《27.2.3 相似三角形应用举例》教案
相似三角形应用举例教案

27.2.3 相似三角形应用举例一、课标要求: 会利用图形的相似解决一些简单的实际问题.二、课标理解:识现实生活中物体的相似,能利用相似三角形的性质解决一些简单的实际问题;通过把实际问题转化成有关相似三角形的数学模型,培养分析问题、解决问题的能力.三、内容安排:【教学目标】知识与技能:1.能运用相似三角形的数学模型解决现实世界的测量问题;2.通过例题的分析与解决,让学生进一步感受相似三角形在实际生活中的应用.过程与方法:引导学生将实际问题转化为数学问题,建立相似三角形模型,再应用相似三角形知识求解,体会相似三角形的应用方法.情感、态度与价值观:开展学生的转化意识和自主探究、合作交流的习惯,体会相似三角形的实际应用价值,增加学生应用数学知识解决实际问题的经历和感受.【教学重难点】重点:运用相似三角形的知识解决生活中的一些测量问题.难点:如何把实际问题转化相似三角形这一数学模型.四、教学过程〔一〕孕育问题:〔1〕怎样判断两个三角形相似?〔2〕相似三角形的性质有哪些?引入:胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一〞.塔的 4 个斜面正对东南西北四个方向,塔基呈正方形,每边长约230 米.据考证,为建成胡夫金字塔,一共花了20 年时间,每年用工10 万人.该金字塔原高146.59 米,但由于经过几千年的风化吹蚀,高度有所降低.在古希腊,有一位伟大的科学家叫泰勒斯.一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及金字塔的高度吧!〞这在当时条件下是个大难题,因为是很难爬到塔顶的.你知道泰勒斯是怎样测量金字塔高度的吗?引出课题:今天,我们就来研究利用三角形的相似,解决一些有关测量的问题.〔二〕萌发生长例1:据传说,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度.如图,木杆EF 长2m ,它的影长FD 为3m ,测得OA 为201m ,求金字塔的高度BO .追问:怎样测出OA 的长?金字塔的影子可以看成一个等腰三角形,那么OA 等于这个等腰三角形的高与金字塔的边长一半的和.解:太阳光是平行光线,因此∠BAO =∠EDF .又∠AOB =∠DFE =90°,∴△ABO ∽△DEF . BO OA EF FD ∴= 20121343OA EF BO FD ⋅⨯∴===〔m 〕 因此金字塔的高度为134 m.归纳:同一时间,同一地点,物高与影长成比例.【牛刀小试】1.在某一时刻,测得一根高为的竹竿的影长为3m ,同时测得一栋高楼的影长为90m ,这栋高楼的高度是多少?2.在同一时刻物体的高度与它的影长成正比例.在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米例2:如图,为了估算河的宽度,我们可以在河对岸选定一个目标点P ,在近岸取点Q 和S ,使点P ,Q ,S 共线且直线PS 与河垂直,接着在过点S 且与PS 垂直的直线a 上选择适当的点T ,确定PT 与过点Q 且垂直PS 的直线b 的交点R .已测得QS =45m ,ST =90m ,QR =60m ,请根据这些数据,计算河宽PQ .解:∵∠PQR =∠PST =90°,∠P =∠P ,∴△PQR∽△PST.PQ QRPS ST∴=即604590 PQ QR PQPQ QS ST PQ++==PQ×90=〔PQ+45〕×60.解得PQ=90〔m〕.因此,河宽大约为90m.归纳:构造两个共线的相似直角三角形.【随堂练习】1.如图,铁道口的栏杆短臂长1m,长臂长16m,当短臂端点下降时,长臂端点升高.AB,在岸边找到了一点C,使AC⊥AB,在AC上找到一点D,在BC上找到一点E,使DE⊥AC,测出AD=35m,DC=35m,DE =30m,那么你能算出池塘的宽AB吗〔三〕收获硕果1.这节课我们学到了哪些知识?2.我们是利用什么方法获得这些知识的?3.通过这节课的学习,你有什么新的想法或发现?〔四〕拓展延伸,布置作业必做题:教材43页习题27.2第8、9题.选做题:教材44页习题27.2第14题.〔五〕学习评价1.要测量出一棵树的高度,除了测量出人高与人的影长外,还需要测出()A.仰角B.树的影长C.标杆的影长D.都不需要2.如图,小芳和爸爸正在散步,爸爸身高1.8 m,某一时刻他在地面上的影长为2.1 m.假设小芳比爸爸矮0.3 m,那么她此时在地面上的影长为()A.1.3 mB.1.65 mC.1.75 mD.1.8 m3.为了加强视力保护意识,小明要在书房里挂一张视力表.由于书房空间狭小,他想根据测试距离为5 m的大视力表制作一个测试距离为3 m的小视力表.如图,如果大视力表中“E〞的高度是3.5 cm,那么小视力表中相应“E〞的高度是______________.4.如图,为了估计河的宽度,在河的对岸选定一个目标点P,在近岸取点Q和S,使点P,Q,S在一条直线上,且直线PS与河垂直,在过点S且与PS垂直的直线a上选择适当的点T,PT与过点Q且与PS垂直的直线b的交点为R.如果QS=60 m,ST=120 m,QR=80 m,那么河的宽度PQ为__________.5.有一张简易的活动小餐桌,如图,现测得OA=OB=30 cm,OC=OD=50 cm,桌面离地面的高度为40 cm,那么两条桌腿的交点离地面的高度为_____________.附:板书设计§ 27.2.2 相似三角形的性质一:相似三角形对应角相等,对应边成比例二:相似三角形的对应高线、对应中线、对应角平分线的比等于相似比例题板演学生板演三:相似三角形周长比等于相似比推广:相似三角形对应线段的比等于相似比四:相似三角形面积比等于相似的平方。
人教版数学九年级下册27.2.3《相似三角形应用举例》教学设计1

人教版数学九年级下册27.2.3《相似三角形应用举例》教学设计1一. 教材分析人教版数学九年级下册27.2.3《相似三角形应用举例》一节,是在学生学习了相似三角形的性质和判定之后,进一步探讨相似三角形在实际问题中的应用。
通过本节课的学习,使学生了解相似三角形在实际生活中的重要性,提高他们运用数学知识解决实际问题的能力。
二. 学情分析九年级的学生已经掌握了相似三角形的性质和判定,具备了一定的逻辑思维能力和空间想象能力。
但学生在解决实际问题时,往往缺乏将数学知识与实际问题相结合的能力。
因此,在教学过程中,教师需要注重引导学生将所学知识应用于实际问题,提高他们的数学应用能力。
三. 教学目标1.理解相似三角形在实际问题中的应用,提高学生运用数学知识解决实际问题的能力。
2.培养学生的逻辑思维能力和空间想象能力。
3.增强学生对数学学科的兴趣和自信心。
四. 教学重难点1.重点:相似三角形在实际问题中的应用。
2.难点:将实际问题转化为数学问题,运用相似三角形的性质和判定解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究相似三角形在实际问题中的应用。
2.利用多媒体课件辅助教学,直观展示实际问题,提高学生的空间想象能力。
3.采用小组合作学习的方式,培养学生的团队协作能力和沟通能力。
4.注重个体差异,因材施教,使每个学生都能在课堂上得到有效的训练和提高。
六. 教学准备1.准备相关实际问题,用于引导学生运用相似三角形知识解决。
2.准备多媒体课件,展示实际问题及解题过程。
3.准备练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实际问题,如建筑物的设计、尺子测量等,引导学生思考这些实际问题与数学知识的联系。
从而引出本节课的主题——相似三角形在实际问题中的应用。
2.呈现(10分钟)教师展示一个实际问题:在同一平面内,有两座建筑物,一座高度为30米,另一座高度为18米。
请问,在离这两座建筑物等距离的地点,如何测量出两座建筑物的高度比?教师引导学生分析问题,并提出解决方法:利用相似三角形。
《相似三角形应用举例》教学设计

《相似三角形应用举例》教学设计活动二:实践探究交流新知1.探究测量高度的方法:分析活中一中的问题:如何将现实生活中的问题转化为数学问题是解题的难点,在问题中,寻找两个相似三角形是解题的突破口,根据太阳光平行的基本常识,得到AB∥ED,得到△DEF∽△ABO,最后解决问题.解:因为太阳光平行,所以∠BAO=∠EDF.因为∠AOB=∠DFE=90°,所以△ABO∽△DEF,所以BOEF=OAFD,即BO=201×2÷3=134(米).因此金字塔的高度BO为134米.师生总结:同一时刻物体的高度与影长成比例.2.探究测量河的宽度的方法:问题:如图27-2-205,为了估算河的宽度,在河对岸选定一个目标点P,在近岸取点Q和S,使点P,Q,S共线且直线PS与河垂直,接着在过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q且垂直于PS的直线b的交点R,如果测得QS=45 m,ST=90 m,QR=60 m,求河的宽度PQ. 图27-2-205师生活动:教师提出问题,学生理解测量方法.分析问题:题目的前提是我们只能在河的一边测量河的宽度,所以想到用相似的知识来解决,因此寻找包括河的宽度的相似三角形.分析题目可知△PQR与△PST相似,所以知道QR,ST,QS的长度即可求出PQ的长度.问题:是否有其他的解题方法?试一试!师生活动:通过作图可以理解并进行解答.3.探究关于盲区问题的方法:问题:如图27-2-206,已知左、右并排的两棵大树的高分别是AB=8 m和CD=12 m,两树的根部的距离BD=5 m,一个身高1.6 m的人沿着正对这两棵树的一条水平直路l从左向右前进,当他与左边较低的树的距离小于多少时,就不能看到右边较高的树的顶点C了?师生活动:教师引导学生进行分析,寻找解题方法.分析问题:教师介绍仰角和盲区:设观察者眼睛的位置为F,画出观察者的水平视线FG,分别交AB,CD于点H,K,射线F A与FG的夹角∠AFH是观测点A时的仰角,类似的,∠CFK是观察点C时的仰角,区域Ⅰ和区域Ⅱ都在观察者看不到的区域内.本题根据AB∥CD,得到图27-2-206△AFH∽△CFK,从而求解.1.在教师的引导和分析下,把实际问题转化为数学问题,这是解决问题的关键,让学生在解决问题的过程中学会建立数学模型,通过建模培养学生的归纳能力.2.数学建模就是把实际问题转化为数学问题,转化方法之一就是画数学示意图,在画图过程中,可以逐渐明确问题中的数量关系与位置关系,进而形成解题的思路.27-2-208【达标测评】1.如图27-2-209,为估算学校的旗杆的高度,身高1.6米的张良同学沿着旗杆在地面上的影子AB由点A向点B走去,当他走到点C处时,她的影子的顶端正好与旗杆的影子的顶端重合,此时测得AC=2 m,BC=8 m,则旗杆的高度是(C)A.6.4 m B.7 m C.8 m D.9 m图27-2-209 图27-2-2102.如图27-2-210,小明在打网球时,使球恰好能打过网,而且落在离网4 m的位置上,则球拍击球的高度h为(B)A.1.6 m B.1.5 m C.2.4 m D.1.2 m3.阳光下,高为6米的旗杆在地面上的影长为4 m,在同一时刻,测得附近一座建筑物的影长为36米,则这座建筑物的高度为__54__米.。
人教版九年级数学下册:27.2.3《相似三角形应用举例》教学设计1

人教版九年级数学下册:27.2.3《相似三角形应用举例》教学设计1一. 教材分析人教版九年级数学下册第27.2.3节《相似三角形应用举例》是学生在学习了相似三角形的性质和判定之后的内容,是相似三角形知识在实际问题中的应用。
本节内容通过具体的实例,让学生了解相似三角形在实际问题中的应用,培养学生的数学应用意识,提高学生的解决问题的能力。
二. 学情分析九年级的学生已经掌握了相似三角形的性质和判定,具备了一定的逻辑思维能力和解决问题的能力。
但是,对于如何将相似三角形应用到实际问题中,可能还存在一定的困难。
因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高学生的应用能力。
三. 教学目标1.理解相似三角形在实际问题中的应用。
2.能够运用相似三角形解决实际问题。
3.培养学生的数学应用意识和解决问题的能力。
四. 教学重难点1.重点:相似三角形在实际问题中的应用。
2.难点:如何将相似三角形应用到实际问题中,解决实际问题。
五. 教学方法采用问题驱动法,通过具体的实例,引导学生自主探究相似三角形在实际问题中的应用,培养学生的数学应用意识和解决问题的能力。
六. 教学准备1.教学课件。
2.相关实例。
七. 教学过程1.导入(5分钟)通过提问方式,复习相似三角形的性质和判定,为新课的学习做好铺垫。
2.呈现(10分钟)呈现一些实际问题,如测量身高、测量两地距离等,让学生尝试用相似三角形解决这些问题。
引导学生发现这些实际问题中存在相似三角形,从而引出本节课的主题。
3.操练(10分钟)让学生分组讨论,每组选取一个实例,尝试用相似三角形解决问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)选取几组学生的解题过程,进行讲解和分析,总结解决类似问题的方法和步骤。
让学生进一步巩固相似三角形在实际问题中的应用。
5.拓展(10分钟)让学生尝试解决一些更有挑战性的实际问题,如复杂的图形测量、建筑设计等。
引导学生将相似三角形应用到更广泛的领域。
27.2.3相似三角形应用举例(教案)

5.空间观念与数据分析:培养学生运用相似三角形知识分析问题,发展空间观念和数据分析能力,提高数学素养。
三、教学难点与重点
1.教学重点
-理解相似三角形的性质:重点强调相似三角形的对应角相等、对应边成比例的基本性质,以及如何利用这些性质解决实际问题。
3.解决实际问题:结合生活实例,让学生运用相似三角形的性质解决一些实际问题,提高学生的应用能力和解决问题的能力。
4.总结相似三角形在实际生活中的应用,强调数学知识与现实生活的紧密联系。
本节课将引导学生通过实际案例,掌握相似三角形在实际问题中的应用,培养学生的动手操作能力和解决问题的能力。
二、核心素养目标
五、教学反思
在今天的教学中,我发现同学们对相似三角形的应用举例产生了浓厚的兴趣。通过引入日常生活中的实际问题,他们能够更好地理解数学知识在实际中的应用。让我感到高兴的是,大多数同学能够积极参与讨论,提出自己的观点,这充分说明了他们对这一知识点的投入。
然而,我也注意到在讲解相似三角形性质时,部分同学对识别相似三角形和确定对应关系存在一定的困难。这说明在这个环节,我需要更加耐心地引导和解释,或许可以通过更多的例子和直观的图示来帮助他们理解。
-应用相似三角形测量:掌握如何利用相似三角形进行高度和距离的测量,包括在实际问题中如何确定相似三角形和对应关系。
-生活实例的解析:通过具体实例,如测量建筑物高度、桥梁长度等,让学生掌握相似三角形在实际生活中的应用。
-数据处理与分析:学会在测量过程中处理数据,分析误差,提高测量的准确性。
举例:在测量建筑物高度时,重点讲解如何利用地面上的影子长度和已知的太阳高度角来确定建筑物的高度,强调相似三角形的实际应用。
人教版数学九年级下册27.2.3《相似三角形应用举例》教学设计2

人教版数学九年级下册27.2.3《相似三角形应用举例》教学设计2一. 教材分析人教版数学九年级下册27.2.3《相似三角形应用举例》是本节课的主要内容。
相似三角形在实际生活中的应用非常广泛,是解决实际问题的重要工具。
本节课通过具体的例子让学生了解相似三角形的性质,学会运用相似三角形解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的定义和性质,具备了一定的数学思维能力。
但部分学生在解决实际问题时,仍存在运用不当的情况,需要通过本节课的学习加以巩固。
三. 教学目标1.理解相似三角形的性质,并能够运用到实际问题中。
2.培养学生的数学思维能力和解决问题的能力。
3.提高学生对数学的兴趣,增强学生的自信心。
四. 教学重难点1.掌握相似三角形的性质。
2.学会如何运用相似三角形解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究相似三角形的性质。
2.通过具体的例子,让学生学会运用相似三角形解决实际问题。
3.采用小组合作学习的方式,培养学生的团队协作能力。
六. 教学准备1.准备相关的教学PPT,展示具体的例子。
2.准备一些实际问题,用于课堂练习。
3.准备黑板,用于板书。
七. 教学过程1.导入(5分钟)利用一个实际问题引入本节课的主题,引导学生思考如何运用相似三角形解决问题。
2.呈现(15分钟)通过PPT展示相似三角形的性质,让学生了解相似三角形的定义和性质。
3.操练(20分钟)让学生分组讨论,尝试解决一些实际问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)对学生的解答进行讲评,引导学生总结相似三角形的性质和解决实际问题的方法。
5.拓展(10分钟)给学生一些较复杂的问题,让学生尝试解决。
教师提供必要的指导。
6.小结(5分钟)对本节课的内容进行总结,强调相似三角形的性质和解决实际问题的方法。
7.家庭作业(5分钟)布置一些相关的练习题,让学生巩固所学知识。
8.板书(5分钟)教师在黑板上板书相似三角形的性质和解决实际问题的方法。
《27.2.3 相似三角形的应用举例》教案、导学案、同步练习

27.2.3 相似三角形的应用举例【教学目标】1.运用三角形相似的知识计算不能直接测量物体的长度和高度;(重点) 2.灵活运用三角形相似的知识解决实际问题.(难点)【教学过程】一、情境导入胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一” .在古希腊,有一位伟大的科学家叫泰勒斯.一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及金字塔的高度吧!”这在当时条件下是个大难题,因为是很难爬到塔顶的.你知道泰勒斯是怎样测量金字塔的高度的吗?二、合作探究探究点:相似三角形的应用【类型一】利用影子的长度测量物体的高度如图,某一时刻一根2m长的竹竿EF的影长GE为1.2m,此时,小红测得一棵被风吹斜的柏树与地面成30°角,树顶端B在地面上的影子点D与B到垂直地面的落点C的距离是3.6m,求树AB的长.解析:先利用△BDC∽△FGE得到BC3.6=21.2,可计算出BC=6m,然后在Rt△ABC中利用含30度的直角三角形三边的关系即可得到AB的长.解:如图,CD=3.6m,∵△BDC∽△FGE,∴BCCD=EFGE,即BC3.6=21.2,∴BC=6m.在Rt△ABC中,∵∠A=30°,∴AB=2BC=12m,即树长AB是12m.方法总结:解答此类问题时,首先要把实际问题转化为数学问题.利用相似三角形对应边成比例建立相等关系求解.【类型二】利用镜子的反射测量物体的高度小红用下面的方法来测量学校教学大楼AB的高度.如图,在水平地面点E处放一面平面镜,镜子与教学大楼的距离AE=20m.当她与镜子的距离CE=2.5m时,她刚好能从镜子中看到教学大楼的顶端B.已知她的眼睛距地面高度DC =1.6m,请你帮助小红测量出大楼AB的高度(注:入射角=反射角).解析:根据物理知识得到∠BEA=∠DEC,所以可得△BAE∽△DCE,再根据相似三角形的性质解答.解:如图,∵根据光的反射定律知∠BEA=∠DEC,∵∠BAE=∠DCE=90°,∴△BAE∽△DCE,∴ABDC=AEEC.∵CE=2.5m,DC=1.6m,∴AB1.6=202.5,∴AB=12.8,∴大楼AB的高度为12.8m.方法总结:解本题的关键是找出相似的三角形,然后根据对应边成比例列出方程.解题时要灵活运用所学各学科知识.【类型三】利用标杆测量物体的高度如图,某一时刻,旗杆AB影子的一部分在地面上,另一部分在建筑物的墙面上.小明测得旗杆AB在地面上的影长BC为9.6m,在墙面上的影长CD为2m.同一时刻,小明又测得竖立于地面长1m的标杆的影长为1.2m.请帮助小明求出旗杆的高度.解析:根据在同一时刻物高与影长成正比例,利用相似三角形的对应边成比例解答即可.解:如图,过点D作DE∥BC,交AB于E,∴DE=CB=9.6m,BE=CD=2m,∵在同一时刻物高与影长成正比例,∴EA∶ED=1∶1.2,∴AE=8m,∴AB=AE+EB=8+2=10m,∴学校旗杆的高度为10m.方法总结:利用杆或直尺测量物体的高度就是利用杆(或直尺)的高(长)作为三角形的边构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.【类型四】利用相似三角形的性质设计方案测量高度星期天,小丽和同学们在碧沙岗公园游玩,他们来到1928年冯玉祥将军为纪念北伐军阵亡将士所立的纪念碑前,小丽问:“这个纪念碑有多高呢?”请你利用初中数学知识,设计一种方案测量纪念碑的高度(画出示意图),并说明理由.解析:设计相似三角形,利用相似三角形的性质求解即可.在距离纪念碑AB的地面上平放一面镜子E,人退后到D处,在镜子里恰好看见纪念碑顶A.若人眼距地面距离为CD,测量出CD、DE、BE的长,就可算出纪念碑AB的高.解:设计方案例子:如图,在距离纪念碑AB的地面上平放一面镜子E,人退后到D处,在镜子里恰好看见纪念碑顶A.若人眼距地面距离为CD,测量出CD、DE、BE的长,就可算出纪念碑AB的高.理由:测量出CD、DE、BE的长,因为∠CED=∠AEB,∠D=∠B=90°,易得△ABE∽△CDE.根据CDAB=DEBE,即可算出AB的高.方法总结:解题的关键是根据相似三角形的性质设计出具体图形,将实际问题抽象出数学问题求解.三、板书设计1.利用相似三角形测量物体的高度;2.利用相似三角形测量河的宽度;3.设计方案测量物体高度.【教学反思】通过本节知识的学习,可以使学生综合运用三角形相似的判定和性质解决问题,发展学生的应用意识,加深学生对相似三角形的理解和认识.基本达到了预期的教学目标,大部分学生都学会了建立数学模型,利用相似的判定和性质来解决实际问题.27.2.3 相似三角形的应用举例〔学习设计〕,即,, 。
人教版九年级数学下册:27.2.3《相似三角形应用举例》教学设计4

人教版九年级数学下册:27.2.3《相似三角形应用举例》教学设计4一. 教材分析《人教版九年级数学下册:27.2.3》这一节内容是在学生已经掌握了相似三角形的性质和判定方法的基础上进行授课的。
本节课的主要内容是让学生通过具体的例子,进一步理解相似三角形的应用,提高解决实际问题的能力。
教材中给出了两个典型的例子,分别是“计算电阻”和“测量河宽”。
通过这两个例子,让学生学会如何运用相似三角形来解决实际问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对相似三角形的概念和性质有一定的了解。
但是,对于如何将相似三角形应用到实际问题中,可能还存在一定的困难。
因此,在教学过程中,教师需要通过具体的例子,引导学生将理论知识与实际问题相结合,提高学生的解决问题的能力。
三. 教学目标1.理解相似三角形的应用,掌握用相似三角形解决实际问题的方法。
2.提高学生的动手操作能力和解决实际问题的能力。
3.培养学生的逻辑思维能力和团队协作能力。
四. 教学重难点1.重点:相似三角形的应用,用相似三角形解决实际问题。
2.难点:如何引导学生将相似三角形与实际问题相结合,提高解决问题的能力。
五. 教学方法1.采用问题驱动的教学方法,通过具体的例子引导学生思考和探索。
2.运用小组合作学习的方式,培养学生的团队协作能力和沟通能力。
3.利用多媒体教学手段,直观地展示相似三角形的应用过程。
六. 教学准备1.准备相关的教学课件和教学素材。
2.准备计算器和测量工具,以便学生在课堂上进行实际操作。
七. 教学过程1.导入(5分钟)教师通过提问方式复习相似三角形的性质和判定方法,引导学生思考相似三角形在实际问题中的应用。
2.呈现(10分钟)教师展示教材中的两个例子:“计算电阻”和“测量河宽”。
引导学生观察和分析这两个例子,让学生初步了解如何用相似三角形解决实际问题。
3.操练(15分钟)教师学生进行小组讨论,让学生尝试用相似三角形的方法解决这两个例子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
27.2.3 相似三角形应用举例
一、课标要求: 会利用图形的相似解决一些简单的实际问题.
二、课标理解:识现实生活中物体的相似,能利用相似三角形的性质解决一些简单的实际问题;通过把实际问题转化成有关相似三角形的数学模型,培养分析问题、解决问题的能力.
三、内容安排:
【教学目标】
知识与技能:1.能运用相似三角形的数学模型解决现实世界的测量问题;2.通过例题的分析与解决,让学生进一步感受相似三角形在实际生活中的应用.
过程与方法:引导学生将实际问题转化为数学问题,建立相似三角形模型,再应用相似三角形知识求解,体会相似三角形的应用方法.
情感、态度与价值观:发展学生的转化意识和自主探究、合作交流的习惯,体会相似三角形的实际应用价值,增加学生应用数学知识解决实际问题的经验和感受.
【教学重难点】
重点:运用相似三角形的知识解决生活中的一些测量问题.
难点:如何把实际问题转化相似三角形这一数学模型.
四、教学过程
(一)孕育
问题:(1)怎样判断两个三角形相似?
(2)相似三角形的性质有哪些?
引入:胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一”.塔的 4 个斜面正对东南西北四个方向,塔基呈正方形,每边长约230 米.据考证,为建成胡夫金字塔,一共花了20 年时间,每年用工10 万人.该金字塔原高146.59 米,但由于经过几千年的风化吹蚀,高度有所降低.
在古希腊,有一位伟大的科学家叫泰勒斯.一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及金字塔的高度吧!”这在当时条件下是个大难题,因为是很难爬到塔顶的.你知道泰勒斯是怎样测量金字塔高度的吗?
引出课题:今天,我们就来研究利用三角形的相似,解决一些有关测量的问题.
(二)萌发生长
1.探究测量物体高度
例1:据传说,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影
子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度.
如图,木杆EF 长2m ,它的影长FD 为3m ,测得OA 为201m ,求金字塔的高度BO .
追问:怎样测出OA 的长?
金字塔的影子可以看成一个等腰三角形,则OA 等于这个等腰三角形的高与金字塔的边长一半的和.
解:太阳光是平行光线,因此∠BAO =∠EDF .
又∠AOB =∠DFE =90°,
∴△ABO ∽△DEF . BO OA EF FD ∴= 20121343OA EF BO FD ⋅⨯∴=
==(m ) 因此金字塔的高度为134 m.
归纳:同一时间,同一地点,物高与影长成比例.
【牛刀小试】
1.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一栋高楼的影长为90m ,这栋高楼的高度是多少?
2.在同一时刻物体的高度与它的影长成正比例.在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?
2.探究测量河的宽度
例2:如图,为了估算河的宽度,我们可以在河对岸选定一个目标点P ,在近岸取点Q 和S ,使点P ,Q ,S 共线且直线PS 与河垂直,接着在过点S 且与PS 垂直的直线a 上选择适当的点T ,确定PT 与过点Q 且垂直PS 的直线b 的交点R .已测得QS =45m ,ST =90m ,QR =60m ,请根据这些数据,计算河宽PQ .
解:∵∠PQR =∠PST =90°,∠P =∠P ,
∴△PQR∽△PST.
PQ QR
PS ST
∴=
即
60
4590 PQ QR PQ
PQ QS ST PQ
++
==
PQ×90=(PQ+45)×60.
解得PQ=90(m).
因此,河宽大约为90m.
归纳:构造两个共线的相似直角三角形.
【随堂练习】
1.如图,铁道口的栏杆短臂长1m,长臂长16m,当短臂端点下降0.5m时,长臂端点升高.
2.为了测量一池塘的宽AB,在岸边找到了一点C,使AC⊥AB,在AC上找到一点D,在BC上找到一点E,使DE⊥AC,测出AD=35m,DC=35m,DE =30m,那么你能算出池塘的宽AB吗?
(三)收获硕果
1.这节课我们学到了哪些知识?
2.我们是利用什么方法获得这些知识的?
3.通过这节课的学习,你有什么新的想法或发现?
(四)拓展延伸,布置作业
必做题:教材43页习题27.2第8、9题.
选做题:教材44页习题27.2第14题.
(五)学习评价
1.要测量出一棵树的高度,除了测量出人高与人的影长外,还需要测出()
A.仰角
B.树的影长
C.标杆的影长
D.都不需要
2.如图,小芳和爸爸正在散步,爸爸身高1.8 m,某一时刻他在地面上的影长为2.1 m.若小芳比爸爸矮0.3 m,则她此时在地面上的影长为()
A.1.3 m
B.1.65 m
C.1.75 m
D.1.8 m
3.为了加强视力保护意识,小明要在书房里挂一张视力表.由于书房空间狭小,他想根据测
试距离为5 m的大视力表制作一个测试距离为3 m的小视力表.如图,如果大视力表中“E”
的高度是3.5 cm,那么小视力表中相应“E”的高度是______________.
4.如图,为了估计河的宽度,在河的对岸选定一个目标点P,在近岸取点Q和S,使点P,
Q,S在一条直线上,且直线PS与河垂直,在过点S且与PS垂直的直线a上选择适当的点T,PT与过点Q且与PS垂直的直线b的交点为R.如果QS=60 m,ST=120 m,QR=
80 m,则河的宽度PQ为__________.
5.有一张简易的活动小餐桌,如图,现测得OA=OB=30 cm,OC=OD=50 cm,桌面离地面
的高度为40 cm,则两条桌腿的交点离地面的高度为_____________.
附:板书设计
§ 27.2.2 相似三角形的性质
一:相似三角形对应角相等,对应边成比例
二:相似三角形的对应高线、对应中线、对
应角平分线的比等于相似比
例题板演学生板演三:相似三角形周长比等于相似比
推广:相似三角形对应线段的比等于相似比
四:相似三角形面积比等于相似的平方。