(完整版)高二数学选修2-2导数单元测试题(有答案)

合集下载

新课标高二数学选修2-2导数单元测试题(有答案)(十五)

新课标高二数学选修2-2导数单元测试题(有答案)(十五)

新课标选修2-2高二数学理导数测试题一.选择题(1) 函数13)(23+-=x x x f 是减函数的区间为 ( D )A .),2(+∞B .)2,(-∞C .)0,(-∞D .(0,2) (2)曲线3231y x x =-+在点(1,-1)处的切线方程为( )A .34y x =-B 。

32y x =-+C 。

43y x =-+ D 。

45y x =- a(3) 函数y =a x 2+1的图象与直线y =x 相切,则a = ( )A . 18B .41C .21D .1(4) 函数,93)(23-++=x ax x x f 已知3)(-=x x f 在时取得极值,则a = ( )A .2B .3C .4D .5 (5) 在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是 ( )A .3B .2C .1D .0(6)函数3()1f x ax x =++有极值的充要条件是 ( )A .0a >B .0a ≥C .0a <D .0a ≤ (7)函数3()34f x x x =- ([]0,1x ∈的最大值是( )A . 12B . -1C .0D .1(8)函数)(x f =x (x -1)(x -2)…(x -100)在x =0处的导数值为( )A 、0B 、1002C 、200D 、100!(9)曲线313y x x =+在点413⎛⎫⎪⎝⎭,处的切线与坐标轴围成的三角形面积为( )A.19 B.29 C.13D.23二.填空题 (1).垂直于直线2x+6y +1=0且与曲线y = x 3+3x -5相切的直线方程是 。

(2).设 f ( x ) = x 3-21x 2-2x +5,当]2,1[-∈x 时,f ( x ) < m 恒成立,则实数m 的取值范围为 .(3).函数y = f ( x ) = x 3+ax 2+bx +a 2,在x = 1时,有极值10,则a = ,b = 。

(完整版)数学选修2-2练习题及答案

(完整版)数学选修2-2练习题及答案

目录:数学选修2-2第一章 导数及其应用 [基础训练A 组] 第一章 导数及其应用 [综合训练B 组] 第一章 导数及其应用 [提高训练C 组] 第二章 推理与证明 [基础训练A 组] 第二章 推理与证明 [综合训练B 组]第二章 推理与证明 [提高训练C 组] 第三章 复数 [基础训练A 组] 第三章 复数 [综合训练B 组]第三章 复数 [提高训练C 组](数学选修2-2)第一章 导数及其应用[基础训练A 组]一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3.函数3yx x 的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________;2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数5523--+=x x x y 的单调递增区间是___________________________。

高中数学选修2-2第一章《导数及其应用》单元测试(一)

高中数学选修2-2第一章《导数及其应用》单元测试(一)

A. y 2x 1
B. y 3x 2
C. y 2x 3
D. y x 2
7.函数 f (x) e ln x x 在 (0, 2e] 上的最大值为
A.1 e C. e
B. 1 D. 0
8.若函数 f (x) x(x c) 2 在 x 2 处取得极大值,则常数 c
A. 2 C. 2 或 6
数学选修 2-2 第一章《导数及其应用》单元测试
一、选择题(本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项
是符合题目要求的)
1.定积分 2 (ex 2x)dx 的值为 0
A.1
B. e2
C. e2 3
D. e2 4
2.某物体的位移 s (米)与时间 t (秒)的关系式为 s t 2 t ,则该物体在 t 2 时的瞬时速度为
A. 2 米/秒 C. 5 米/秒
B. 3 米/秒 D. 6 米/秒
3.已知曲线 y x2 上一点 P 处的切线与直线 2x y 1 0 平行,则点 P 的坐标为
A. (1,1)
B. (1,1)
C. (2, 4)
D. (3, 9)
4.已知 f (x) x2 2x f (1) ,则 f (3)
11.若函数 f (x) lnx ax 1 在[1, ) 上是单调函数,则实数 a 的取值范围为 x
A. (, 0] [1 , ) 4
B. (, 1 ] [0, ) 4
C.[ 1 , 0] 4
D. (,1]
12.已知函数 f (x) ax 1 (a 1) ln x 1 在 (0,1] 上的最大值为 3 ,则实数 a x
即 2x y 1 0 .(6 分)

(典型题)高中数学高中数学选修2-2第三章《导数应用》测试卷(含答案解析)

(典型题)高中数学高中数学选修2-2第三章《导数应用》测试卷(含答案解析)

一、选择题1.已知函数()3f x x ax =-在(1,1)-上单调递减,则实数a 的取值范围为( )A .()1,+∞B .[)3,+∞C .(],1-∞D .(],3-∞2.已知定义在()1,+∞上的函数()f x ,()f x '为其导函数,满足()()1ln 20f x f x x x x++=′,且()2f e e =-,若不等式()f x ax ≤对任意()1,x ∈+∞恒成立,则实数a 的取值范围是( )A .[),e +∞B .()2,2e -C .(),2e -D .[),e -+∞3.若函数()22ln 45f x x x bx =+++的图象上的任意一点的切线斜率都大于0,则b 的取值范围是( ) A .(),8-∞- B .()8,-+∞ C .(),8-∞D .()8,+∞4.若曲线21:(0)C y ax a =>与曲线2:x C y e =存在公共切线,则a 的取值范围为( )A .2[,)8e +∞B .2(0,]8eC .2[4e ,)+∞D .2(0,]4e5.设()f x 在定义域内可导,其图象如图所示,则导函()'f x 的图象可能是( )A .B .C .D .6.若函数21()ln 2f x kx x x =-在区间(0,]e 上单调递增,则实数k 的取值范围是( ) A .2(,]e -∞B .(,1]-∞C .[1,)+∞D .2[,)e+∞7.在半径为r 的半圆内作一内接梯形,使其底为直径,其他三边为圆的弦,则梯形面积最大时,其梯形的上底为A .r 2B 3C 3D .r8.已知函数21()43ln 2f x x x x =-+-在[,1]t t +上不单调,则t 的取值范围是( ) A .(0,1)(2,3)⋃B .(0,2)C .(0,3)D .(0,1][2,3)⋃9.已知函数10()ln ,0x xf x x x x⎧⎪⎪=⎨⎪⎪⎩,<>,若()()F x f x kx =-有3个零点,则k 的取值范围为( ) A .(21e -,0) B .(12e-,0) C .(0,12e) D .(0,21e) 10.已知函数21()sin cos 2f x x x x x =++,则不等式(23)(1)0f x f +-<的解集为( ) A .(2,)-+∞B .(1,)-+∞C .(2,1)--D .(,1)-∞-11.若对于任意的120x x a <<<,都有211212ln ln 1x x x x x x ->-,则a 的最大值为( ) A .2eB .eC .1D .1212.设动直线x m =与函数2()f x x =,()ln g x x =的图像分别交于,M N ,则MN 的最小值为( ) A .11ln 222+ B .11ln 222- C .1ln2+ D .ln21-二、填空题13.已知函数()()21,0e ,0x x x f x x ⎧+≤⎪=⎨>⎪⎩,若函数()()g x f x x m =--恰好有2个零点,则实数m 的取值范围为______.14.函数()f x 定义在0,2π⎛⎫⎪⎝⎭上,26f π⎛⎫= ⎪⎝⎭()f x ',且()()cos sinx f x x f x '⋅<⋅恒成立,则不等式()22sinx f x >的解集为_____________.15.已知函数()211020x e x x x ef x lnx x x⎧--+≤⎪⎪=⎨⎪⎪⎩,,>,若方程f (x )﹣m =0恰有两个实根,则实数m 的取值范围是_____.16.如图所示,ABCD 是边长为30cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个底面是正方形的长方体包装盒,若要包装盒容积3()V cm 最大,则EF 的长为________cm .17.函数()()21xf x x =-的最小值是______.18.已知函数21ln ,0()log ,0xx f x x x x +⎧>⎪=⎨⎪<⎩方程2()2()0()f x mf x m R -=∈有五个不相等的实数根,则实数m 的取值范围是______.19.已知函数()1ln 2f x x x ax ⎛⎫=-⎪⎝⎭有两个极值点,则实数a 的取值范围是_________. 20.若函数()21ln f x x x a x =-++在()0,∞+上单调递增,则实数a 的取值范围是________.三、解答题21.已知函数()212f x x =,()ln g x a x =.设()()()h x f x g x =+ (1)试讨论函数()h x 的单调性. (2)若对任意两个不等的正数12,x x ,都有()()12122h x h x x x ->-恒成立,求实数a 的取值范围;22.在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为v(米/单位时间),每单位时间的用氧量为+1(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为 (米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为y(升). (1)求y 关于v 的函数关系式;(2)若c≤v≤15(c>0),求当下潜速度v 取什么值时,总用氧量最少. 23.已知函数()2xf x eax b =-+(0a >,b R ∈,其中e 为自然对数的底数).(1)求函数()f x 的单调递增区间;(2)若函数()f x 有两个不同的零点12,x x ,当a b =时,求实数a 的取值范围.24.设函数21()2x f x x e =. (1)求f (x )的单调区间;(2)若当x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.25.一件要在展览馆展出的文物类似于圆柱体,底面直径为0.8米,高1.2米,体积约为0.5立方米,为了保护文物需要设计各面是玻璃平面的正四棱柱形无底保护罩,保护罩底面边长不少于1.2米,高是底面边长的2倍,保护罩内充满保护文物的无色气体,气体每立方米500元,为防止文物发生意外,展览馆向保险公司进行了投保,保险费用和保护罩的占地面积成反比例,当占地面积为1平方米时,保险费用为48000元. (1)若保护罩的底面边长为2.5米,求气体费用和保险费用之和; (2)为使气体费用和保险费用之和最低,保护罩该如何设计? 26.已知函数2()2ln f x x mx x =-+ (m R ∈).(1)若()f x 在其定义域内单调递增,求实数m 的取值范围; (2)若45m <<,且()f x 有两个极值点12,x x ,其中12x x <,求12()()f x f x -的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据'()0f x ≤在(1,1)-上恒成立求解. 【详解】∵3()f x x ax =-,∴2'()3f x x a =-.又函数()f x 在()1,1-上单调递减,∴2'()30f x x a =-≤在(1,1)-上恒成立,即23a x ≥在(1,1)-上恒成立.∵当(1,1)x ∈-时,3033x ≤<,∴3a ≥. 所以实数a 的取值范围是[3,)+∞. 故选:B . 【点睛】本题考查根据导函数研究函数的单调性,以及不等式的恒成立问题,注意当'()0()f x x D <∈时,则函数()f x 在区间D 上单调递减;而当函数()f x 在区间D 上单调递减时,则有'()0f x ≤在区间D 上恒成立.解题时要注意不等式是否含有等号,属于中档题.2.D解析:D 【分析】利用导数的运算法则,求出函数()f x 的解析式,然后参数分离,将不等式的恒成立问题转化为ln xa x≥-对任意()1,x ∈+∞恒成立,构造函数,利用导数研究函数的单调性,进而求出函数的最大值,从而得解. 【详解】()()1ln 20f x f x x xx++=′, ()2ln f x x x C ∴+=, ()2ln f e e e C ∴+=,()2f e e =-,∴22e e C -+=,解得0C =,()2ln 0f x x x ∴+=,()2ln x f x x∴=-()1x >,不等式()f x ax ≤对任意()1,x ∈+∞恒成立,∴2ln x ax x-≤对任意()1,x ∈+∞恒成立,即ln xa x≥-对任意()1,x ∈+∞恒成立, 令()ln x g x x=-,则()()21ln ln x g x x -=′, 令()()21ln 0ln xg x x -==′,解得x e =,∴1x e <<时,()0g x '>,()g x 在()1,e 上单调递增;x e >时,()0g x '<,()g x 在(),e +∞上单调递减, ∴当x e =时,()g x 取得极大值,也是最大值,()()max ln eg x g e e e==-=-, a e ∴≥-,∴实数a 的取值范围是[),e -+∞.故选:D. 【点睛】本题考查利用导数研究不等式的恒成立问题,具体考查导数的运算法则及利用导数研究函数的最值问题,求出函数()f x 的解析式是本题的解题关键,属于中档题.不等式恒成立问题关键在于利用转化思想,常见的有:()f x a >恒成立⇔()min f x a >;()f x a <恒成立⇔()max f x a <;()f x a >有解⇔()max f x a >;()f x a <有解⇔()min f x a <;()f x a >无解⇔()max f x a ≤;()f x a <无解⇔()min f x a ≥. 3.B解析:B 【分析】对函数()f x 求导,得到()f x ',然后根据题意得到()0f x '>恒成立,得到 【详解】因为函数()22ln 45f x x x bx =+++,定义域()0,∞+所以()28f x x b x'=++, 因为()f x 图象上的任意一点的切线斜率都大于0, 所以()280f x x b x'=++>对任意的()0,x ∈+∞恒成立, 所以28b x x>--, 设()28g x x x=--,则()max b g x > ()228g x x'=- 令()0g x '=,得到12x =,舍去负根, 所以当10,2x ⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x 单调递增, 当1,2x ⎛⎫∈+∞⎪⎝⎭时,()0g x '<,()g x 单调递减, 所以12x =时,()g x 取最大值,为()max182g x g ⎛⎫==- ⎪⎝⎭,所以8b >-, 故选B. 【点睛】本题考查利用导数求函数图像切线的斜率,不等式恒成立,利用导数研究函数的单调性、极值、最值,属于中档题.4.C解析:C 【分析】求出两个函数的导函数,由导函数相等列方程,再由方程有根转化为求最值,求得a 的范围. 【详解】 由2(0)y axa =>,得2y ax '=,由xy e =,得x y e '=,曲线21:(0)C y ax a =>与曲线2:x C y e =存在公共切线, 则设公切线与曲线1C 切于点211(,)x ax ,与曲线2C 切于点22(,)xx e ,则22211212x x e ax ax e x x -==-,将212x e ax =代入2211212x e ax ax x x -=-,可得2122=+x x ,11212+∴=x e a x ,记12()2+=x e f x x,则122(2)()4xex f x x +-'=,当(0,2)x ∈时,()0f x '<,当(2,)x ∈+∞时,()0f x '>. ∴当2x =时,2()4mine f x =. a ∴的范围是2[,)4e +∞. 故选:C 【点睛】本题主要考查了利用导数研究过曲线上某点处的切线方程,考查了方程有根的条件,意在考查学生对这些知识的理解掌握水平.5.B解析:B 【详解】试题分析:函数的递减区间对应的()0f x '<,函数的递增区间对应()0f x '>,可知B 选项符合题意.考点:函数的单调性与导数的关系.6.C解析:C 【分析】求出函数导数,由题意知()0f x '≥即ln 1x k x+≥在(0,]e 上恒成立,利用导数求出函数ln 1()x g x x+=在(0,]e 上的最大值即可求得k 的范围. 【详解】()ln 1f x kx x '=--,由题意知()0f x '≥在(0,]e 上恒成立, 即ln 1x k x +≥在(0,]e 上恒成立,令ln 1()x g x x+=,则2ln ()x g x x -'=, 当(0,1)x ∈时,()0g x '>,()g x 单调递增;当(1,]x e ∈时,()0g x '<,()g x 单调递减,所以max ()(1)1g x g ==,故1k .故选C 【点睛】本题考查导数在研究函数中的应用,涉及已知函数的单调区间求参数的取值范围、利用导数求函数的最值,属于基础题.7.D解析:D 【解析】设=COB θ∠,则上底为2cos r θ,高为sin r θ, 因此梯形面积为21(2cos 2)sin (1cos )sin 022S r r r r πθθθθθ=+=+∈,(,) 因为由22222=(sin cos cos )(1cos 2cos )0S r r θθθθθ'-++=-++=,得1cos 2θ=,根据实际意义得1cos 2θ=时,梯形面积取最大值,此时上底为2cos =r r θ,选D.点睛:利用导数解答函数最值的一般步骤:第一步:利用()0f x '=得可疑最值点;第二步:比较极值同端点值的大小.在应用题中若极值点唯一,则极值点为开区间的最值点.8.A解析:A 【详解】试题分析:此题考查导数的应用;2343(1)(3)()4x x x x f x x x x x-+--=-+-'=-=-,所以当(0,1),(3,)x ∈+∞时,原函数递减,当(1,3)x ∈原函数递增;因为在[],1t t +上不单调,所以在[],1t t +上即有减又有增,所以01{113t t <<<+<或13{31t t <<<+,01t ∴<<或23t <<,故选A.考点:函数的单调性与导数.9.C解析:C 【分析】由函数()()F x f x kx =-在R 上有3个零点,当0x >时,令()0F x =,可得y k =和()2ln x g x x=有两个交点;当0x <时,y k =和()1g x x =有一个交点,求得0k >,即可求解,得到答案. 【详解】 由题意,函数10()ln ,0x xf x x x x⎧⎪⎪=⎨⎪⎪⎩,<>,要使得函数()()F x f x kx =-在R 上有3个零点, 当0x >时,令()()0F x f x kx =-=, 可得2ln xk x =, 要使得()0F x =有两个实数解, 即y k =和()2ln xg x x=有两个交点, 又由()312ln xg x x-'=, 令12ln 0x -=,可得x =当x ∈时,()0g x '>,则()g x 单调递增;当)x ∈+∞时,()0g x '<,则()g x 单调递减,所以当x =()max 12g x e=, 若直线y k =和()2ln xg x x =有两个交点, 则1(0,)2k e∈,当0x <时,y k =和()21g x x =有一个交点, 则0k >,综上可得,实数k 的取值范围是1(0,)2e. 故选:C. 【点睛】本题主要考查了函数与方程的综合应用,以及利用导数研究函数的单调性与最值的综合应用,着重考查了转化思想以及推理与运算能力.属于中档题.10.C解析:C 【分析】根据条件先判断函数是偶函数,然后求函数的导数,判断函数在[0,)+∞上的单调性,结合函数的奇偶性和单调性的关系进行转化求解即可. 【详解】解:2211()sin()cos()sin cos ()22f x x x x x x x x x f x -=--+-+=++=,则()f x 是偶函数,()sin cos sin cos (1cos )f x x x x x x x x x x x '=+-+=+=+,当0x 时,()0f x ',即函数在[0,)+∞上为增函数,则不等式(23)(1)0f x f +-<得()()231f x f +<,即()()|23|1f x f +<, 则|23|1x +<,得1231x -<+<,得21x -<<-, 即不等式的解集为(2,1)--, 故选:C . 【点睛】本题主要考查不等式的求解,结合条件判断函数的奇偶性和单调性,利用函数奇偶性和单调性的关系进行转化是解决本题的关键.属于中档题.11.C解析:C【分析】整理所给的不等式,构造新函数,结合导函数研究函数的单调性,即可求得结果.【详解】解:由已知可得,211212ln ln x x x x x x -<-,两边同时除以12x x , 则121221ln ln 11x x x x x x -<-,化简有1212ln 1ln 1x x x x ++<, 而120x x <<,构造函数()ln 1x f x x+=,()2ln x f x x -'=, 令()0f x '>,则01x <<;令()0f x '<,则1x > ,所以函数()f x 在()0,1上为增函数,在()1,+∞上为减函数, 由1212ln 1ln 1x x x x ++<对于120x x a <<<恒成立, 即()f x 在()0,a 为增函数,则01a <≤,故a 的最大值为1.故选:C.【点睛】本题考查导数研究函数的单调性,考查分析问题能力,属于中档题.12.A解析:A【分析】将两个函数作差,得到函数()()y f x g x =-,利用导数再求此函数的最小值,即可得到结论.【详解】设函数()()()2ln 0=-=->y f x g x x x x , ()212120-'∴=-=>x y x x x x, 令0y '<,0x,02∴<<x,函数在2⎛⎫ ⎪⎝⎭上为单调减函数; 令0y '>,0x,∴>x,函数在⎫+∞⎪⎪⎝⎭上为单调增函数.2x ∴=时,函数取得极小值,也是最小值为111ln ln 22222-=+. 故所求MN 的最小值即为函数2ln y x x =-的最小值11ln 222+.故选:A.【点睛】本题主要考查利用导数研究函数的最值,属于中档题.二、填空题13.【分析】转化为函数的图象与直线恰有2个交点作出函数的图象利用图象可得结果【详解】因为函数恰好有2个零点所以函数的图象与直线恰有2个交点当时当时所以函数在上为增函数函数的图象如图:由图可知故答案为:【 解析:34m > 【分析】 转化为函数()y f x x =-的图象与直线y m =恰有2个交点,作出函数的图象,利用图象可得结果.【详解】因为函数()()g x f x x m =--恰好有2个零点,所以函数()y f x x =-的图象与直线y m =恰有2个交点,当0x ≤时,22133()1()244y f x x x x ==++=++≥, 当0x >时,()x y f x x e x =-=-,10x y e '=->,所以函数()x y f x x e x =-=-在(0,)+∞上为增函数,函数()y f x x =-的图象如图:由图可知,34m >. 故答案为:34m >【点睛】 方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.14.【分析】构造函数再利用函数的单调性解不等式即可【详解】解:构造函数则当时在单调递增不等式即即故不等式的解集为故答案为:【点睛】关键点点睛:本题解题的关键是根据题目的特点构造一个适当的函数利用它的单调 解析:,62ππ⎛⎫ ⎪⎝⎭【分析】构造函数()()sin f x g x x =,再利用函数的单调性解不等式即可. 【详解】解:()()cos sin f x x f x x '<()()sin cos 0f x x x f x '∴->,构造函数()()sin f x g x x =, 则()()()2sin cos f x x f x x g x sin x'-'=, 当0,2x π⎛⎫∈ ⎪⎝⎭时,()0g x '>, ()g x ∴在0,2π⎛⎫ ⎪⎝⎭单调递增, ∴不等式()f x x >,即()6sin sin 26f f x x ππ⎛⎫ ⎪⎝⎭>== 即()6xg g π⎛>⎫ ⎪⎝⎭, 26x ππ∴<< 故不等式的解集为,62ππ⎛⎫⎪⎝⎭. 故答案为:,62ππ⎛⎫ ⎪⎝⎭. 【点睛】关键点点睛:本题解题的关键是根据题目的特点,构造一个适当的函数,利用它的单调性进行解题.15.【分析】通过求导得出分段函数各段上的单调性从而画出图像若要方程f (x )﹣m=0恰有两个实根只需y=m 与y=f (x )恰有两个交点即可从而得出的取值范围【详解】(1)x≤0时f′(x )=ex ﹣x ﹣1易知解析:(]10e ⎧⎫-∞⋃⎨⎬⎩⎭, 【分析】通过求导,得出分段函数各段上的单调性,从而画出图像.若要方程f (x )﹣m =0恰有两个实根,只需y =m 与y =f (x )恰有两个交点即可,从而得出m 的取值范围.【详解】(1)x ≤0时,f ′(x )=e x ﹣x ﹣1,易知f ′(0)=0,而f ″(x )=e x ﹣1<0,所以f ′(x )在(﹣∞,0]上递减,故f ′(x )≥f ′(0)=0,故f (x )在(﹣∞,0]上递增, 且f (x )≤f (0)11e=+,当x →﹣∞时,f (x )→﹣∞. (2)x >0时,()21'lnx f x x-=,令f ′(x )>0,得0<x <e ;f ′(x )<0得x >e ; 故f (x )在(0,e )上递增,在(e ,+∞)递减, 故x >0时,()1()max f x f e e==;x →0时,f (x )→﹣∞;x →+∞时,f (x )→0. 由题意,若方程f (x )﹣m =0恰有两个实根,只需y =m 与y =f (x )恰有两个交点,同一坐标系画出它们的图象如下:如图所示,当直线y =m 在图示①,②位置时,与y =f (x )有两个交点,所以m 的范围是:(]10e ⎧⎫-∞⋃⎨⎬⎩⎭,. 故答案为:(]10e ⎧⎫-∞⋃⎨⎬⎩⎭,. 【点睛】本题考查了方程根的问题转化为函数图像交点问题,以及利用导数求函数单调性.考查了转化思想和数形结合,属于中档题.16.【分析】设cm 根据已知条件求出包装盒的底面边长及高从而求得包装盒体积的关于x 的表达式利用导数研究体积的最大值即可【详解】设cm 则cm 包装盒的高为cm 因为cm 所以包装盒的底面边长为cm 所以包装盒的体积 解析:10【分析】设EF x =cm ,根据已知条件求出包装盒的底面边长及高从而求得包装盒体积的关于x 的表达式,利用导数研究体积(x)V 的最大值即可.【详解】设EF x =cm ,则302x AE BF -== cm ,包装盒的高为22GE x = cm , 因为302x AE AH -== cm ,2A π∠=,所以包装盒的底面边长为2=(30)2HE x - cm , 所以包装盒的体积为232222()[(30)](60900)224V x x x x x x =-⋅=-+,030x <<, 则22()(3120900)4V x x x '=-+,令()0V x '=解得10x =, 当(0,10)x ∈时,()0V x '>,函数(x)V 单调递增;当(10,30)x ∈时,()0V x '<,函数(x)V 单调递减,所以3max 2()(10)(100060009000)10002()4V x V cm ==-+=,即当10EF cm =时包装盒容积3()V cm 取得最大值310002()cm .故答案为:10【点睛】本题考查柱体的体积,利用导数解决面积、体积最大值问题,属于中档题.17.【分析】对求导利用导数即可求得函数单调性和最小值【详解】因为故可得令解得;故当时单调递减;当时单调递增;当时单调递减且当趋近于1时趋近于正无穷;当趋近于正无穷时趋近于零函数图像如下所示:故的最小值为解析:14- 【分析】对()f x 求导,利用导数即可求得函数单调性和最小值,【详解】因为()()21xf xx=-,故可得()()311xf xx---'=,令()0f x'=,解得1x=-;故当(),1x∈-∞-时,()f x单调递减;当()1,1x∈-时,()f x单调递增;当()1,x∈+∞时,()f x单调递减.且()114f-=-,当x趋近于1时()f x趋近于正无穷;当x趋近于正无穷时,()f x趋近于零.函数图像如下所示:故()f x的最小值为14-.故答案为:14-.【点睛】本题考查利用导数研究函数的最值,属综合基础题.18.【分析】作出函数的图象结合图象可求实数的取值范围【详解】当时当时函数为增函数;当时函数为减函数;极大值为且;作出函数的图象如图方程则或由图可知时有2个解所以有五个不相等的实数根只需要即;故答案为:【解析:1(0,)2【分析】作出函数21ln,0()log,0xxf x xx x+⎧>⎪=⎨⎪<⎩的图象,结合图象可求实数m的取值范围.【详解】当0x >时,2ln ()x f x x'=-,当01x <<时,()0f x '>,函数为增函数; 当1x >时,()0f x '<,函数为减函数;极大值为(1)1f =,且x →+∞,()0f x →; 作出函数21ln ,0()log ,0x x f x x x x +⎧>⎪=⎨⎪<⎩的图象,如图,方程2()2()0()f x mf x m R -=∈,则()0f x =或()2f x m =,由图可知()0f x =时,有2个解,所以2()2()0f x mf x -=有五个不相等的实数根,只需要021m <<,即102m <<; 故答案为:1(0,)2.【点睛】 本题主要考查导数的应用,利用研究方程根的问题,作出函数的简图是求解的关键,侧重考查数学抽象的核心素养.19.【分析】对函数进行求导得则方程在时有两个根利用导数研究函数的值域即可得答案;【详解】在时有两个根令令当时当时在单调递增在单调递减且当时当时与要有两个交点故答案为:【点睛】本题考查利用导数研究函数的值 解析:01a <<【分析】对函数进行求导得()1f x lnx ax '=+-,则方程ln 1x a x +=在0x >时有两个根,利用导数研究函数ln 1()x g x x+=的值域,即可得答案; 【详解】 ()1ln 2f x x x ax ⎛⎫=- ⎪⎝⎭,()1f x lnx ax '=+-. ∴ln 1x a x+=在0x >时有两个根,令ln 1()x g x x+=, 令()1g x lnx ax =+-,'221(ln 1)ln ()x x x x g x x x ⋅-+==- 当01x <<时,'()0g x >,当1x >时,'()0g x <, ∴()g x 在(0,1)单调递增,在(1,)+∞单调递减,且(1)1g =,当x →+∞时,()0g x →,当0x →时,()g x →-∞,y a =与()y g x =要有两个交点,∴01a <<故答案为:01a <<.【点睛】本题考查利用导数研究函数的值域,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意参变分离法的运用.20.【分析】依题意可得在上恒成立参变分离得到在上恒成立令求出的最大值即可求出参数的取值范围;【详解】解:因为的定义域为且函数在上单调递增在上恒成立即在上恒成立令当时所以即故答案为:【点睛】本题考查利用导 解析:18a ≥ 【分析】依题意可得()210a f x x x'=-+≥在()0,x ∈+∞上恒成立,参变分离得到22a x x ≥-在()0,x ∈+∞上恒成立,令()22g x x x =-,求出()g x 的最大值即可求出参数的取值范围;【详解】解:因为()21ln f x x x a x =-++的定义域为()0,x ∈+∞,且函数()21ln f x x x a x =-++在()0,∞+上单调递增,()210a f x x x'∴=-+≥在()0,x ∈+∞上恒成立, 即22a x x ≥-在()0,x ∈+∞上恒成立,令()22112248g x x x x ⎛⎫=-=--+ ⎪⎝⎭ 当14x =时()max 18g x = 所以18a ≥即1,8a ⎡⎫∈+∞⎪⎢⎣⎭故答案为:1,8⎡⎫+∞⎪⎢⎣⎭【点睛】本题考查利用导数研究函数的单调性,不等式恒成立问题,属于中档题. 三、解答题21.(1)答案见解析;(2)[)1,+∞.【分析】(1)求导后,分别在0a ≥和0a <两种情况下讨论导函数的正负即可得到结果; (2)将恒成立的不等式转化为()()112222h x x h x x ->-对于任意的12x x >恒成立,从而只需构造函数()()2t x h x x =-,证明()t x 在()0,∞+上单调递增即可,从而将问题进一步转化为()0t x '≥在()0,∞+上恒成立,进而利用分离变量的方法可求得结果.【详解】(1)()()21ln 02h x x a x x =+>,则()()20a x a h x x x x x+'=+=>, 当0a ≥时,()0h x '>恒成立,()h x ∴在()0,∞+上单调递增;当0a <时,若(x ∈,()0h x '<;若)x ∈+∞,()0h x '>; ()h x ∴在(上单调递减,在)+∞上单调递增. (2)设12x x >,则()()12122h x h x x x ->-等价于()()112222h x x h x x ->-, 即()()112222h x x h x x ->-对于任意的12x x >恒成立. 令()()212ln 22t x h x x x a x x =-=+-,则只需()t x 在()0,∞+上单调递增, ()2a t x x x '=+-,∴只需()0t x '≥在()0,∞+上恒成立即可. 令()200a x x x+-≥>,则()220a x x x ≥-+>, 当1x =时,()2max 21x x-+=,1a ∴≥,即实数a 的取值范围为[)1,+∞.【点睛】 关键点点睛:本题主要考查导数在函数中的应用,以及不等式的证明,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.22.(1)见解析;(2)若c<3102,则当v =3102时,总用氧量最少;若c≥3102,则当v =c 时,总用氧量最少.【分析】(1)结合题意可得y 关于v 的函数关系式.(2)由(1)中的函数关系,求导后得到当0<v<3102时,函数单调递减;当v>3102时,函数单调递增.然后再根据c 的取值情况得到所求的速度. 【详解】(1)由题意,下潜用时 (单位时间),用氧量为×=+ (升),水底作业时的用氧量为10×0.9=9(升),返回水面用时= (单位时间),用氧量为×1.5= (升), 因此总用氧量232409,(0)50v y v v=++>. (2)由(1)得232409,(0)50v y v v=++>, ∴y′=-=,令y′=0得v =32当0<v<3102y′<0,函数单调递减;当v>32y′>0,函数单调递增.①若c<32 ,则函数在(c ,32上单调递减,在(310215)上单调递增, ∴ 当v =32②若c≥32,则y 在[c ,15]上单调递增,∴ 当v =c 时,总用氧量最少.【点睛】(1)在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合.(2)用导数求实际问题中的最大(小)值,如果函数在区间内只有一个极值点,那么根据实际意义可知该极值点就是最值点.23.(1)1ln ,22a ⎛⎫+∞⎪⎝⎭(2)32a e > 【分析】(1)直接求出函数的导函数,令()0f x '>,解不等式即可;(2)由题意容易知道2102222a ln a a a f ln e ln a ⎛⎫=-+< ⎪⎝⎭,解出即可求得实数a 的取值范围; 【详解】解:(1)因为()2x f x e ax b =-+所以()()220x f x e a a '=->,令()0f x '>,得1ln 22a x >,∴函数()f x 的单调递增区间为1ln ,22a ⎛⎫+∞ ⎪⎝⎭(2)由(1)知,函数()f x 在1,ln 22a ⎛⎫-∞ ⎪⎝⎭递减,在1ln ,22a ⎛⎫+∞ ⎪⎝⎭递增, ∴x →-∞时,()f x →+∞;x →+∞,()f x →+∞,∵函数()f x 有两个零点12,x x ,∴1ln 022a f ⎛⎫< ⎪⎝⎭,又a b =, ∴ln 21ln ln 02222a a a a f e a ⎛⎫=-+< ⎪⎝⎭, 即ln 0222a a a a -+< 所以3ln02a -< 所以32a e >【点睛】本题考查利用导数研究函数的单调性及最值问题,考查导数中零点问题,考查转化思想及运算求解能力,属于中档题.24.(1)(,2)(0,)()f x -∞-+∞和为的增区间,(2,0)()f x -为的减区间.(2)m <0 .【详解】解:(1)21()(2)22xxx e f x xe x e x x '=+=+ 令(2)0,02,(,2)(0,)()2xe x x x xf x +>><-∴-∞-+∞或和为的增区间, (2)0,20,(2,0)()2xe x x xf x +<-<<∴-为的减区间. (2)x ∈[-2,2]时,不等式f (x )>m 恒成立等价于min ()f x >m, 令:21()(2)022xxx e f x xe x e x x =+'=+= ∴x=0和x=-2,由(1)知x=-2是极大值点,x=0为极小值点2222(2),(2)2,(0)0,()[0,2]f f e f f x e e-===∴∈, ∴m <0 25.(1)23055元;(2)保护罩为底面边长为2米,高为4米的正四棱柱【分析】(1)根据定义先求保险费用,再计算正四棱柱体积,进而求气体费用,最后求和得结果; (2)先列出气体费用和保险费用之和函数关系式,再利用导数求最值,即得结果.【详解】(1)保险费用为24800076802.5= 正四棱柱体积为22.5(2 2.5)⨯⨯所以气体费用为2500[2.5(2 2.5)0.5]15375⨯⨯⨯-=因此气体费用和保险费用之和为76801537523055+=(元);(2)设正四棱柱底面边长为a 米,则 1.2a ≥因此气体费用和保险费用之和23224800048000500[(2)0.5]1000250y a a a a a=+⨯⨯-=+- 因为2396000300002y a a a'=-+=∴= 当2a >时,0y '>,当1.22a ≤<时,0y '<, 因此当2a =时,y 取最小值,保护罩为底面边长为2米,高为4米的正四棱柱时,气体费用和保险费用之和最低.【点睛】本题考查利用导数求函数最值、列函数解析式,考查基本分析求解能力,属中档题. 26.(1)4m ≤;(2)1504ln 24⎛⎫- ⎪⎝⎭,.【分析】(1)由题意结合导数与函数单调性的关系可转化条件为22m x x ≤+在(0,)+∞上恒成立,利用基本不等式求得22x x+的最小值即可得解; (2)由题意结合函数极值点的概念可得122m x x +=,121x x ⋅=,进而可得1112x <<,转化条件为21211211()()4ln f x f x x x x -=-+,令221()4ln g x x x x =-+(112x <<),利用导数求得函数()g x 的值域即可得解.【详解】(1)()f x 的定义域为(0,)+∞,∵()f x 在(0,)+∞上单调递增, ∴2()20f x x m x '=-+≥在(0,)+∞上恒成立,即22m x x≤+在(0,)+∞上恒成立,又224x x +≥=,当且仅当1x =时等号成立, ∴4m ≤;(2)由题意2222()2x mx f x x m x x-+'=-+=, ∵()f x 有两个极值点12,x x ,∴12,x x 为方程2220x mx -+=的两个不相等的实数根, 由韦达定理得122m x x +=,121x x ⋅=, ∵120x x <<,∴1201x x <<<, 又121112()2()(4,5)m x x x x =+=+∈,解得1112x <<, ∴()()2212111222()()2ln 2ln f x f x x mx x x mx x -=-+--+ ()()()()22121212122ln ln 2x x x x x x x x =-+--+-()()2221122ln ln x x x x =-+- 2112114ln x x x =-+, 设221()4ln g x x x x =-+(112x <<), 则4222333242(21)2(1)()20x x x g x x x x x x ---+--=-+='=<, ∴()g x 在1,12⎛⎫ ⎪⎝⎭上为减函数, 又1111544ln 4ln 22424g ⎛⎫=-+=- ⎪⎝⎭,(1)1100g =-+=, ∴150()4ln 24g x <<-, 即12()()f x f x -的取值范围为1504ln 24⎛⎫- ⎪⎝⎭,.【点睛】本题考查了导数的综合应用,考查了运算求解能力与逻辑推理能力,牢记函数单调性与导数的关系、合理转化条件是解题关键,属于中档题.。

da新课标高二数学选修2-2导数单元测试题

da新课标高二数学选修2-2导数单元测试题

2d a新课标高二数学选修2-2导数单元测试题(有答案)(十五)(总9页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除2导数复习一.选择题(1) 函数13)(23+-=x x x f 是减函数的区间为( )A .),2(+∞B .)2,(-∞C .)0,(-∞D .(0,2)(2)曲线3231y x x =-+在点(1,-1)处的切线方程为( )A .34y x =-B 。

32y x =-+C 。

43y x =-+D 。

45y x =-a (3) 函数y =a x 2+1的图象与直线y =x 相切,则a = ( )A . 18B .41C .21D .1(4) 函数,93)(23-++=x ax x x f 已知3)(-=x x f 在时取得极值,则a = ( )A .2B .3C .4D .5(5) 在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是 ( )A .3B .2C .1D .0(6)函数3()1f x ax x =++有极值的充要条件是 ( )A .0a >B .0a ≥C .0a <D .0a ≤ (7)函数3()34f x x x =- ([]0,1x ∈的最大值是( )A . 12B . -1C .0D .1(8)函数)(x f =x (x -1)(x -2)…(x -100)在x =0处的导数值为( ) A 、0 B 、1002 C 、200 D 、100!(9)曲线313y x x =+在点413⎛⎫⎪⎝⎭,处的切线与坐标轴围成的三角形面积为( )A.19 B.29 C.13 D.23.10设函数()1x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P,则实数a 的取值范围是( )A.(-∞,1)B.(0,1)C.(1,+∞)D. [1,+∞)11.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++=12函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( )A .1个B .2个C .3个D . 4个 13. y =e sin x cos(sin x ),则y ′(0)等于( ) A.0 B.1 C.-1D.214.经过原点且与曲线y =59++x x 相切的方程是( ) A.x +y =0或25x +y =0 B.x -y =0或25x +y =0 C.x +y =0或25x -y =0D.x -y =0或25x -y =0 15.设f (x )可导,且f ′(0)=0,又xx f x )(lim 0'→=-1,则f (0)( )A.可能不是f (x )的极值B.一定是f (x )的极值C.一定是f (x )的极小值D.等于016.设函数f n (x )=n 2x 2(1-x )n (n 为正整数),则f n (x )在[0,1]上的最大值为( ) A.0B.1C.n n)221(+-D.1)2(4++n n n 17、函数y=(x 2-1)3+1在x=-1处( )A 、 有极大值B 、无极值C 、有极小值D 、无法确定极值情况18.f(x)=ax 3+3x 2+2,f ’(-1)=4,则a=( )A 、310 B 、313 C 、316 D 、319abxy)(x f y ?=O319.过抛物线y=x 2上的点M (41,21)的切线的倾斜角是( )A 、300B 、450C 、600D 、90020.函数f(x)=x 3-6bx+3b 在(0,1)内有极小值,则实数b 的取值范围是( )A 、(0,1)B 、(-∞,1)C 、(0,+∞)D 、(0,21)21.函数y=x 3-3x+3在[25,23-]上的最小值是( )A 、889 B 、1 C 、833 D 、522、若f(x)=x 3+ax 2+bx+c ,且f(0)=0为函数的极值,则( ) A 、c ≠0 B 、当a>0时,f(0)为极大值 C 、b=0 D 、当a<0时,f(0)为极小值23、已知函数y=2x 3+ax 2+36x-24在x=2处有极值,则该函数的一个递增区间是( ) A 、(2,3)B 、(3,+∞)C 、(2,+∞)D 、(-∞,3) 24、方程6x 5-15x 4+10x 3+1=0的实数解的集合中( )A 、至少有2个元素B 、至少有3个元素C 、至多有1个元素D 、恰好有5个元素 二.填空题25.垂直于直线2x+6y +1=0且与曲线y = x 3+3x -5相切的直线方程是 。

新课标高二数学选修2-2第一章导数及其应用测试题(含答案)

新课标高二数学选修2-2第一章导数及其应用测试题(含答案)

新课标⾼⼆数学选修2-2第⼀章导数及其应⽤测试题(含答案)新课改⾼⼆数学选修2-2第⼀章导数及其应⽤测试题第Ⅰ卷(选择题,共40分)⼀、选择题(本⼤题共10⼩题,每⼩题4分,共40分)1.设xx y sin 12-=,则='y ().A .x x x x x 22sin cos )1(sin 2---B .xx x x x 22sin cos )1(sin 2-+- C .x x x x sin )1(sin 22-+- D .xx x x sin )1(sin 22---2.设1ln )(2+=x x f ,则=)2('f ().A .54 B .52 C .51 D .53 3.已知2)3(',2)3(-==f f ,则3)(32lim3--→x x f x x 的值为().A .4-B .0C .8D .不存在 4.曲线3x y =在点)8,2(处的切线⽅程为().A .126-=x yB .1612-=x yC .108+=x yD .322-=x y 5.满⾜()()f x f x '=的函数是A . f (x )=1-x B. f (x )=x C . f (x )=0D . f (x )=16.曲线34y x x =-在点(-1,-3)处的切线⽅程是A . 74y x =+ B. 72y x =+ C. 4y x =- D. 2y x =-7.若关于x 的函数2m n y mx -=的导数为4y x '=,则m n +的值为 A. -4 B. 1- C. D . 48.设ln y x x =-,则此函数在区间(0,1)内为A .单调递增, B.有增有减 C.单调递减, D.不确定 9.函数3()31f x x x =-+在闭区间[-3,0]上的最⼤值、最⼩值分别是A . 1,-1 B. 3,-17 C. 1,-17 D. 9,-1910.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所⽰,则函数)(x f 在开区间),(b a 内有极⼩值点 A 1个B 2个C 3个D 4个第Ⅱ卷(⾮选择题,共60分)⼆、填空题(每⼩题5分,共15分。

(完整版)高二数学选修2-2导数单元测试题(有答案)

(完整版)高二数学选修2-2导数单元测试题(有答案)

2
(1)当 a 2 时,求函数 f ( x) 极小值;( 2)试讨论曲线 y
f (x) 与 x 轴公共点的个数。
为 1 ,则 a _________ 。 6
2
39.已知 x 1 是函数 f ( x) mx3 3(m 1)x2 nx 1的一个极值点, 其中 m,n R, m 0 ,
( I )求 m 与 n 的关系式;
A、(2,3) B、(3,+∞)
C、(2,+∞)
24、方程 6x 5-15x 4+10x3+1=0 的实数解的集合中 ( )
D、(- ∞, 3)
A、至少有 2 个元素 B 、至少有 3 个元素 C、至多有 1 个元素 D 、恰好有 5 个元素
二.填空题
25.垂直于直线 2x+6y+1=0 且与曲线 y = x 3+ 3x-5 相切的直线方程是
A、 有极大值 B 、无极值 C 、有极小值
D、无法确定极值情况
18.f(x)=ax 3+3x2+2, f ’ (-1)=4 ,则 a=( )
A、 10 B 、 13
3
3
C 、 16
3
D
、 19
3
19. 过抛物线 y=x2 上的点 M( 1 , 1 )的切线的倾斜角是 (
)
24
A、300
B 、450 C 、600
解得
x1 1 2 , x2 1 2.
当 x 1 2,或 x 1 2时 , f (x) 0; 当
1 2 x 1 2时, f (x) 0. 故 f ( x) x 3 3x 2 3x 2在 ( ,1 2) 内 是 增 函 数 , 在
因 f ( x0 )
3( x02 1) ,故切线的方程为 y

(word完整版)高中数学选修2-2第一章导数测试题

(word完整版)高中数学选修2-2第一章导数测试题

选修2-2第一章单元测试(一)时间:120分钟总分:150分一、选择题(每小题5分,共60分) 1 .函数f(x)= x sinx 的导数为( A. f ‘ (x) = 2 x sinx + . x cosx2. 若曲线y = x 2 + ax + b 在点(0, b)处的切线方程是x — y +1 = 0, 则()A . a = 1, b = 1B . a =— 1, b = 1C . a = 1, b =— 1D . a =— 1, b =— 13.设 f(x) = xlnx ,若 f ‘(x o )= 2,则 x 0 =() In2 A . e 2B . eC^^D . ln24. 已知 f(x) = x 2 + 2xf ‘ (1),贝S f ‘ (0)等于( )B . f ‘ (x) = 2 x sinx — x cosx, sinx 厂C . f (x)= 2 x + x cosxD . f ‘sinx 厂(x)= 2 x — x cosx-3 -316. 如图是函数y= f(x)的导函数的图象,给出下面四个判断:①f(x)在区间[—2,—1]上是增函数;②x=—1是f(x)的极小值点;③f(x)在区间[—1,2]上是增函数,在区间[2,4]上是减函数;④x= 2是f(x)的极小值点.其中,所有正确判断的序号是()A .①②B .②③C.③④ D .①②③④7. 对任意的x€ R,函数f(x) = x3+ ax2+ 7ax不存在极值点的充要条件是()A. O w a w 21B. a= 0 或a = 7C. a<0 或a>21D. a= 0 或a= 218某商场从生产厂家以每件20元的价格购进一批商品,若该商品零售价定为P元,销售量为Q,则销量Q(单位:件)与零售价P(单位:元)有如下关系:Q= 8 300—170P—P2,则最大毛利润为(毛利润 =销售收入—进货支出)()A . 30 元B. 60 元C. 28 000元D. 23 000 元x9. 函数f(x) = —g(a<b<1),则()A. f(a) = f(b) B . f(a)<f(b)C. f(a)>f(b)D. f(a), f(b)大小关系不能确定10. 函数f(x)=-x3+x2+ x —2的零点个数及分布情况为()1A .一个零点,在一X,—3内1B. 二个零点,分别在—x,—3 , (0,+x)内1 1c.三个零点,分别在一x,—3 , 一3,0, (1,+*)内1D. 三个零点,分别在—X,—3,(0,1), (1,+工)内11. 对于R上可导的任意函数f(x),若满足(x—1)f‘ (x) >0,则必有()A . f(0) + f(2)<2f(1) B. f(0) + f(2)< 2f(1)C. f(0) + f(2) >2f(1) D . f(0) + f(2)>2f(1)12. 设f(x)是定义在R上的可导函数,且满足f‘ (x)>f(x),对任意的正数a,下面不等式恒成立的是()A. f(a)<e a f(0)B. f(a)>e a f(0)C. f(a)v号D.")>罟二、填空题侮小题5分,共20分)113. 过点(2,0)且与曲线y=-相切的直线的方程为/输入(结束〕116. 已知函数f(x) = qmx2+ Inx—2x在定义域内是增函数,则实数m的取值范围为________ .三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17. (10 分)设函数f(x) = —x3—2mx2—m2x + 1 —m(其中m> —2)的图象在x = 2处的切线与直线y= —5x+ 12平行.(1) 求m的值;(2) 求函数f(x)在区间[0,1]上的最小值.18. (12 分)已知函数f(x) = kx3—3(k + 1)x2—k2+ 1(k>0),若f(x)的单调递减区间是(0,4),1(1)求k的值;(2)当k<x时,求证:2 x>3—-x19. (12分)已知函数f(x)= kx3—3x2+ 1(k> 0).(1)求函数f(x)的单调区间;⑵若函数f(x)的极小值大于0,求k的取值范围.20. (12分)湖北宜昌“三峡人家”风景区为提高经济效益,现对某一景点进行改造升级,从而扩大内需,提高旅游增加值,经过市场调101 查,旅游增加值y万元与投入x(x> 10)万元之间满足:y= f(x) = ax2+而x—bl口希,a, b 为常数,当x= 10 时,y= 19.2;当x= 20 时,y= 357(参考数据:ln2 = 0.7, In3 = 1.1, ln5 = 1.6)(1)求f(x)的解析式;⑵求该景点改造升级后旅游利润T(x)的最大值.(利润=旅游收入—投入)1 121. (12 分)已知函数f(x) = 3X3—2X2+ cx+ d 有极值.(1)求c的取值范围;1 一⑵若f(x)在x= 2处取得极值,且当x<0时,f(x)<6d2+ 2d恒成立, 求d的取值范围.22. (12分)(2015银川一中月考)设a为实数,函数f(x) = e x—2x+ 2a, x€ R.(1)求f(x)的单调区间与极值;⑵求证:当a>ln2 — 1 且x>0 时,e x>x2—2ax + 1.答案2 A •/y'= 2x+ a,•••曲线y = x2+ax+ b在(0, b)处的切线方程的斜率为a, 切线方程为y —b= ax,即ax—y+ b= 0;・a= 1, b= 1.3. B f ‘(x) = (xlnx) '= lnx + 1,「• f ‘ (x o ) = lnx o + 1 = 2,「. x o = e.4. B f (x) =2x + 2f ‘ (1),A f (1)= 2 + 2f ‘ (1),即 f ‘ (1)=- 2,二 f (x) = 2x -4,A f (0)=- 4.5. D 由定积分的几何意义可知,函数y = f(x)的图象与x 轴围成 的阴影部分的面积为1 — 3f(x)dx — 3f(x)dx.故选D.i6. B 由函数y =f(x)的导函数的图象可知:(1) f(x)在区间[—2, — 1]上是减函数,在[—1,2]上是增函数,在[2,4] 上是减函数;(2) f(x)在x =— 1处取得极小值,在x = 2处取得极大值.故②③正 确. 7. A f (x) = 3x 2 + 2ax + 7a ,当 △= 4a 2 — 84a <0,即卩 0W a <21 时,f ‘ (x) >0恒成立,函数不存在极值点.故选 A.& D 设毛利润为L(P),由题意知 L(P)= PQ — 20Q = Q(P — 20) =(8 300— 170P — P 2)(P — 20) =—P 3 — 150P 2 + 11 700P — 166 000, 所以 L ‘ (P) = — 3P 2— 300P + 11 700, 令 L ' (P)= 0,解得 P = 30 或 P =— 130(舍 去). 此时,L(30)= 23 000.根据实际问题的意义知,L(30)是最大值,即零售价定为每件 30元时,最大毛利润为23 000元.e x — xe x x — 11. C F (x) = ( x) 选C.sinx + x (sinx)'=^x sinx +G cosx ,故9. C F(x)=—否 2 = e x,当x<1时,f‘ (x)<0,即f(x)在区间(一汽1)上单调递减,又•: a<b<1,二f(a)>f(b).110. A 利用导数法易得函数f(x)在一 = ,—3内单调递减,在1 1 59—3, 1内单调递增,在(1, +x)内单调递减,而f — 3 = —27<o,f(1)=—1<0,故函数f(x)的图象与x轴仅有一个交点,且交点横坐标在1— X,—3内,故选A.11. C 当1<x< 2 时,f‘(x)》0,贝y f(2)>f(1); 而当0W x< 1 时,f‘(x)<0,贝S f(1)<f(0),从而f(0) + f(2)> 2f(1).f x f' x 一f x12. B 构造函数g(x)=孑,贝S g' (x)= e x >0,故函数f x fa f 0g(x) = *在R 上单调递增,所以g(a)>g(0),即f er>f-^,即f(a)>e a f(0). DD D13. x+ y —2= 0解析:设所求切线与曲线的切点为P(x o, y o),1 1T y'= —p,二y' |x=x o= —鬲所求切线的方程为1y—y o= —x0(x一X o).T点(2,0)在切线上,= y 「・x2y o= 2—X.①由①②解得X o =1, y o•••所i4.n解析: 1 1 jn jn jnM = 1 1— x 2dx = 4 nX 12 = 4, N =/2o cosxdx = sinx 刖=1,冗 M<N ,不满足条件 M>N ,贝S S = M = 4.15.16. [1,+乂)1解析:根据题意,知f ‘ (x)= mx + --2>0对一切x>0恒成立,x1 2121 1二 m >- - 2 + _,令 g(x) =-- 2 + _=_ -- 1 2+ 1,则当_ = 1 时,函 X x x x x x数g(x)取得最大值1,故m 》1.17.解:(1)因为 f ‘ (x)=- 3x 2-4mx - m 2, 所以 f ‘ (2) = - 12-8m -m 2=- 5,解得m =- 1或m =- 7(舍去),即m =- 1. (2)令 f ‘ (x)=- 3x 2+ 4x — 1= 0,1解得 X 1 = 1 , x 2 = §.当X 变化时,f ‘ (x), f(x)的变化情况如下表:解析:f ‘(x)= mX m 1 + a =2x +1,得 m = 2,a = 1. 则 f(x) = x 2 + x , 丄—1 _ 11f n n n + 1 n n +1, 11 1 1其和为彳―2 + 1—§ +—4 +…+1-七=1-丄=亠 nn + 1 n + 1 n + 1F (x) 一+f(x)2\ 150 2721 50所以函数f(x)在区间[0,1]上的最小值为f3 = 50.18.解:(1)f ‘ (x) = 3kX — 6(k + 1)x ,2k + 2由 f ‘ (x)<0 得 0<x<一 ,T f(x)的递减区间是(0,4),(2)当k = 0时,函数f(x)不存在极小值, 2 8 12 当k>0时,依题意f =迄—迄+1>0, 即k 2>4,所以k 的取值范围为(2,+乂 ).2k + 2 ‘=4,k = 1.1 11 (2)证明:设 g(x) =2 x + x ,g‘(x)= x —x 2.••• g ‘ (x)>0,「. g(x)在 x € [1,+乂)上单调递增.1••• x>1 时,g(x)>g(1), 即卩 2 x + ->3,zv二 2 x>3 — £zv19. 解:(1)当 k = 0 时,f(x) = — 3x 2 + 1,• f(x)的单调增区间为(一乂,0],单调减区间[0,+乂 ).2当 k>0 时,f ‘(x)= 3kx 2— 6x = 3kxx —k , ••• f(x)的单调增区间为 ,单调减区间为0 当x>1时, o20.解:(1)由条件得1解得a =—而,b =1,X 101 x 则 f(x)= — 100+ 50 x — ln^0(x > 10).(2)由题意知x 2 51 xT (x) = f(x) — x =—而+50x — ln^0(x > 10),令「(x)= 0,贝S x = 1(舍去)或 x = 50.当 x € (10,50)时,T ‘ (x)>0, T(x)在(10,50)上是增函数; 当 x € (50, +乂)时,T (x)<0, T(x)在(50, +乂)上是减函数, 二x = 50为T(x)的极大值点,又T(50) = 244故该景点改造升级后旅游利润 T(x)的最大值为24.4万元.1 121.解: (1) v f(x) = §x 3—*2+cx + d ,二f ‘ (x) = x 2 — x +c,要使 f(x)有极值,则方程 f ‘ (x) = x 2— x + c = 0, 1 有两个实数解,从而 △= 1 —4c>0,二c<4.(2) v f(x)在x = 2处取得极值, ••• f (2) = 4 — 2+ c = 0, • c =-1 1-2. •- f(x) = 3X 3 — ^x 2 — 2x + d.a x 102+ x 10— blnl 19.2 a x 202 + 101而 x 20— bln2= 35.7—x 51 1+ ——- 50 + 50 x x — 1 x — 5050xV f (x) = x 2 — x — 2= (x — 2)(x + 1),•••当 x € ( — s,— 1)时,F (x)>0,函数单调递增,当 x € (— 1,2] 时,f ‘ (x)<0,函数单调递减.• x<0时,f(x)在x =— 1处取得最大值右+ d ,1 一V x<0 时,f(x)v§d 2 + 2d 恒成立,••• d<— 7 或 d>1,即d 的取值范围是(— s,— 7)U (1,+乂). 22.解:(1)f ‘ (x) = e — 2, x € R.令 f (x) = 0,得 x = ln2.于是,当x 变化时,f (x)和 f(x)的变化情况如下表:故f(x)的单调递减区间是(一s, |n2),单调递增区间是(In2,+s ), f(x)在x = In2处取得极小值,极小值为f(ln2) = 2— 2ln2 + 2a.(2)证明:设 g(x) = e 一x 2 + 2ax — 1, x € R , 于是 g ‘ (x) = 3— 2x + 2a , x € R.由(1)及 a>ln2 — 1 知,对任意 x € R ,都有 g ‘ (x)>g ‘ (In2) = 2— 2ln2 + 2a>0,所以g(x)在R 内单调递增.于是,当a>l n2 — 1时,对任意x € (0,+s ),都有g(x)>g(0),而 g(0)=0, 从而对任意x € (0,+s ),都有g(x)>0, 即 e x — x 2 + 2ax —1>0, 故 e x >x 2 — 2ax + 1.Vd + 7- 6即(d + 7)(d —14. 已知M = * 1d1 —x2dx, N= n cosxdx,则程序框0 图输出的S= . 15. 设函数f(x) = x m+ ax 的导数为f‘ (x)= 2x+ 1,1则数列fn(n€ N+)的前n项和是 __________ .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数复习一.选择题(1) 函数13)(23+-=x x x f 是减函数的区间为( )A .),2(+∞B .)2,(-∞C .)0,(-∞D .(0,2) (2)曲线3231y x x =-+在点(1,-1)处的切线方程为( )A .34y x =-B 。

32y x =-+C 。

43y x =-+D 。

45y x =- a(3) 函数y =a x 2+1的图象与直线y =x 相切,则a = ( )A . 18B .41C .21D .1(4) 函数,93)(23-++=x ax x x f 已知3)(-=x x f 在时取得极值,则a = ( ) A .2 B .3 C .4D .5(5) 在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是 ( ) A .3 B .2 C .1 D .0 (6)函数3()1f x ax x =++有极值的充要条件是 ( )A .0a >B .0a ≥C .0a <D .0a ≤ (7)函数3()34f x x x =- ([]0,1x ∈的最大值是( )A . 12B . -1C .0D .1(8)函数)(x f =x (x -1)(x -2)…(x -100)在x =0处的导数值为( ) A 、0 B 、1002C 、200D 、100!(9)曲线313y x x =+在点413⎛⎫⎪⎝⎭,处的切线与坐标轴围成的三角形面积为( )A.19 B.29 C.13 D.23.10设函数()1x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P,则实数a 的取值范围是( )A.(-∞,1)B.(0,1)C.(1,+∞)D. [1,+∞)11.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++=12函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( ) A .1个 B .2个 C .3个D . 4个 13. y =e sin xcos(sin x ),则y ′(0)等于( ) A.0B.1C.-1D.214.经过原点且与曲线y =59++x x 相切的方程是( ) A.x +y =0或25x +y =0B.x -y =0或25x +y =0 C.x +y =0或25x -y =0D.x -y =0或25x -y =0 15.设f (x )可导,且f ′(0)=0,又xx f x )(lim 0'→=-1,则f (0)( )A.可能不是f (x )的极值B.一定是f (x )的极值C.一定是f (x )的极小值D.等于016.设函数f n (x )=n 2x 2(1-x )n (n 为正整数),则f n (x )在[0,1]上的最大值为( ) A.0B.1C.n n)221(+-D.1)2(4++n n n 17、函数y=(x 2-1)3+1在x=-1处( )A 、 有极大值B 、无极值C 、有极小值D 、无法确定极值情况18.f(x)=ax 3+3x 2+2,f ’(-1)=4,则a=( )A 、310 B 、313 C 、316 D 、31919.过抛物线y=x 2上的点M (41,21)的切线的倾斜角是( )A 、300B 、450C 、600D 、90020.函数f(x)=x 3-6bx+3b 在(0,1)内有极小值,则实数b 的取值范围是( )abxy)(x f y =OA 、(0,1)B 、(-∞,1)C 、(0,+∞)D 、(0,21)21.函数y=x 3-3x+3在[25,23-]上的最小值是( )A 、889 B 、1C 、833 D 、522、若f(x)=x 3+ax 2+bx+c ,且f(0)=0为函数的极值,则( ) A 、c ≠0 B 、当a>0时,f(0)为极大值 C 、b=0 D 、当a<0时,f(0)为极小值23、已知函数y=2x 3+ax 2+36x-24在x=2处有极值,则该函数的一个递增区间是( ) A 、(2,3) B 、(3,+∞) C 、(2,+∞) D 、(-∞,3)24、方程6x 5-15x 4+10x 3+1=0的实数解的集合中( ) A 、至少有2个元素 B 、至少有3个元素 C 、至多有1个元素 D 、恰好有5个元素二.填空题25.垂直于直线2x+6y +1=0且与曲线y = x 3+3x -5相切的直线方程是 。

26.设f ( x ) = x 3-21x 2-2x +5,当]2,1[-∈x 时,f ( x ) < m 恒成立,则实数m 的取值范围为 .27.函数y = f ( x ) = x 3+ax 2+bx +a 2,在x = 1时,有极值10,则a = , b = 。

28.已知函数32()45f x x bx ax =+++在3,12x x ==-处有极值,那么a = ;b 29.已知函数3()f x x ax =+在R 上有两个极值点,则实数a 的取值范围是 30.已知函数32()33(2)1f x x ax a x =++++ 既有极大值又有极小值,则实数a 的取值范围是31.若函数32()1f x x x mx =+++ 是R 是的单调函数,则实数m 的取值范围是32.设点P 是曲线3233+-=x x y 上的任意一点,P 点处切线倾斜角为α,则角α的取值范围是 。

33 ()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 . 34.曲线3x y =在点)0)(,(3≠a a a 处的切线与x 轴、直线a x =所围成的三角形的面积为61,则=a _________ 。

35.一点沿直线运动,如果由始点起经过t 秒后的位移是23425341t t t S +-=,那么速度为零的时刻是_______________。

三.解答题36.已知函数d ax bx x x f +++=23)(的图象过点P (0,2),且在点M ))1(,1(--f 处的切线方程为076=+-y x .(Ⅰ)求函数)(x f y =的解析式;(Ⅱ)求函数)(x f y =的单调区间.37.已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值. (Ⅰ)讨论)1(f 和)1(-f 是函数)(x f 的极大值还是极小值;(Ⅱ)过点)16,0(A 作曲线)(x f y =的切线,求此切线方程.38.已知函数323()(2)632f x ax a x x =-++- (1)当2a >时,求函数()f x 极小值;(2)试讨论曲线()y f x =与x 轴公共点的个数。

39.已知1x =是函数32()3(1)1f x mx m x nx =-+++的一个极值点,其中,,0m n R m ∈<, (I )求m 与n 的关系式; (II )求()f x 的单调区间;(III )当[]1,1x ∈-时,函数()y f x =的图象上任意一点的切线斜率恒大于3m ,求m 的取值范围.40.设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值.(Ⅰ)求a 、b 的值;(Ⅱ)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围.41.已知cx bx ax x f ++=23)(在区间[0,1]上是增函数,在区间),1(),0,(+∞-∞上是减函数,又.23)21(='f(Ⅰ)求)(x f 的解析式;(Ⅱ)若在区间],0[m (m >0)上恒有)(x f ≤x 成立,求m 的取值范围.42.设函数3()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线670x y --=垂直,导函数'()f x 的最小值为12-. (Ⅰ)求a ,b ,c 的值;(Ⅱ)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值.43,已知向量),1(),1,(2t x b x x a -=+=,若函数b a x f ⋅=)(在区间)1,1(-上是增函数,求t 的取值范围。

44,已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值.(1)讨论)1(f 和)1(-f 是函数)(x f 的极大值还是极小值; (2)过点)16,0(A 作曲线)(x f y =的切线,求此切线方程.45,设a x ≤≤0,求函数x x x x x f 24683)(234+--=的最大值和最小值。

46用半径为R 的圆形铁皮剪出一个圆心角为α的扇形,制成一个圆锥形容器,扇形的圆心角α多大时,容器的容积最大?47 直线kx y =分抛物线2x x y -=与x 轴所围成图形为面积相等的两个部分,求k 的值.48 ,已知函数0,21)(,ln )(2≠+==a bx ax x g x x f 。

(1)若2=b ,且函数)()()(x g x f x h -=存在单调递减区间,求a 的取值范围。

(2)设函数)(x f 的图象1C 与函数)(x g 的图象2C 交于点Q P ,,过线段PQ 的中点作x 轴的垂线分别交1C 、2C 于点N M ,。

证明:1C 在点M 处的切线与2C 在点N 处的切线不平行。

49.已知函数32()f x x ax bx c =+++,当1x =-时,()f x 的极大值为7;当3x = 时,()f x 有极小值.求(1),,a b c 的值;(2)函数()f x 的极小值.50已知f (x )=x 3+ax 2+bx+c ,在x =1与x =-2时,都取得极值。

⑴求a ,b 的值;⑵若x ∈[-3,2]都有f (x )>112c -恒成立,求c 的取值范围。

参考解答一.1~9 BBDDD CDDA 10~24AAB二.25~32 1、y=3x-5 2、m>7 3、4 -11 4、18,3-- 5、(,0)-∞ 6、1,)3⎡+∞⎢⎣7、(,1)(2,)-∞-⋃+∞ 8、),32[]2,0[πππ 33~34(13)、 1±(14)、 0=t 三36~42.1.解:(Ⅰ)由)(x f 的图象经过P (0,2),知d=2,所以,2)(23+++=cx bx x x f .23)(2c bx x x f ++='由在))1(,1(--f M 处的切线方程是076=+-y x 知.6)1(,1)1(,07)1(6=-'=-=+---f f f 即.3,0,32.121,623-==⎩⎨⎧=-=-⎩⎨⎧=+-+-=+-∴c b c b c b c b c b 解得即故所求的解析式是.233)(23+--=x x x x f (2).012,0363.363)(222=--=----='x x x x x x x f 即令解得.21,2121+=-=x x 当;0)(,21,21>'+>-<x f x x 时或当.0)(,2121<'+<<-x f x 时故)21,(233)(23--∞+--=在x x x x f 内是增函数,在)21,21(+-内是减函数,在),21(+∞+内是增函数.2.(Ⅰ)解:323)(2-+='bx ax x f ,依题意,0)1()1(=-'='f f ,即⎩⎨⎧=--=-+.0323,0323b a b a 解得0,1==b a . ∴)1)(1(333)(,3)(23-+=-='-=x x x x f x x x f . 令0)(='x f ,得1,1=-=x x .若),1()1,(∞+--∞∈ x ,则0)(>'x f ,故)(x f 在)1,(--∞上是增函数,)(x f 在),1(∞+上是增函数. 若)1,1(-∈x ,则0)(<'x f ,故)(x f 在)1,1(-上是减函数. 所以,2)1(=-f 是极大值;2)1(-=f 是极小值.(Ⅱ)解:曲线方程为x x y 33-=,点)16,0(A 不在曲线上.设切点为),(00y x M ,则点M 的坐标满足0303x x y -=. 因)1(3)(200-='x x f ,故切线的方程为))(1(30200x x x y y --=-注意到点A (0,16)在切线上,有)0)(1(3)3(16020030x x x x --=-- 化简得83-=x ,解得20-=x . 所以,切点为)2,2(--M ,切线方程为0169=+-y x .3.解:(1)'22()33(2)63()(1),f x ax a x a x x a =-++=--()f x 极小值为(1)2af =-(2)①若0a =,则2()3(1)f x x =--,()f x ∴的图像与x 轴只有一个交点; ②若0a <, ∴()f x 极大值为(1)02af =->,()f x 的极小值为2()0f a<,()f x ∴的图像与x 轴有三个交点;③若02a <<,()f x 的图像与x 轴只有一个交点;④若2a =,则'2()6(1)0f x x =-≥,()f x ∴的图像与x 轴只有一个交点;⑤若2a >,由(1)知()f x 的极大值为22133()4()044f a a =---<,()f x ∴的图像与x 轴只有一个交点;综上知,若0,()a f x ≥的图像与x 轴只有一个交点;若0a <,()f x 的图像与x 轴有三个交点。

相关文档
最新文档