.03越大,Pd.02和Pd.04越小,响应就越快,越好。
因为实时跟踪反馈的速度,然后作出频率及电流、转矩输出调整,这是开环矢量型变频器控制出力稳定性的基本要求。
一般小功率的变频器带电机场合,需要适当减小Pd.01和Pd.03,增大Pd.02和Pd.04,这样更能适应现场的调试工作,当然是根据具体情况来调节数据,不能一概而论。
Pd.15和Pd.16为电流环比例系数和积分系数。
下图所示电流环调节过程。
在电流环调整时,比例系数P、积分系数I越大,对系统作用越强。
一般此两参数不作更改。
变频器在启动过程出现的情况
变频器在带动电机时启动的过程中达不到一定的速度,从这些方面所发生的变化也有了很大的改变,不只是从系统发生的共振情况下,还是从电机运转的声音进行来判断的形式,那么采用的设置频率跳跃值的方法,可以避开共振点的形式,一般情况下在这方面采取的效果也有了很大的意义。
从而才能够达到更好的效果,所以对于一些电机的电流、转速会发生震荡的形式,严重时系统无法运行,甚至在加速过程中出席那过电频率跨越功能,从而才能够达到更好的效果。
电机的转矩输出能力不够,不同品牌的变频器出厂参数设置不同,在相同的条件下,带载能力不同,也可能因变频器控制方法不同,造成电机的带载能力不同;或因系统的输出效率不同,造成带载能力会有所差异。
对于这种情况,可以增大转矩提升值。
如果达不到,可用手动转矩提升功能,不要设定过大,电机这时的温升会增加。
如果仍然不行,应改用新的控制方法,比如采用V/f比值恒定的方法,启动达不到要求时,改用无速度传感器矢量控制方法,它具有更大的转矩输出能力。
对于风机和泵类负载,应减少转矩的曲线值。
变频器从电机方面就已经有了很大的转变,那么对系统方面的启动形式也有了很大的效果,所以参数的设置方面是不同的,这是在相同的条件下来变化的一种形式,所以对于转矩曲线方面是没有什么改变的意义。
这就是变频器的对速度方面的一种形式。
变频器工程实践时应怎么选择
1.1 品牌的选择目前,国内市场上的变频器品牌多达上百种,应根据项目的预算,项目要求和个人熟悉程度等多种因素综合考虑品牌和型号。
就市场占有量来说,日本的东芝、三菱、富士、松下等大公司是世界上重要的变频器生产厂家,在我国有较大的市场份额;ABB、西门子、施耐德等欧美品牌也相继进入中国;LG、三星、现代重工等韩国的后起之秀也在争夺中国市场;当然,国内的台达、台安、时代、康沃等公司也占有一席之地。
总体而言,欧美国家的产品以性能先进、环境适应能力强而著称;日本产品以外型小巧、功能丰富而闻名;我国港澳台的产品以功能简单实用而流行;大陆产品则以价格低廉、功能专用、简单而广泛应用。
1.2 类型的选择工业中使用的变频器可以分为通用变频器和专用变频器两大类,主要技术指标有:控制方式、启动转矩、转矩和转速控制精度、控制信号种类、速度控制方式、通信借口等等。
变频器的操作方式灵活,接口易和上位机通信,从实际应用角度看,中小型容量的变频器以U/f控制方式为主,属于通用型变频器,还有一类具有矢量控制功能的变频器,性能好、价格高,但价格也比U/f控制的要贵的多;
而直接转矩控制方式的变频器动态性能好,转矩控制精度高,代表了当代变频器技术的最高水平。