高二数学导数测试题(经典版)
高二数学导数大题练习题及答案

高二数学导数大题练习题及答案一、解答题1.已知函数()()e sin x f x rx r *=⋅∈N ,其中e 为自然对数的底数. (1)若1r =,求函数()y f x =的单调区间;(2)证明:对于任意的正实数M ,总存在大于M 的实数a ,b ,使得当[,]x a b ∈时,|()|1f x ≤.2.已知函数()ln f x x x =-,322()436ln 1g x x x x x =---. (1)若()1x f ax ≥+恒成立,求实数a 的取值范围;(2)若121322x x <<<,且()()120g x g x +=,试比较()1f x 与()2f x 的大小,并说明理由.3.已知函数()()2231ln 2f x x a a x a a x =-+-+. (1)若1a =,求()f x 在[]1,2上的值域; (2)若20a a -≠,讨论()f x 的单调性. 4.已知函数()e 1()x f x ax a =-+∈R . (1)讨论函数()f x 的单调性与极值;(2)若对任意0x >,2()f x x x ≥--恒成立,求实数a 的取值范围. 5.已知函数()()1ln f x x x =+ (1)求函数()f x 的单调区间和极值;(2)若m Z ∈,()()1m x f x -<对任意的()1,x ∈+∞恒成立,求m 的最大值. 6.已知函数()ln xf x x=, ()()1g x k x =-. (1)证明: R k ∀∈,直线y g x 都不是曲线()y f x =的切线;(2)若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立,求实数k 的取值范围.7.已知函数()12ln f x x x x=--. (1)判断函数()f x 的单调性;(2)设()()()28g x f x bf x =-,当1x >时,()0g x >,求实数b 的取值范围.8.已知函数()()e x f x x m =+⋅.(1)若()f x 在(],1-∞上是减函数,求实数m 的取值范围;(2)当0m =时,若对任意的0x ≥,不等式()2e x ax f x ⋅≤恒成立,求实数a 的取值范围.9.2020年9月22日,中国政府在第七十五届联合国大会上提出:“中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和.”为了进一步了解普通大众对“碳中和”及相关举措的认识,某机构进行了一次问卷调查,部分结果如下:(1)根据所给数据,完成下面的22⨯列联表,并根据列联表,判断是否有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关?附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.(2)经调查后,有关部门决定加大力度宣传“碳中和”及相关措施以便让节能减排的想法深入人心.经过一段时间后,计划先随机从社会上选10人进行调查,再根据检验结果决定后续的相关举措.设宣传后不了解“碳中和”的人概率都为()01p p <<,每个被调查的人之间相互独立.①记10人中恰有3人不了解“碳中和”的概率为()f p ,求()f p 的最大值点0p ; ②现对以上的10人进行有奖答题,以①中确定的0p 作为答错的概率p 的值.已知回答正确给价值a 元的礼品,回答错误给价值b 元的礼品,要准备的礼品大致为多少元?(用a ,b 表示即可)10.已知函数()222(0)exmx x f x m +-=>. (1)判断()f x 的单调性;(2)若对[]12,1,2x x ∀∈,不等式()()1224ef x f x -≤恒成立,求实数m 的取值范围.【参考答案】一、解答题1.(1)增区间为32,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 减区间为52,2,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)证明过程见解析. 【解析】 【分析】(1)对函数求导,利用辅助角公式合并为同名三角函数,利用单调增减区间代入公式求解即可.(2)将绝对值不等式转化为11sin e e xxrx ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭,移向构造新函数,利用导数判定单调性,借助零点定理和隐零点证明新构造函数恒正,再结合三角函数的特有的周期特点寻找M 即可. (1)()e (sin cos )sin 4x x f x x x x π⎛⎫'=+=+ ⎪⎝⎭令22242k x k πππππ-≤+≤+,得32,244x k k ππππ⎡⎤∈-+⎢⎥⎣⎦令322242k x k ππππ+≤+≤π+,得24x k ππ⎡∈+⎢⎣,524k ππ⎤+⎥⎦当32,244x k k ππππ⎡⎤∈-+⎢⎥⎣⎦时, ()0f x '>,()f x 单调递增 当24x k ππ⎡∈+⎢⎣,524k ππ⎤+⎥⎦时, ()0,()f x f x '< 单调递減 综上() f x 单调递增区间为32,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦单调递减区间为 52,2,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)要证|()|1f x ≤,即证e sin 1xrx ⋅≤,即证11sin =e e xx rx ⎛⎫≤ ⎪⎝⎭即证 11sin e e xxrx ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭在[,]x a b ∈时成立即可,[,]x a b ∈时,1sin 0e 1sin 0e xxrx rx ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩. 令1()sin e x h x rx ⎛⎫=- ⎪⎝⎭, 1()cos e xh x r rx ⎛⎫'=+ ⎪⎝⎭当222,k k x rr πππ⎛⎫+ ⎪∈⎪ ⎪⎝⎭时, cos 0,r rx > 所以1()cos 0,e xh x r rx ⎛⎫'=+> ⎪⎝⎭所以()h x 单调递增,2210,e k rk h rππ⎛⎫⎛⎫=-< ⎪ ⎪⎝⎭⎝⎭2221210(0)e k r k h k r ππππ+⎛⎫⎛⎫+ ⎪⎪=±>> ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭0(2)22,k k x rrπππ+∴∃∈ , 满足()00h x =由单调性可知02,k x x r π⎛⎫∈⎪⎝⎭, 满足()0()0h x h x <= 又因为当021,,sin 0,0,xk x x rx r e π⎛⎫⎛⎫∈>≥ ⎪ ⎪⎝⎭⎝⎭1sin 0xrx e ⎛⎫∴+≥ ⎪⎝⎭,所以1sin 0e 1sin 0e xxrx rx ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩能够同时满足, 对于任意的正实数M ,总存在正整数k ,且满足2Mr k π>时, 使得 2k M r π>成立, 所以不妨取 02,,2k Mr a k b x rππ⎛⎫=>= ⎪⎝⎭则,a b M >且[,]x a b ∈时,1sin 01sin 0xxrx e rx e ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩, 故对于任意的正实数M ,总存在大于M 的实数,a b ,使得当[,]x a b ∈ 时,|()|1f x ≤. 2.(1)0a ≤(2)()()21f x f x <,理由见解析 【解析】 【分析】(1)分离参变量,得到ln 1,(0)x x a x x--≤>恒成立,构造函数,将问题转化为求函数的最值问题;(2)由(1)可得1ln x x -≥,从而判断()g x 的单调性,确定1213122x x <<<<,再通过构造函数,利用导数判断其单调性,最终推出122x x +<;再次构造函数1ln ()12t tF t t -=-+,判断其单调性,由此推出2211ln ln x x x x -<-,可得结论. (1)()1x f ax ≥+恒成立,即ln 1,(0)x x a x x--≤>恒成立, 令ln 1()x x h x x --=,2ln ()xh x x'=, 当(0,1)x ∈时,()0h x '<,函数()h x 递减; 当(1,)x ∈+∞时,()0h x '>,函数()h x 递增, 故min ()(1)0h x h ==, 所以0a ≤. (2)2()121212ln 12(1ln )g x x x x x x x x '=--=--,由(1)知1ln x x -≥,所以在13,22⎛⎫⎪⎝⎭上()0g x '≥,所以()g x 在13,22⎛⎫⎪⎝⎭上单调递增,且(1)0g =.所以1213122x x <<<<,设()12(1ln )m x x x x =--,()12(22ln )m x x x '=--, 设()12(22ln )n x x x =--,则12(21)()x n x x -'=,13,22x ⎛⎫∈ ⎪⎝⎭,()0n x '>, 所以()m x '在13,22⎛⎫⎪⎝⎭上单调递增,且(1)0m '=,所以()m x 在1,12⎛⎫ ⎪⎝⎭上单调递减,在31,2⎛⎫⎪⎝⎭上单调递增,令()()(2)H x g x g x =+-,()()(2)12[22ln (2)ln(2)]H x g x g x x x x x x '''=--=--+--, 令()()G x H x '=,()2()12ln 2G x x x '=--,31,2x ⎛⎫∈ ⎪⎝⎭,()0G x '>,所以()H x '在31,2⎛⎫⎪⎝⎭上单调递增,所以()(1)0H x H ''>=, 所以()H x 在31,2⎛⎫ ⎪⎝⎭上单调递增,所以()(1)0H x H >=, 所以()()()22220H x g x g x =+->,()()()2212g x g x g x ->-=,而()g x 在13,22⎛⎫⎪⎝⎭上单调递增,所以212x x ->,122x x +<;设1ln ()12t tF t t -=-+,()()()221021t F t t t '--=≤+, 所以()F t 单调递减,且(1)0F =,1t >,()0F t <,所以210x F x ⎛⎫< ⎪⎝⎭,即221121ln 121x x x x x x ⎛⎫- ⎪⎝⎭<+,即212121ln 2ln x x x x x x -<+-, 所以212121ln ln 12x x x x x x-+<-<, 所以2121ln ln x x x x -<-,即2211ln ln x x x x -<-. 所以()()21f x f x <. 【点睛】本题考查了利用导数解决不等式恒成立时求参数范围问题以及利用导数比较函数值大小问题,综合性较强,难度较大,解答的关键是要合理地构造函数,利用导数判断函数单调性以及确定极值或最值,其中要注意解答问题的思路要清晰明确.3.(1)5,3ln 22⎡⎤--+⎢⎥⎣⎦;(2)答案见解析. 【解析】 【分析】(1)代入a =1,求f (x )导数,根据导数判断f (x )在[1,2]上的单调性即可求其值域;(2)根据a 的范围,分类讨论f (x )导数的正负即可求f (x )的单调性. (1)a =1,则()2121ln ,02f x x x x x =--+>,()22121(1)20x x x f x x x x x-+-=-+='=,∴()f x 在()0,∞+单调递增,∴f (x )在[]1,2单调递增,∴()()()51,2,3ln 22f x f f ⎡⎤⎡⎤∈=--+⎣⎦⎢⎥⎣⎦,即f (x )在[1,2]上值域为5,3ln 22⎡⎤--+⎢⎥⎣⎦;(2)()()()()()223232,0x a a x a x a x a af x x a a x x x x'-++--=-++==>,()10f x x a '=⇒=,22x a =, 200a a a -≠⇒≠且1a ≠,①当1a >时,21a a >>,0x a <<或2x a >时,()0f x '>,()f x 单调递增,2a x a <<时,()0f x '<,()f x 单调递减;②当01a <<时,201a a <<<,20x a <<或x a >时,()0f x '>,()f x 单调递增,2a x a <<时,()0f x '<,()f x 单调递减;③当0a <时,20a a >>,20x a <<时,()0f x '<,()f x 单调递减,2x a >,()0f x '>,()f x 单调递增;综上,当0a <时,f (x )在()20,a 单调递减,在()2,a +∞单调递增;当01a <<时,f (x )在()20,a ,(),a +∞单调递增,在()2,a a 单调递减;当1a >时,f (x )在()0,a ,()2,a +∞单调递增,在()2,a a 单调递减.4.(1)答案见解析 (2)(,e 3]-∞+ 【解析】 【分析】(1)求导得到()x f x e a '=-,讨论0a 和0a >两种情况,分别计算得到答案. (2)0x >时,2e 1x x x a x +++≤,令2e 1()(0)x x x g x x x+++=>,求函数的最小值,得到答案. (1)()e 1x f x ax =-+,()e x f x a '∴=-.①当0a ≤时,()e 0x f x a '=->恒成立,()f x ∴在R 上单调递增,无极大值也无极小值;②当0a >,(,ln )x a ∈-∞时,()0f x '<,(ln ,)x a ∈+∞时,()0f x '>,()f x ∴在(,ln )a -∞上单调递减,在(ln ,)a +∞单调递增.∴函数()f x 有极小值为ln (ln )e ln 1ln 1a f a a a a a a =-+=-+,无极大值.(2)若对任意0x >,2()f x x x ≥--恒成立,则2e 1x x x a x +++≤恒成立,即2min e 1(0)x x x a x x ⎛⎫+++≤>⎪⎝⎭. 设2e 1()(0)x x x g x x x +++=>,则()2(1)e 1()x x x g x x -++'=,令()2(1)e1()0x x x g x x-++'==,解得1x =,当(0,1)x ∈时,()0g x '<,当(1,)x ∈+∞时,()0g x '>,()g x ∴在(0,1)上为减函数,在(1,)+∞上为增函数,()(1)g x g ∴≥,min ()(1)e 3g x g ∴==+,∴当e 3a ≤+时满足对任意0x >,2()f x x x ≥--恒成立,∴实数a 的取值范围为(,e 3]-∞+.5.(1)递增区间为2(e ,)-+∞,递减区间为2(0,e )-,极小值为2e --,没有极大值 (2)3 【解析】 【分析】(1)由导数分析单调性后求解 (2)参变分离后,转化为最值问题求解 (1)函数()()1ln f x x x =+的定义域为(0,)+∞, 由()=ln 2f x x '+,令()=0f x '可得2e x -=,当2(0,)e x -∈时,()0f x '<,函数()()1ln f x x x =+在2(0,e )-上单调递减, 当2(e ,)x -∈+∞时,()0f x '>,函数()()1ln f x x x =+在2(e ,)-+∞上单调递增, ∴ 函数()()1ln f x x x =+的递增区间为2(e ,)-+∞,递减区间为2(0,e )-,函数()()1ln f x x x =+在2e x -=时取极小值,极小值为2e --,函数()()1ln f x x x =+没有极大值 (2)当()1,x ∈+∞时,不等式()()1m x f x -<可化为ln 1x x xm x +<-, 设ln ()1x x xg x x +=-,由已知可得[]min ()g x m <, 又()()()22ln 2(1)ln 2'ln 11()x x x x g x x x x x x +---==----, 令()ln 2(1)h x x x x =-->,则1'()10h x x=->,∴ ()ln 2h x x x =--在()1,+∞上为增函数,又(3)1ln30h =-<,(4)2ln 40h =->, ∴ 存在0(3,4)x ∈,使得0()0h x =,即002ln x x -= 当()01,x x ∈时,()0g x '<,函数ln ()1x x xg x x +=-在0(1,)x 上单调递减, 当0(,)x x ∈+∞时,()0g x '>,函数ln ()1x x xg x x +=-在0(,)x +∞上单调递增, ∴ []20000000min 00ln ()=()==11x x x x x g x g x x x x +-=--, ∴ 0m x <, ∴ m 的最大值为3. 6.(1)证明见解析 (2)e ,e 1⎡⎫+∞⎪⎢-⎣⎭【解析】 【分析】(1)求出()f x 的导数,设出切点,可得切线的斜率,根据斜率相等,进而构造函数()=ln 1h x x x +-,求出导数和单调区间,即可证明;(2)由2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()maxln 1x k x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-2e,e x ⎡⎤∈⎣⎦,再 利用导数法求出()()n 1l xx x x ϕ-=在2e,e ⎡⎤⎣⎦的最大值即可求解.(1)由题意可知,()f x 的定义域为()()0,11,+∞, 由()ln xf x x=,得()()2ln 1ln x f x x -'=,直线y g x 过定点()1,0, 若直线yg x 与曲线()y f x =相切于点()00000,01ln x x x x x ⎛⎫>≠ ⎪⎝⎭且,则()002000ln 1ln 1ln x x x k x x --==-,即00ln 10x x +-=① 设()()=ln 1,0h x x x x +-∈+∞,则()1=10h x x'+>, 所以()h x 在()0+∞上单调递增,又()1ln1110h =+-=, 从而当且仅当01x =时,①成立,这与01x ≠矛盾. 所以,R k ∀∈,直线y g x 都不是曲线()y f x =的切线. (2)由()()f x g x ≤,得()1ln xxk x ≤-, 22e e ,0e 11e 1x x ∴≤≤∴<-≤-≤-,()l 1n xk x x -∴≥若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()maxln 1x k x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-,2e,e x ⎡⎤∈⎣⎦即可. 令()()n 1l x x x x ϕ-=,2e,e x ⎡⎤∈⎣⎦,则()()2ln 1ln 1x x x x x ϕ---+'=⎡⎤⎣⎦,令()ln 1t x x x =--+,2e,e x ⎡⎤∈⎣⎦,则()110t x x'=--<, 所以()t x 在2e,e ⎡⎤⎣⎦上是单调递减;所以()()e lne e 1e<0t x t ≤=--+=-,故()0ϕ'<x()ϕx 在2e,e ⎡⎤⎣⎦上是单调递减;当e x =时,()ϕx 取得最大值为()()e e e e 1ln e e 1ϕ==--,即e e 1k ≥-. 所以实数k 的取值范围为e ,e 1⎡⎫+∞⎪⎢-⎣⎭【点睛】解决此题的关键利用导数的几何意义及两点求斜率,再根据同一切线斜率相等即可证明,对于恒成立问题通常采用分离常数法,进而转化为求函数的最值问题,利用导数法即可求解.7.(1)在(0,)+∞单调递增;(2)1b ≤【解析】【分析】(1)对函数()f x 通过求导,判断出导数恒大于等于0,得到()f x 在(0,)+∞单调递增.(2)将()g x 化简整理并求导,得到222(1)1()(24)-'=++-x g x x b x x,讨论b 的取值可确定()g x 在(1,)+∞单调性,即可得到取值范围.(1)因为()f x 的定义域为(0,)+∞,对函数()f x 求导,则222221221(1)()10x x x f x x x x x '-+-=+-==≥,∴函数()f x 在(0,)+∞单调递增. (2)因为()()()28g x f x bf x =-,所以22211()2ln 8(2ln )0=----->g x x x b x x x x对1x ∀>恒成立, 322412()28(1)'=+--+-g x x b x x x x 4232312248(2)⎡⎤=+--+-⎣⎦x x b x x x x 222322(1)2(1)1(1)4(24)--⎡⎤=+-=++-⎣⎦x x x bx x b x x x当1x >时,124++>x x ,当44≤b ,即1b ≤时,()0g x '>对1x ∀>恒成立,∴()g x 在(1,)+∞单调递增,()(1)g x g >=0符合题意. 当1b >时,存在01x >使得当0(1,)x x ∈时,()0,()g x g x '<单调递减;此时()(1)0g x g <=这与()0>g x 恒成立矛盾.综上:1b ≤.【点睛】本题考查函数恒成立条件下求解参数范围问题,属于难题.对函数()g x 求导,有222(1)1()(24)-'=++-x g x x b x x,再利用()1=0g 的特点,可分类讨论b 的取值范围,在1b ≤时,()g x 在(1,)+∞单调递增,原式成立,此时满足要求;当1b >时,()g x 在(1,)+∞先出现递减区间,必有()0g x <出现,与已知矛盾,即可确定b 的范围.8.(1)(],2-∞- (2)2e ,4⎛⎤-∞ ⎥⎝⎦【解析】【分析】(1)求出导函数,得到11m --≥,即可求出m 的取值范围;(2)把题意转化为2x ax e ≤,分类讨论:当0x =时,求出R a ∈;当0x >时,转化为2xe a x≤,令2()x e g x x =,利用导数求出min ()g x ,即可求出实数a 的取值范围. (1)因为()()e x f x x m =+⋅,所以()(1)e x f x x m '=++⋅,令()0f x '≤,得1x m ≤--,则()f x 的单调递减区间为(,1]m -∞--,因为()f x 在(,1]-∞上是减函数,所以11m --≥,即2m ≤-,故m 的取值范围是(],2-∞-;(2)由题知:()e x f x x =⋅,则22e 0,e x x x ax ∀≥⋅≤,即2e x ax ≤,当0x =时,01≤恒成立,则a R ∈,当0x >时,2e x a x≤,令2(e )x g x x =,则2432e e e (2)()x x x x x x g x x x ⋅-⋅⋅-'==, 则当02x <<时,()0g x '<,()g x 递减;当2x >时,()0g x '>,()g x 递增, 故2min e ()(2)4g x g ==,则2e 4a ≤, 综上所述,实数a 的取值范围是2e ,4⎛⎤-∞ ⎥⎝⎦. 9.(1)列联表见解析,没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关; (2)①0310p =;②()73a b + 【解析】【分析】(1)对满足条件的数据统计加和即可,然后根据给定的2K 计算公式,将计算结果与195%0.05-=所对应的k 值比较大小即可;(2)①利用独立重复试验与二项分布的特点,写出10人中恰有3人不了解“碳中和”的概率为()f p ,再利用导数求出最值点;②利用独立重复试验的期望公式代入可求出答案.(1)由题中表格数据完成22⨯列联表如下:()22800125250150275800 3.463 3.841275525400400231K ⨯⨯-⨯==≈<⨯⨯⨯. 故没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关.(2)①由题得,()()733101f p C p p =-,()0,1p ∈, ∴()()()()()763236321010C 3171C 1310f p p p p p p p p ⎡⎤'=---=--⎣⎦. 令()0f p '=,得310p =,当30,10p ⎛⎫∈ ⎪⎝⎭时,()0f p '>; 当3,110p ⎛⎫∈ ⎪⎝⎭时,()0f p '<, ∴当30,10p ⎛⎫∈ ⎪⎝⎭时,()f p '单调选增;当3,110p ⎛⎫∈ ⎪⎝⎭时,()f p '单调递减, ∴()f p 的最大值点0310p =. ②本题求要准备的礼品大致为多少元,即求10个人礼品价值X 的数学期望. 由①知答错的概率为310, 则()33101731010E X a b a b ⎡⎤⎛⎫=-+=+ ⎪⎢⎥⎝⎭⎣⎦, 故要准备的礼品大致为73a b +元.10.(1)单调增区间为2,2m ⎛⎫-⎪⎝⎭,单调减区间为[)2,,2,m ∞∞⎛⎤--+ ⎥⎝⎦ (2)20,4e ⎛⎤ ⎥-⎝⎦ 【解析】【分析】(1)先对函数求导,然后由导数的正负可求出函数的单调区间, (2)由函数()f x 在[]1,2上为增函数,求出函数的最值,则()()max min 24e 2()()e m g m f x f x -+=-=,然后将问题转化为()224e 24e e m -+≥,从而可求出实数m 的取值范围.(1)()()()()221422(0)e e x x mx m x mx x f x m -+-+-+-=>'=令()0f x '=,解得2x m =-或2x =,且22m-< 当2,x m ∞⎛⎤∈-- ⎥⎝⎦时,()0f x '≤,当2,2x m ⎛⎫∈- ⎪⎝⎭时,()0f x '>, 当[)2,x ∞∈+时,()0f x '≤即()f x 的单调增区间为2,2m ⎛⎫-⎪⎝⎭,单调减区间为[)2,,2,m ∞∞⎛⎤--+ ⎥⎝⎦ (2)由(1)知,当[]0,1,2m x >∈时,()0f x '>恒成立 所以()f x 在[]1,2上为增函数,即()()max min 242()2,()1e e m m f x f f x f +====. ()()12f x f x -的最大值为()()max min 24e 2()()e m g m f x f x -+=-=()()1224e f x f x ⎡⎤≥-⎣⎦恒成立 ()224e 24e e m -+∴≥ 即24e m ≤-, 又0m > 20,4e m ⎛⎤∴∈ ⎥-⎝⎦故m 的取值范围20,4e ⎛⎤ ⎥-⎝⎦。
高二数学导数试题答案及解析

高二数学导数试题答案及解析1.若曲线的一条切线与直线垂直,则的方程为________。
【答案】【解析】根据题意,由于曲线的一条切线与直线垂直可知切线的斜率为4,那么由导数,则可知该点的坐标为(1,1),那么可知切线方程为。
【考点】导数的几何意义点评:主要是考查了导数的几何意义的运用,属于基础题。
2.若曲线与直线所围成封闭图形的面积为.则正实数为()A.B.C.D.【答案】A【解析】结合定积分可知【考点】定积分点评:若函数图形在x轴上方,则定积分值等于直线与函数曲线围成的图形的面积3.已知(Ⅰ)如果函数的单调递减区间为,求函数的解析式;(Ⅱ)对一切的,恒成立,求实数的取值范围【答案】(Ⅰ) (Ⅱ)【解析】解:(Ⅰ)由题意的解集是即的两根分别是.将或代入方程得..(Ⅱ)由题意:在上恒成立即可得设,则令,得(舍)当时,;当时,当时,取得最大值, =2.的取值范围是.【考点】导数的应用点评:导数常应用于求曲线的切线方程、求函数的最值与单调区间、证明不等式和解不等式中参数的取值范围等。
本题是应用导数求函数的单调区间和解决不等式中参数的取值范围。
4.若函数在区间上不是单调函数,则实数k的取值范围是_____________【答案】【解析】由题意得,f′(x)=3x2-12 在区间(k-1,k+1)上至少有一个实数根,而f′(x)=3x2-12的根为±2,区间(k-1,k+1)的长度为2,故区间(k-1,k+1)内必须含有2或-2.∴k-1<2<k+1或k-1<-2<k+1,∴1<k<3 或-3<k<-1,答案为。
【考点】应用导数研究函数的单调性,简单不等式解法。
点评:中档题,注意到,函数在区间上不是单调函数,则函数的导数在区间上有实数根。
5.已知是定义在上的非负可导函数,且满足,对任意正数,若,则的大小关系为A.B.C.D.【答案】A【解析】因为,是定义在上的非负可导函数,且满足,即,所以,在是增函数,所以,若,则的大小关系为。
高二数学导数试题答案及解析

高二数学导数试题答案及解析1.若曲线的一条切线l与直线垂直,则切线l的方程为 ( )A.B.C.D.【答案】A【解析】设切点为,因为,所以,由导数的几何意义可知切线的斜率为。
直线的斜率为。
由题意可得,解得,切点为,切线的斜率为4,所以切线的方程为,即。
故A正确。
【考点】1导数的几何意义;2两直线垂直时斜率的关系;3直线方程。
2.曲线在点(1,1)处的切线方程为 .【答案】【解析】∵y=lnx+x,∴,∴切线的斜率k=2,所求切线程为.【考点】导数的几何意义.3.已知是定义在上的非负可导函数,且满足,对任意正数,若,则的大小关系为A.B.C.D.【答案】A【解析】因为,是定义在上的非负可导函数,且满足,即,所以,在是增函数,所以,若,则的大小关系为。
选A。
【考点】导数的运算法则,应用导数研究函数的单调性。
点评:中档题,在给定区间,如果函数的导数非负,则函数为增函数,如果函数的导数非正,则函数为减函数。
比较大小问题,常常应用函数的单调性。
4.已知函数的导函数为,1,1),且,如果,则实数的取值范围为()A.()B.C.D.【答案】B【解析】由于,1,1),故函数在区间上为增函数,且为奇函数,由得:,则,解得。
故选B。
【考点】函数的性质点评:求不等式的解集,常结合到函数的单调性,像本题解不等式就要结合到函数的单调性。
5.已知函数在上是单调函数,则实数a的取值范围是()A.B.C.D.【答案】B【解析】因为,函数在上是单调函数,所以,=0无不等实数解,即,解得,,故选B。
【考点】利用导数研究函数的单调性。
点评:简单题,在某区间,导数非负,函数为增函数,导数非正,函数为减函数。
6.已知曲线方程,若对任意实数,直线,都不是曲线的切线,则实数的取值范围是【答案】【解析】把已知直线变形后找出直线的斜率,要使已知直线不为曲线的切线,即曲线斜率不为已知直线的斜率,求出f(x)的导函数,由完全平方式大于等于0即可推出a的取值范围解:把直线方程化为y=-x-m,所以直线的斜率为-1,且m∈R,所以已知直线是所有斜率为-1的直线,即曲线的斜率不为-1,由得:f′(x)=x2-2ax,对于x∈R,有x2-2ax≥,根据题意得:-1<a<1.故答案为【考点】求曲线上过某点曲线方程点评:此题考查学生会利用导数求曲线上过某点曲线方程的斜率,是一道基础题.7.曲线在点(1,2)处的切线方程是____________---------【答案】【解析】,直线斜率为1,直线方程为【考点】导数的几何意义点评:几何意义:函数在某一点处的导数值等于该点处的切线的斜率8.已知函数.(1)当时,求曲线在点处的切线方程;(2)对任意,在区间上是增函数,求实数的取值范围.【答案】(1)(2)【解析】(Ⅰ)解:当时,, 2分,又 4分所以曲线在点处的切线方程为即 6分(Ⅱ)= 8分记,则,在区间是增函数,在区间是减函数,故最小值为 -10分因为对任意,在区间上是增函数.所以在上是增函数, 12分当即时,显然成立当综上 15分【考点】导数的几何意义与函数单调性点评:第一问利用导数的几何意义:函数在某一点处的导数值等于该点处的切线斜率,可求得切线斜率,进而得到切线方程;第二问也可用参变量分离法分离,通过求函数最值求的取值范围9.已知函数,则()A.0B.1C.-1D.2【答案】C【解析】根据题意,由于,则可知-1+0=-1,故答案为C.【考点】导数的运算点评:主要是考查了导数的运算法则的的运用,属于基础题。
高二数学导数测试题版

高二数学导数测试题版 Final revision by standardization team on December 10, 2020.一、选择题(每小题5分,共70分.每小题只有一项是符合要求的)1.设函数()y f x =可导,则0(1)(1)lim 3x f x f x∆→+∆-∆等于( ).A .'(1)fB .3'(1)fC .1'(1)3f D .以上都不对2.已知物体的运动方程是43214164S t t t =-+(t 表示时间,S 表示位移),则瞬时速度为0的时刻是( ).A .0秒、2秒或4秒B .0秒、2秒或16秒C .2秒、8秒或16秒D .0秒、4秒或8秒3.若曲线21y x =-与31y x =-在0x x =处的切线互相垂直,则0x 等于( ).A.6 B.6- C .23 D .23或04.若点P在曲线3233(34y x x x =-++上移动,经过点P 的切线的倾斜角为α,则角α的取值范围是( ).A .[0,]πB .2[0,)[,)23πππC .2[,)3ππD .2[0,)(,)223πππ5.设'()f x 是函数()f x 的导数,'()y f x =的图像如图 所示,则()y f x =的图像最有可能的是(3x ) C .(3,)-+∞ D .(,3)-∞-7.已知函数32()f x x px qx =--的图像与x 轴切于点(1,0),则()f x 的极大值、极小值分别为( ).A .427 ,0 B .0,427C .427-,0 D .0,427- 8.由直线21=x ,2=x ,曲线xy 1=及x 轴所围图形的面积是( ).A. 415B. 417 C. 2ln 21 D. 2ln 29.函数3()33f x x bx b =-+在(0,1)内有极小值,则( ).A .01b <<B .1b <C .0b >D .12b <10.21y ax =+的图像与直线y x =相切,则a 的值为( ).A .18B .14C .12D .111. 已知函数()x x x f cos sin +=,则=)4('πf ( )A. 2B.0C. 22D. 2- 12.函数3()128f x x x =-+在区间[3,3]-上的最大值是( ) A. 32 B. 16 C. 24 D. 17 13.已知(m 为常数)在上有最大值3,那么此函数在上的最小值为( )A .B .C .D .14.dx e e x x ⎰-+1)(=( )A .ee 1+B .2eC .e2D .ee 1-二、填空题(每小题5分,共30分)15.由定积分的几何意义可知⎰--2224x=_________.16.函数)0(ln )(>=x x x x f 的单调递增区间是 .17.已知函数()ln f x ax x =-,若()1f x >在区间(1,)+∞内恒成立,则实数a 的范围为______________. 18.设是偶函数,若曲线在点处的切线的斜率为1,则该曲线在处的切线的斜率为_________.19.已知曲线交于点P ,过P 点的两条切线与x 轴分别交于A ,B 两点,则△ABP 的面积为 ;20. 220(3)10,x k dx k +==⎰则 三、解答题(50分)21.求垂直于直线2610x y -+=并且与曲线3235y x x =+-相切的直线方程.22.已知函数xx x f 4)(+=.(Ⅰ)求函数)(x f 的定义域及单调区间;(Ⅱ)求函数)(x f 在区间[1,4]上的最大值与最小值.23.某厂生产某种电子元件,如果生产出一件正品,可获利200元,如果生产出一件件次品则损失100元,已知该厂制造电子元件过程中,次品率P 与日产量x 的函数关系是3()432xP x x *=∈+N . (1)将该厂的日盈利额T(元)表示为日产量x (件)的函数; (2)为获最大盈利,该厂的日产量应定为多少件 24.设函数323()(1)1,32a f x x x a x a =-+++其中为实数. (Ⅰ)已知函数()f x 在1x =处取得极值,求a 的值;(Ⅱ)已知不等式'2()1f x x x a >--+对任意(0,)a ∈+∞都成立,求实数x 的取值范围.高二数学导数测试题参考答案一、选择题:CDABC BADAB BCDD 二、填空题15.π2 16.1,e ⎡⎫+∞⎪⎢⎣⎭17. 1a ≥ 18.19.20. 1三、解答题21.解:设切点为(,)P a b ,函数3235y x x =+-的导数为'236y x x =+ 切线的斜率'2|363x a k y a a ===+=-,得1a =-,代入到3235y x x =+- 得3b =-,即(1,3)P --,33(1),360y x x y +=-+++=. 22.解:(Ⅰ)函数的定义域为}0|{≠x x 。
高二数学导数练习题及答案

高二数学导数练习题及答案导数是高中数学中的重要概念之一,它在数学和实际问题中具有广泛的应用。
为了帮助高二学生巩固导数的知识和提高解题能力,本文为大家准备了一些高二数学导数练习题及答案。
希望通过这些练习题的训练,同学们能够更好地理解导数的概念和运用。
练习题一:1. 求函数 f(x) = 2x^3 - 3x^2 + 4x - 1 在点 x = 2 处的导数。
2. 已知函数 f(x) = x^2 + 3x,求函数 f(x) = x^2 + 3x 的导函数。
3. 求函数 f(x) = (x + 1)(x - 2)(x + 3) 在点 x = -1 处的导数。
答案一:1. 函数 f(x) = 2x^3 - 3x^2 + 4x - 1 的导数为:f'(x) = 6x^2 - 6x + 4。
2. 函数 f(x) = x^2 + 3x 的导函数为:f'(x) = 2x + 3。
3. 函数 f(x) = (x + 1)(x - 2)(x + 3) 在点 x = -1 处的导数为:f'(-1) = 0。
练习题二:1. 求函数 f(x) = 3x^4 - 2x^3 + 5x^2 - 4x + 1 的极值点及极值。
2. 已知函数 f(x) = x^3 - 6x^2 + 9x + 2,求函数 f(x) = x^3 - 6x^2 + 9x+ 2 的拐点。
3. 求函数 f(x) = x^3 - 3x 在其定义域内的极值点。
答案二:1. 函数 f(x) = 3x^4 - 2x^3 + 5x^2 - 4x + 1 的极值点为 x = 1/2,极值为 f(1/2) = 47/16。
2. 函数 f(x) = x^3 - 6x^2 + 9x + 2 的拐点为 x = 2。
3. 函数 f(x) = x^3 - 3x 在其定义域内的极值点为 x = 1。
练习题三:1. 求函数 f(x) = e^x 的导数。
2. 已知函数 f(x) = ln(x),求函数 f(x) = ln(x) 的导函数。
高二导数选择题专项训练100题有答案

导数专项训练100题 姓名:一、选择题:1.函数221y x =+在闭区间[1,1]x+∆内的平均变化率为( ) A.12x +∆ B.2x +∆ C.32x +∆ D.42x +∆2. 若函数2y x=,则当1x =-时,函数的瞬时变化率为( )A.1B.1-C.2D.2-3. 函数31y x x=-的导数'y =( )A.2213x x -B.1332x -C.2213x x +D.221x x + 4. 已知函数()ln f x x =,则'()ef e 的值等于( )A.1B.eC.1eD.2e 5. 已知函数2()22f x x x =-+在区间[1,1],[1,1](01)x x x -∆+∆<∆<的平均变化率分别为12,k k ,则下列关系成立的是( ) A.120k k +=B.120k k +<C.120k k +<D.120k k ->6.()f x 在(,)a b 内可导,则'()0f x <是()f x 在(,)a b 内单调递减的( )A.充分条件B.必要条件C.充要条件D.既不充分又不必要条件7.函数214yx x=+的单调增区间为( ) A.(0,)+∞ B.1(,)2+∞C.(,1)-∞-D.1(,)2-∞-8.在下列结论中,正确的结论共有( )(1) 单调增函数的导数也是单调增函数; (3)单调减函数的导数也是单调减函数; (2) 单调函数的导数也是单调函数; (4)导函数是单调的,则原函数也是单调的。
A.0个 B.2个 C.3个 D.4个 9. 若在区间(,)a b 内有'()0f x >,且()0f a ≥,则在(,)a b 内有( )A.()0f x >B.()0f x <C.()0f x =D.不能确定10. 三次函数3()1yf x ax ==-在(,)-∞+∞内是减函数,则( )A.1a =B.2a =C.13a = D.0a <11.已知函数(),()f x g x 都是(,)a b 上的可导函数,在[,]a b 上连续且'()'(),()()f x g x f a g a >=,则当(,)x a b ∈时有( )A.()()f x g x >B.()()f x g x <C.()()f x g x =D.大小关系不能确定12.3()3f x x x =-为递增函数的区间是( ) A.(,1)-∞- B.(1,)+∞ C.(1,1)-D.(,1)(1,)-∞-+∞13.设32()(0)f x ax bx cx d a =+++>,则()f x 为增函数的充要条件是( )A.240b ac ->B.0,0b c >>C.0,0b c =>D.230b ac -<14.下列说法正确的是( ) A. 当0'()0f x =时,则0()f x 为()f x 的极大值 B. 当0'()0f x =时,则0()f x 为()f x 的极小值 C. 当0'()0f x =时,则0()f x 为()f x 的极值 D. 当0()f x 为()f x 的极值时,0'()0f x =.15.已知函数()1sin ,(0,2)f x x xx π=+-∈,则函数()f x ( ) A. 在(0,2)π上是增函数, B. 在(0,2)π上是减函数C. 在(0,2)π上是增函数,在(,2)ππ上是减函数D. 在(0,2)π上是减函数,在(,2)ππ上是增函数 16.若函数()f x 可导,则“'()0f x =有实根”是“()f x 有极值”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分又不必要条件17.已知函数()y f x =是定义在区间[,]a b 上的连续函数,在开区间(,)a b 内可导,且'()0f x >,则在(,)a b 上下列各结论中正确的是( ) A.()f a 是极小值,()f b 是极大值 B. ()f a 是极大值,()f b 是极小值 C. ()f x 有极值,但不是(),()f a f b D. ()f x 没有极值18.函数3()33f x x bx b=-+在(0,1)内有极小值,则( )A.0b <B.1b <C.0b >D.12b <19.三次函数当1x=时有极大值4,当3x =时有极小值0,且函数过原点,则此函数是( ) A.3269y x x x =++ B.3269y x x x =-+ C.3269y x x x =-- D.3269y x x x =+-20.函数3()3(||1)f x x x x =-<,那么( )A. 有最大值,无最小值B. 有最大值,也有最小值C. 无最大值,也无最小值D. 既有最大值,又有最小值 21.若(3)2,'(3)2f f ==-,则323()lim3x x f x x →--的值为( )A.4-B.8C.0D.322.若函数()f x 为可导函数,且满足0(1)(1)lim12x f f x x→--=,则过曲线()f x y =上的点(1,(1))f 处的切线的斜率为( )A.2B.1-C.1D.2-23.若曲线4()2f x x x =-+在点P 处的切线与直线310x y +-=垂直,则点P 的坐标为( ) A.(1,0) B.(1,2) C.(1,4)- D.(1,0)- 24.已知函数()f x 在1x =处的导数为3,则()f x 的解析式可能为( )A.2()(1)3(1)f x x x =-+-B.()2(1)f x x =-C.2()2(1)f x x =-D.()1f x x =- 25.曲线cos y x =和tan y x =交点处两曲线的切线的交角为( )A.3π B.4π C.4π D.2π26.如果过曲线313yx =上点P 的切线l 的方程为12316x y -=,那么点P 的坐标为( ) A.8(2,)3 B.4(1,)3- C.28(1,)3-- D.20(3,)327.如果一直线过原点且与曲线11y x =+相切与点P ,那么切点P 的坐标为( )A.1(,2)2-B.12(,)23-C.(2,1)--D.1(2,)328.若在曲线sin (0)y x x π=<<上取一点M ,使过M点的切线与直线y x =平行,则点M 的坐标为( )A.(3πB.(,3π±C.1(,)62πD.(6π 29.若函数()f x 既是周期函数又是偶函数,则其导函数'()f x 为( )A. 既是周期函数,又是偶函数B. 既是周期函数,又是奇函数C. 不是周期函数,但是偶函数D. 不是周期函数,但是奇函数30.已知抛物线2y ax bx c =++过点(1,1),且在点(2,1)-处的切线方程为3y x =-,则a 、b 、c 的值分别是( ) A.3,11,9- B.11,3,9- C.9,11,3- D.9,3,11-31.如果一个球的半径r 以0.2/cm s 的速度增加,那么当球的半径20r cm =时,它的体积增加的速度为( )3/cm s A.310π B.320π C.330π D.360π32.若函数()f x 在0x 处可导,则000()()lim h f x f x h h→--为( )A.(0)fB.'(0)fC.0'()f xD.0'()f x -33.若函数()f x 在0x 处可导,那么000()()lim x x f x f x x x →--为( )A.可能不存在B.0'()f x -C.0'()f xD.0()f x34.若函数()f x 在x a =处可导,且'()f a m =,则(2)(2)limx a f x a f a x x a →----为( ) A.m B.2mC.3mD.m -35. 若f (x )=sin α-cos x ,则f ‘(α)等于( ) A 、sin αB 、cos αC 、sin α+cos αD 、2sin α36.f (x )=ax 3+3x 2+2,若f ‘(-1)=4,则a 的值等于( )A 、319 B 、316 C 、313 D 、310 37.f (x )与g(x )是定义在R 上的两个可导函数,若f (x ),g(x )满足f ′(x )=g ′(x ),则f (x )与g (x )满足( )A 、f (x )=g (x )B 、f (x )-g (x )为常数函数C 、f (x )=g (x )=0D 、f (x )+g (x )为常数函数38. 曲线()nyx n N =∈在点P 2n)处切线斜率为20,那么n 为 ( )A . 7B .6C .5D .439.函数()f x = ( )A .0)x > B .0)x > C 0)x > D .0)x >40.函数f(x)=(x+1)(x 2-x+1)的导数是 ( )A . x 2-x+1B .(x+1) (2x-1)C .3x 2D .3x 2+141.函数yx =的导数为 ( )A .'y x x = B .'y x =C.'y x = D .'y x = 42.函数y= ( )A .'2cos sin x x x y x += B.'2cos sin x x x y x -=. C.'2sin cos x x x y x -= D .'2sin cos x x x y x +=43.函数21(31)y x =-的导数是 ( ) A .'36(31)y x =- B .'26(31)y x =- C.'36(31)y x =-- D .'26(31)y x =--44.函数3sin (3)4y x π=+的导数 ( )A.23sin (3)cos(3)44x x ππ++B.29sin (3)cos(3)44x x ππ++C.29sin (3)4x π+D.29sin (3)cos(3)44x x ππ-++ 45.下列导数数运算正确的是 ( )A .'211()1x x x +=+ B .'21(log )ln 2x x = C.'3(3)3log x xe = D .2'(cos )2sin x x x x =-46.函数2ln(32)y x x =--的导数 ( )A .23x + B .2132x x -- C .22223x x x ++- D .22223x x x -+-47.函数22(0,1)x xy aa a -=>≠,那么'y 为 ( )A . 22ln xxa a - B .222ln xxa a - C.222(1)ln xxx a a -- D .22(1)ln xxx a a --48.若000(2)()13limx f x x f x x∆→+∆-=∆,则'0()f x = ( )A .23B .32C .3D .249. 已知函数y=f(x)在区间(a,b)内可导,且x0∈(a,b)则hhxfhxfn)()(lim--+→的值为()A、f’(x0)B、2 f’(x0)C、-2 f’(x0)D、050.f(x)=ax3+3x2+2,若f’(-1)=4,则a的值为()A.19/3 B.16/3 C.13/3 D.10/351.设y=8x2-lnx,则此函数在区间(0,1/4)和(1/2,1)内分别为()A.单调递增,单调递减 B、单调递增,单调递增 C、单调递减,单调递增 D、单调递减,单调递减52.设y=tanx,则y’=( )A.sec2xB.secx·tanxC.1/(1+x2)D.-1/(1+x2)53.曲线y=x3+x-2 在点P0处的切线平行于直线y=4x-1,则点P0点的坐标是()54.(0,1) B.(1,0) C.(-1,0) D.(1,4)54.给出下列命题:(1)若函数f(x)=|x|,则f’(0)=0;(2)若函数f(x)=2x2+1,图像上P(1,3)及邻近上点Q(1+Δx,3+Δy),则xy∆∆=4+2Δx;(3)加速度是动点位移函数S(t)对时间t的导数;(4)y=2cosx+lgx,则y’=-2cosx·sinx+x1.其中正确的命题有()A. 0个B.1个C.2个 D。
高二数学导数练习题(含答案)

高二数学导数练习题1、设函数f(x)在定义域内可导,y=f(x)的图象如图1所示,则导函数y=f′(x)可能为()2、已知函数,其导函数为①的单调减区间是;②的极小值是;③当时,对任意的且,恒有④函数满足其中假命题的个数为 ( )A.0个B.1个C.2个D.3个3、已知函数的导函数,函数的图象如右图所示,且,则不等式的解集为()A.B.C.(2,3)D.4、已知函数对定义域内的任意都有=,且当时其导函数满足若则()A. B.C. D.5、已知函数满足,且的导函数,则的解集为( )A. B. C. D.6、设是定义在R上的奇函数,且,当时,有恒成立,则不等式的解集是()A. (-2,0) ∪(2,+∞)B. (-2,0) ∪(0,2)C. (-∞,-2)∪(2,+∞)D. (-∞,-2)∪(0,2)7、设函数在R上可导,,则与大小是( )A. B. C. D.不确定8、已知定义在R上的奇函数f(x),设其导函数为f′(x),当x∈(-∞,0)时,恒有xf′(x)<f(-x),令F(x)=xf(x),则满足F(3)>F(2x-1)的实数x的取值范围是()A.(-1,2) B.(-1,12 ) C.(,2) D.(-2,1)9、设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)·g(x)+f(x)·g′(x)>0,且f(-3)·g(-3)=0,则不等式f(x)·g(x)<0的解集是()A.(-3,0)∪(3,+∞) B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞) D.(-∞,-3)∪(0,3)10、函数f(x)在定义域R内可导,若f(x)=f(2-x),且当x∈(-∞,1)时,(x-1)f′(x)<0,设a=f(0),b=f(),c=f(3),则()A.a<b<c B.c<a<bC.c<b<a D.b<c<a11、定义在上的单调递减函数,若的导函数存在且满足,则下列不等式成立的是()A.B.C.D.12、已知二次函数=的导数为,>0,对任意实数都有≥0,则的最小值为()A.4B.3C.8D.2二、填空题14、设函数,若是奇函数,则+的值为15、已知函数,.若函数在区间内是减函数,则实数的取值范围是。
高二数学导数试题

高二数学导数试题1.用边长为48厘米的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成铁盒.当所做的铁盒的容积最大时,在四角截去的正方形的边长为()A.12B.10C.8D.6【答案】C【解析】设在四角截去的正方形的边长为,则铁盒容积为,而,即的单调递增区间为,单调递减区间为,所以在时V有极大值.【考点】导函数的应用、函数思想.2.已知函数在处有极大值,则=()A.6B.C.2或6D.-2或6【答案】A【解析】根据题意,由于函数在处有极大值,则可知f’(2)=0,12-8c+=0,c=4.则可知=6,当c=2不符合题意,故答案为A.【考点】函数的极值点评:主要是考查了函数极值的运用,属于基础题。
3.对于R上的可导的任意函数,若满足,则函数在区间上必有()A.B.C.D.或【答案】A【解析】根据题意,由于对于R上的可导的任意函数,若满足1<x<2时,则可知函数f(x)递增,故可知函数在区间上必有成立,故答案为A.【考点】函数的单调性点评:主要是考查了函数单调性的运用,属于基础题。
4.若函数的导函数在区间上是增函数,则函数在区间上的图象可能是()【答案】A【解析】根据题意,由于函数的导函数在区间上是增函数,函数在区间上的图象对于A,递增,的导数值从小的正数开始增大,成立,对于B,由于函数递增,导数的值逐渐减小,对于C,导数值不变,对于D,导数值先增大再减小,故选A.【考点】导数的概念点评:主要是考查了导数的几何意义的运用,属于基础题。
5.已知函数(1)当时,求的极小值;(2)若直线对任意的都不是曲线的切线,求的取值范围;(3)设,求的最大值的解析式.【答案】(1)-2(2)(3)【解析】(1) 1分当时,时,,2分的极小值是 3分(2)法1:,直线即,依题意,切线斜率,即无解 4分6分法2:, 4分要使直线对任意的都不是曲线的切线,当且仅当时成立, 6分(3)因故只要求在上的最大值. 7分①当时,9分②当时,(ⅰ)当在上单调递增,此时 10分(ⅱ)当时,在单调递增;1°当时,;2°当(ⅰ)当(ⅱ)当 13分综上 14分【考点】导数的几何意义及函数极值最值点评:利用函数在某一点处的导数值等于过改点的切线斜率可确定第二问中导数值不可能为,求函数极值最值首先求得导数,当导数等于0时得到极值点,确定单调区间从而确定是极大值还是极小值,第三问求最值要分情况讨论在区间上的单调性,对于分情况讨论题是一个难点内容6.已知点在曲线上,为曲线在点处的切线的倾斜角,则取值范围是A.B.C.D.【答案】D【解析】,设,所以斜率的范围倾斜角的范围【考点】函数导数计算与几何意义点评:函数的几何意义:函数在某一点处的导数值等于该点处的切线斜率,均值不等式求最值时要注意一正二定三相等的条件7.已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)直线为曲线的切线,且经过原点,求直线的方程及切点坐标.【答案】(Ⅰ) (Ⅱ) 直线的方程为,切点坐标为【解析】(Ⅰ) 1分在点处的切线的斜率, 2分切线的方程为. 4分(Ⅱ)设切点为,则直线的斜率为,直线的方程为:. 6分又直线过点,,整理,得,,,的斜率, 10分直线的方程为,切点坐标为. 12分【考点】导数的几何意义及直线方程点评:几何意义:函数在某一点处的导数值等于该点处的切线斜率,在求切线方程时要从切点入手,找到切点满足的条件即可求得其坐标8.曲线上的点到直线的最短距离是__________.【答案】【解析】直线y=2x+3在曲线y=ln(2x+1)上方,把直线平行下移到与曲线相切,切点到直线2x-y+3=0的距离即为所求的最短距离.由直线2x-y+3=0的斜率,令曲线方程的导函数等于已知直线的斜率即可求出切点的横坐标,把求出的横坐标代入曲线方程即可求出切点的纵坐标,然后利用点到直线的距离公式求出切点到已知直线的距离即可.解:因为直线2x-y+3=0的斜率为2,所以令y′==2,解得:x=1,把x=1代入曲线方程得:y=0,即曲线上过(1,0)的切线斜率为2,则(1,0)到直线2x-y+3=0的距离d=即曲线y=ln(2x-1)上的点到直线2x-y+3=0的最短距离是故答案为:【考点】点到直线的距离点评:在曲线上找出斜率和已知直线斜率相等的点的坐标是解本题的关键.同时要求学生掌握求导法则及点到直线的距离公式的运用.9.已知函数,若,则实数的值为()A.B.C.D.【答案】A【解析】根据题意,由于函数,若,则实数的值为2,故答案为A.【考点】导数的概念点评:主要是考查了导数的概念的运用,属于基础题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(每小题5分,共70分.每小题只有一项就是符合要求得)
1.设函数()y f x =可导,则0(1)(1)
lim 3x f x f x
∆→+∆-∆等于( ).
A.'(1)f
B.3'(1)f
C.1
'(1)3f D.以上都不对
2.已知物体得运动方程就是4321
4164
S t t t =-+(t 表示时间,S 表示位移),则瞬时速度
为0得时刻就是( ).
A.0秒、2秒或4秒
B.0秒、2秒或16秒
C.2秒、8秒或16秒
D.0秒、4秒或8秒
3.若曲线21y x =-与31y x =-在0x x =处得切线互相垂直,则0x 等于( ).
C.23
D.23或0
4.若点P
在曲线323
3(34
y x x x =-++上移动,经过点P 得切线得倾斜角为α,则角α得取值范围就是( ).
A.[0,]π
B.2[0,)[,)23
ππ
π
C.2[,)3ππ
D.2[0,)(,)223
πππ
5.设'()f x 就是函数()f x 得导数,'()y f x =得图像如图 所示,则()y f x =得图像最有可能得就是
3x ))-7.已知函数3
2
()f x x px qx =--分别为( ).
A.427 ,0
B.0,427
C.427- ,0
D.0,427
-
8.由直线21=x ,2=x ,曲线x y 1
=及x 轴所围图形得面积就是( ).
A 、 415
B 、 417
C 、 2ln 21
D 、 2ln 2
9.函数3
()33f x x bx b =-+在(0,1)内有极小值,则( ).
A.01b <<
B.1b <
C.0b >
D.1
2
b < 10.21y ax =+得图像与直线y x =相切,则a 得值为( ). A.18 B.14 C.1
2
D.1
11、 已知函数()x x x f cos sin +=,则=)4
('π
f ( )
A 、 2
B 、0
C 、 22
D 、 2- 12.函数3
()128f x x x =-+在区间[3,3]-上得最大值就是( ) A 、 32 B 、 16 C 、 24 D 、 17 13.已知
(m 为常数)在
上有最大值3,那么此函数在
上得最小值为
( )
A.
B.
C.
D.
14、dx e e x x ⎰
-+1
)(=
( )
A.e
e 1
+
B.2e
C.
e
2
D.e
e 1-
二、填空题(每小题5分,共30分) 15.由定积分得几何意义可知⎰
--2
2
2
4x =_________.
16.函数
)0(ln )(>=x x x x f 得单调递增区间就是 .
17.已知函数()ln f x ax x =-,若()1f x >在区间(1,)+∞内恒成立,则实数a 得范围为______________. 18.设
就是偶函数,若曲线
在点
处得切线得斜率为1,则该曲线在
处得切线得斜率为_________.
19.已知曲线
交于点P,过P 点得两条切线与x 轴分别交于A,B 两点,
则△ABP 得面积为 ; 20、
2
20(3)10,x k dx k +==⎰则
三、解答题(50分)
21.求垂直于直线2610x y -+=并且与曲线3235y x x =+-相切得直线方程.
22、已知函数x
x x f 4
)(+=、
(Ⅰ)求函数)(x f 得定义域及单调区间;
(Ⅱ)求函数)(x f 在区间[1,4]上得最大值与最小值、
23.某厂生产某种电子元件,如果生产出一件正品,可获利200元,如果生产出一件件次品则损失100元,已知该厂制造电子元件过程中,次品率P 与日产量x 得函数关系就是
3()432
x
P x x *=
∈+N . (1)将该厂得日盈利额T(元)表示为日产量x (件)得函数;
(2)为获最大盈利,该厂得日产量应定为多少件? 24.设函数32
3()(1)1,32
a f x x x a x a =
-+++其中为实数、 (Ⅰ)已知函数()f x 在1x =处取得极值,求a 得值;
(Ⅱ)已知不等式'2()1f x x x a >--+对任意(0,)a ∈+∞都成立,求实数x 得取值范围、
高二数学导数测试题参考答案
一、选择题:CDABC BADAB BCDD 二、填空题
15.π2 16.1,e ⎡⎫
+∞⎪⎢⎣⎭
17. 1a ≥ 18.
19.
20、 1
三、解答题
21.解:设切点为(,)P a b ,函数3235y x x =+-得导数为'2
36y x x =+
切线得斜率'2|363x a k y a a ===+=-,得1a =-,代入到32
35y x x =+-
得3b =-,即(1,3)P --,33(1),360y x x y +=-+++=.
22、解:(Ⅰ)函数得定义域为}0|{≠x x 。
2
41)('x x f -=, 令0)('=x f ,即04
12=-
x
, 解得 21-=x ,22=x 。
当x 变化时,)('x f ,)(x f 得变化情况如下表:
x
)2,(--∞
-2 )0,2(- )2,0(
2 ),2(+∞
)('x f
+ 0 - - 0 + )(x f
↗
-4
↘
↘
4
↗
因此函数x
x x f 4
)(+
=在区间)2,(--∞内就是增函数,在区间)0,2(-内就是减函数,在区间)2,0(内就是减函数,在区间),2(+∞内就是增函数。
(Ⅱ)在区间[1,4]上,
当x =1时,f (x )=5;当x =2时,f (x )=4;当x =4时,f (x )=5。
因此,函数)(x f 在区间[1,4]上得最大值为5,最小值为4。
23:解:(1)∵次品率3432x P x =
+,当每天生产x 件时,有3432x
x x +·件次品,有31432x x x ⎛⎫- ⎪+⎝⎭
件正品,所以233642001100254324328x x x x T x x
x x x -⎛
⎫=--= ⎪+++⎝⎭
··, (2)由(1)得2
(32)(16)
25(8)x x T x +-'=-+·
.
由0T '=得16x =或32x =-(舍去).
当016x <<时,0T '>;当16x >时,0T '<.所以当16x =时,T 最大.即该厂得日产量定为16
件,能获得最大利润.
24.解: (Ⅰ) '2()3(1)f x ax x a =-++,由于函数()f x 在1x =时取得极值,所以 '(1)0f =, 即 310,1a a a -++==∴.
(Ⅱ)方法一:由题设知:223(1)1ax x a x x a -++>--+对任意(0,)a ∈+∞都成立, 即22(2)20a x x x +-->对任意(0,)a ∈+∞都成立.
设 22()(2)2()g a a x x x a R =+--∈, 则对任意x R ∈,()g a 为单调递增函数()a R ∈. 所以对任意(0,)a ∈+∞,()0g a >恒成立得充分必要条件就是(0)0g ≥. 即 220x x --≥,20x -≤≤∴ 于就是x 得取值范围就是}{|20x x -≤≤. 方法二:由题设知:223(1)1ax x a x x a -++>--+对任意(0,)a ∈+∞都成立 即22(2)20a x x x +-->对任意(0,)a ∈+∞都成立.
于就是2222x x a x +>+对任意(0,)a ∈+∞都成立,即22
202
x x
x +≤+. 20x -≤≤∴. 于就是x 得取值范围就是}{|20x x -≤≤.。