双曲线的渐近线和离心率

合集下载

双曲线渐近线夹角与离心率的关系式

双曲线渐近线夹角与离心率的关系式

双曲线是一种二次曲线,它的方程为:
(x^2 / a^2) - (y^2 / b^2) = 1
其中,a和b是双曲线的两个焦距。

双曲线的渐近线是指与双曲线相切,且与双曲线的极轴重合的直线。

双曲线的渐近线夹角是指双曲线的渐近线与x轴之间的夹角。

双曲线的离心率是指双曲线的焦距之比。

它的计算公式为:
e = √(a^2 - b^2) / a
可以看到,双曲线的离心率与双曲线的两个焦距有关。

双曲线的渐近线夹角与离心率之间的关系式如下:
tan(渐近线夹角) = e
这个关系式告诉我们,双曲线的渐近线夹角与双曲线的离心率成反比。

也就是说,当双曲线的离心率增大时,双曲线的渐近线夹角减小;当双曲线的离心率减小时,双曲线的渐近线夹角增大。

希望这些解释能帮到你!。

双曲线的离心率

双曲线的离心率

双曲线的离心率双曲线是一种经典的二次曲线,它是两个一模一样的开口向外的分支,彼此之间不存在交点,并且它们与直线称为渐近线。

双曲线的形状因其离心率而异,离心率越小,它的开口越窄,而离心率越大,它的开口越宽,形状越扁平。

这篇文章将介绍双曲线的离心率及其相关性质。

一、什么是离心率在介绍双曲线的离心率之前,我们先来介绍一下什么是离心率。

离心率是一个参数,用来描述椭圆、双曲线等曲线形状的程度。

几何上,椭圆和双曲线都是曲线的焦点与直线的距离之比。

对于一个椭圆或双曲线来说,焦点是一个固定点,而直线称为准线。

焦点到准线的距离称为焦距,离心率是焦距与主轴长度的比值。

对于一个椭圆而言,离心率的值在0到1之间,0表示一个完美的圆形,而1表示一个极端扁平的椭圆。

离心率为0.5的椭圆称为圆形。

对于一个双曲线而言,离心率的值一般大于1,它越大,曲线的形状越扁平。

二、双曲线的定义一个双曲线可以用以下方程表示:x^2/a^2 - y^2/b^2 = 1其中a和b是正实数,它们控制了曲线的形状,a称为水平半轴,b称为垂直半轴。

对于双曲线而言,曲线的两个分支的形状是相同的,都是向外开口的,而且彼此之间没有交点。

曲线的顶点是原点,它是两个分支的交点,而直线y=0和x=0称为渐近线,它们分别过曲线的两个极点。

三、双曲线的离心率离心率可以通过以下公式计算:e = √(a^2 + b^2)/a在计算双曲线的离心率之前,需要先找到曲线的水平半轴a和垂直半轴b。

如果我们知道了双曲线的顶点和极点的坐标,可以计算a和b的值。

设顶点的坐标为(0,0),极点的坐标为(c,0),其中c是焦距的值,那么有以下公式:a = (x1 + x2)/2b = (y1 + y2)/2其中(x1,y1)和(x2,y2)是两个分支的端点的坐标。

双曲线的离心率e就可以用上述公式计算出来。

四、双曲线离心率的性质1. 离心率越大,双曲线的开口越宽。

2. 离心率越大,双曲线的形状越扁平。

双曲线知识点归纳总结

双曲线知识点归纳总结

双曲线知识点归纳总结双曲线是高中数学中的一个重要概念,属于二次曲线的一种。

其特点是曲线两支无限延伸且不相交,且中心对称。

双曲线有很多重要的性质和应用,在此对双曲线的知识点进行归纳总结。

1. 双曲线的方程形式双曲线的标准方程由两部分构成,具体形式为:(x-h)^2/a^2 - (y-k)^2/b^2 = 1 或者 (y-k)^2/b^2 - (x-h)^2/a^2 = 1其中(h, k)为中心点坐标,a和b为两支曲线的半轴长度。

2. 双曲线的焦点和直径双曲线上的点到两个焦点的距离之差的绝对值恒为常数,记作2c。

而双曲线的直径是指通过中心点且垂直于双曲线的线段,其长度为2a。

3. 双曲线的渐近线双曲线有两条渐近线,分别与两支曲线无限接近而永不相交。

渐近线的方程为:y = k1(x-h) + k2 或者 y = k1(x-h) - k2其中k1为双曲线的纵轴斜率,k2为两支曲线与渐近线的交点与中心距离之差。

4. 双曲线的对称轴双曲线的对称轴是通过两支曲线的对称轴的中点且垂直于对称轴的一条直线。

对称轴的方程为:x = h5. 双曲线的准线和离心率离心率是双曲线的一个重要性质,定义为焦点到中心点的距离与准线的长度之比,记作e。

准线是通过中心点且与两支曲线相切的一条直线。

准线的方程为:y = k 或者 y = -k其中k为焦点到中心点的距离。

6. 双曲线的图象特点双曲线的图象是两个关于中心点对称的分支,并且曲线无限延伸。

双曲线的左右两支是无边界的,而上下两支则被渐近线所截断。

双曲线在原点处有一个拐点,两支曲线在拐点处相切。

7. 双曲线的变形双曲线可以通过坐标变换进行平移、伸缩和旋转等变形。

平移是通过改变中心点的坐标实现的,伸缩是通过改变半轴长度实现的,旋转是通过改变坐标轴的方向实现的。

8. 双曲线的应用双曲线在科学和工程领域有着广泛的应用。

例如在物理学中,双曲线可以用于描述光的折射和反射现象;在工程领域,双曲线可以用于设计梁和拱桥等结构。

双曲线的性质离心率渐近线

双曲线的性质离心率渐近线

与抛物线关系比较
离心率的特性
01
抛物线的离心率e=1,处于椭圆和双曲线之间。
焦点和准线
02
抛物线有一个焦点和一条准线,而双曲线有两个焦点和两条渐
近线。
对称性
03
抛物线和双曲线都关于其对称轴对称。
不同圆锥曲线间转换条件
焦点位置变化
随着焦点位置的变化,圆锥曲线的形状也会发生变化。当 焦点沿实轴移动时,双曲线可以转换为椭圆或抛物线。
渐近线与双曲线位置关系
渐近线与双曲线无限接近但永不相交 。
双曲线上的点无限接近于渐近线,但 永远不会落在渐近线上。
利用渐近线判断双曲线开口方向
01 当$a > b$时,双曲线的开口方向沿着$x$轴方向。 02 当$a < b$时,双曲线的开口方向沿着$y$轴方向。 03 可以通过观察渐近线的斜率来判断双曲线的开口
渐近线
双曲线的渐近线方程为 $y = pm frac{b}{a}x$。当x趋近于无穷大 时,双曲线趋近于这两条直线。
离心率与形状
离心率越大,双曲线开口越宽 ;离心率越小,双曲线开口越
窄。
02 离心率及其意义
离心率定义与计算公式
定义
离心率是双曲线的一个重要参数 ,用于描述双曲线与其焦点之间 的距离关系。
对于标准方程 y^2/a^2 - x^2/b^2 = 1 (a>0, b>0),若a>b,则焦点在y轴上;若 a<b,则焦点在x轴上。
结合图像进行直观判断
观察双曲线图像,若图像关于y轴对称且开口方向沿x轴,则焦点在x轴上。
观察双曲线图像,若图像关于x轴对称且开口方向沿y轴,则焦点在y轴上。 以上判断方法可以帮助我们快速确定双曲线在坐标系中的位置,进而研究 其性质和特点。

双曲线相关知识点总结

双曲线相关知识点总结

双曲线是数学中的一种特殊曲线形式,具有许多有趣的性质和应用。

在本文中,我
们将对双曲线的相关知识点进行总结。

1.双曲线的定义:双曲线是一个平面上的曲线,其定义是到两个定点
(焦点)的距离之差等于常数的点的集合。

双曲线有两支,分别称为实轴和虚轴,这两支在无穷远处相交。

2.双曲线的方程:双曲线的一般方程形式为:(x2/a2) - (y2/b2) = 1,其
中a和b为正实数。

这个方程可以通过平移、旋转和伸缩来得到不同形状的双曲线。

3.双曲线的性质:
•双曲线的中心在原点,它的对称轴为x轴和y轴。

•双曲线的渐近线是直线y = bx,其中b = ±(a/b)。

•双曲线的离心率定义为e = c/a,其中c为焦点到中心的距离。

离心率小于1时,双曲线是“瘦长”的;离心率大于1时,双曲线是“扁平”的。

•双曲线的焦点到顶点的距离等于半径的距离,即c = a/e。

4.双曲线的应用:
•双曲线广泛应用于物理学、光学和电工领域。

例如,在光学中,双曲线被用来描述抛物面镜和双曲透镜的形状。

•双曲线也是一类重要的函数图像,如双曲正弦函数和双曲余弦函数。

这些函数在数学分析和应用中有广泛的应用。

•双曲线还在计算机图形学和计算机辅助设计等领域中被广泛使用。

它们可以用于生成各种曲线和曲面的形状。

总结:双曲线是一种有趣且重要的数学概念,它具有许多有用的性质和应用。

通过理解双曲线的定义、方程和性质,我们可以更好地理解和应用这一概念。

无论是在数学学习中还是在实际应用中,双曲线都有着广泛的应用和重要性。

双曲线的焦点与离心率的计算方法

双曲线的焦点与离心率的计算方法

双曲线的焦点与离心率的计算方法双曲线是经典的数学曲线之一,具有特殊的性质和形态。

焦点和离心率是描述双曲线的重要参数,能够帮助我们深入理解和分析双曲线的性质。

本文将介绍双曲线的定义、焦点与离心率的计算方法,并探讨它们在几何和物理中的应用。

一、双曲线的定义双曲线是具有以下几何性质的曲线:1. 定义域:双曲线的定义域为实数集,即曲线上的每一个点都对应一个实数,而且实数可以取任意值。

2. 对称轴:双曲线有两条对称轴,分别为纵轴和横轴。

对称轴是曲线的镜像轴,将曲线分为两个对称的部分。

3. 四个分支:双曲线由四个分支组成,分别位于对称轴及其延长线的两侧。

4. 渐近线:双曲线有两条渐近线,分别靠近其两个对称轴。

渐近线与双曲线在无穷远处趋于平行。

二、焦点的计算方法焦点是双曲线上的一个特殊点,具有重要的几何和物理意义。

双曲线的焦点计算方法如下:1. 横轴双曲线:设双曲线的中心为原点O(0,0),焦点距离原点的距离为c,离中心最近的点为F1,离中心最远的点为F2。

则焦点的坐标为F1(c,0)和F2(-c,0)。

2. 纵轴双曲线:设双曲线的中心为原点O(0,0),焦点距离原点的距离为c,离中心最近的点为F1,离中心最远的点为F2。

则焦点的坐标为F1(0,c)和F2(0,-c)。

三、离心率的计算方法离心率是双曲线的一个重要参数,用来描述双曲线的形态特征。

离心率的计算方法如下:1. 横轴双曲线:设双曲线的焦点为F1(c,0)和F2(-c,0),顶点为V(a,0),则离心率e的计算公式为 e = c / a。

2. 纵轴双曲线:设双曲线的焦点为F1(0,c)和F2(0,-c),顶点为V(0,a),则离心率e的计算公式为 e = c / a。

离心率e是一个大于1的实数,可以反映出双曲线的独特形状。

当离心率e趋近于1时,双曲线的形状趋近于抛物线;当e大于1时,双曲线的形状更加尖锐。

四、焦点和离心率的应用焦点和离心率是双曲线的重要参数,在几何和物理中具有广泛的应用。

双曲线渐近线方程与离心率的关系

双曲线渐近线方程与离心率的关系

双曲线渐近线方程与离心率的关系
双曲线渐近线是几何中一类特殊的曲线,它以一个实数Ω为离心率,满足
方程x²/a²-y²/b²=1。

其中a为渐近线长轴,b为短轴,以a和b为直径,以Ω来描述曲线的弯曲程度,当Ω>1时,曲线内角钝角交替,被称为双曲线;当Ω=1时,曲线成圆,为椭圆时,称为椭圆渐近线;而当Ω<1时,曲线内角锐角交替,叫做反椭圆渐近线。

关于双曲线渐近线与离心率Ω之间的关系,当离心率Ω大于1时,椭圆渐近线就变为双曲线。

另外,椭圆的长轴和短轴的长度和离心率Ω有关。

Ω越大,椭圆的长轴越长,短轴越短,双曲线的弧度越大。

反过来,当Ω越小时,长轴越短,短轴越长,双曲线的弧度越小。

双曲线的渐近线与离心率的关系主要有三点:一是随着离心率Ω的增大,双曲线的形状由椭圆向双曲线化变;二是随着离心率Ω的增大,双曲线长轴和短轴的长度有相应的变化;三是随着离心率Ω的增大,双曲线的弧度也会发生变化。

从上面的情况可以看出,长轴、短轴长度以及曲线弧度均和离心率Ω有关联,在双曲线渐近线的形状变化规律上也得出了一定的结果。

此外,它还在很多规律数学中扮演重要的角色,其形状在实际中也有广泛的应用。

双曲线基本知识点

双曲线基本知识点

双曲线基本知识点1. 什么是双曲线?在数学中,双曲线是平面上的一种特殊曲线,它与椭圆和抛物线类似,都是由焦点和直角的性质定义的。

双曲线有许多重要的应用,特别是在几何学、物理学和工程学中。

2. 双曲线的方程双曲线的一般方程可以写成:其中a和b分别是椭圆的半轴长度。

当a和b相等时,我们得到一个标准形式的双曲线:3. 双曲线的性质对称轴双曲线有两条对称轴:x轴和y轴。

对称轴通过焦点,并且与直角垂直。

焦点焦点是双曲线上最重要的点之一。

对于标准形式的双曲线,焦点位于原点的左右两侧。

焦点与直角的距离由半轴长度决定。

集中距离集中距离是指从原点到双曲线上任意一点的距离与该点到焦点的距离之差。

对于标准形式的双曲线,集中距离等于半轴长度。

渐近线双曲线有两条渐近线,分别与双曲线无限接近但永远不会相交。

渐近线的斜率等于b/a或-a/b,取决于椭圆的方程形式。

离心率离心率是描述椭圆形状的一个重要参数。

对于标准形式的双曲线,离心率等于根号下(a^2 + b^2)/a。

4. 双曲线的类型根据椭圆方程中a和b的关系,可以将双曲线分为以下几种类型:横向双曲线当a^2 > b^2时,我们得到一个横向双曲线。

这意味着双曲线在x轴上延伸,并且在y轴上收敛。

纵向双曲线当a^2 < b^2时,我们得到一个纵向双曲线。

这意味着双曲线在y轴上延伸,并且在x轴上收敛。

等轴双曲线当a^2 = b^2时,我们得到一个等轴双曲线。

这意味着双曲线在两个方向上都延伸,并且对称于原点。

5. 双曲函数与双曲线相关的函数被称为双曲函数。

常见的双曲函数包括双曲正弦、双曲余弦和双曲正切。

双曲正弦(sinh)双曲余弦(cosh)双曲正切(tanh)%3D-%20i+%20tan(i x))6. 双曲线的应用由于其特殊的性质,双曲线在许多领域中都有重要的应用。

物理学双曲线经常用于描述电磁波、粒子运动和引力场等物理现象。

例如,电磁波在空间中传播的路径可以由双曲线方程表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第34练 双曲线的渐近线和离心率题型一 双曲线的渐近线问题例1 (2013·课标全国Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( ) A .y =±14x B .y =±13xC .y =±12x D .y =±x破题切入点 根据双曲线的离心率求出a 和b 的比例关系,进而求出渐近线. 答案 C 解析 由e =c a =52知,a =2k ,c =5k (k ∈R +), 由b 2=c 2-a 2=k 2,知b =k .所以b a =12.即渐近线方程为y =±12x .故选C.题型二 双曲线的离心率问题例2 已知O 为坐标原点,双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,以OF 为直径作圆与双曲线的渐近线交于异于原点的两点A ,B ,若(AO →+AF →)·OF →=0,则双曲线的离心率e 为( ) A .2 B .3 C. 2 D. 3破题切入点 数形结合,画出合适图形,找出a ,b 间的关系. 答案 C解析 如图,设OF 的中点为T ,由(AO →+AF →)·OF →=0可知AT ⊥OF ,又A 在以OF 为直径的圆上,∴A ⎝ ⎛⎭⎪⎫c 2,c2, 又A 在直线y =b ax 上, ∴a =b ,∴e = 2.题型三 双曲线的渐近线与离心率综合问题例3 已知A (1,2),B (-1,2),动点P 满足AP →⊥BP →.若双曲线x 2a2-y 2b2=1(a >0,b >0)的渐近线与动点P 的轨迹没有公共点,则双曲线离心率的取值围是________.破题切入点 先由直接法确定点P 的轨迹(为一个圆),再由渐近线与该轨迹无公共点得到不等关系,进一步列出关于离心率e 的不等式进行求解. 答案 (1,2)解析 设P (x ,y ),由题设条件,得动点P 的轨迹为(x -1)(x +1)+(y -2)·(y -2)=0, 即x 2+(y -2)2=1,它是以(0,2)为圆心,1为半径的圆.又双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±bax ,即bx ±ay =0,由题意,可得2aa 2+b2>1,即2ac>1, 所以e =ca<2, 又e >1,故1<e <2.总结提高 (1)求解双曲线的离心率的关键是找出双曲线中a ,c 的关系,a ,c 关系的建立方法直接反映了试题的难易程度,最后在求得e 之后注意e >1的条件,常用到数形结合.(2)在求双曲线的渐近线方程时要掌握其简易求法.由y =±b a x ⇔x a ±y b =0⇔x 2a 2-y 2b 2=0,所以可以把标准方程x 2a 2-y 2b 2=1(a >0,b >0)中的“1”用“0”替换即可得出渐近线方程.双曲线的离心率是描述双曲线“口”大小的一个数据,由于b a =c 2-a 2a =e 2-1,当e 逐渐增大时,b a的值就逐渐增大,双曲线的“口”就逐渐增大.1.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)以及双曲线y 2a 2-x 2b 2=1的渐近线将第一象限三等分,则双曲线x 2a 2-y 2b2=1的离心率为( )A .2或233 B.6或233C .2或 3 D.3或 6 答案 A解析 由题意,可知双曲线x 2a 2-y 2b2=1的渐近线的倾斜角为30°或60°,则b a =33或 3. 则e =c a=c 2a 2= a 2+b 2a 2=1+b a2=233或2,故选A. 2.已知双曲线C :x 2a 2-y 2b2=1 (a >0,b >0)的左,右焦点分别为F 1,F 2,过F 2作双曲线C 的一条渐近线的垂线,垂足为H ,若F 2H 的中点M 在双曲线C 上,则双曲线C 的离心率为( ) A. 2 B. 3 C .2 D .3 答案 A解析 取双曲线的渐近线y =b a x ,则过F 2与渐近线垂直的直线方程为y =-a b(x -c ),可解得点H 的坐标为⎝ ⎛⎭⎪⎫a 2c ,ab c ,则F 2H 的中点M 的坐标为⎝ ⎛⎭⎪⎫a 2+c 22c ,ab 2c ,代入双曲线方程x 2a 2-y 2b 2=1可得a 2+c 224a 2c2-a 2b 24c 2b 2=1,整理得c 2=2a 2,即可得e =c a=2,故应选A. 3.(2014·模拟)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线均和圆C :x 2+y 2-6x +5=0相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为( ) A.x 25-y 24=1 B.x 24-y 25=1 C.x 23-y 26=1 D.x 26-y 23=1 答案 A解析 ∵双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b ax ,圆C 的标准方程为(x -3)2+y 2=4, ∴圆心为C (3,0). 又渐近线方程与圆C 相切, 即直线bx -ay =0与圆C 相切,∴3ba 2+b2=2,∴5b 2=4a 2.①又∵x 2a 2-y 2b2=1的右焦点F 2(a 2+b 2,0)为圆心C (3,0),∴a 2+b 2=9.② 由①②得a 2=5,b 2=4.∴双曲线的标准方程为x 25-y 24=1.4.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点分别为F 1(-c,0),F 2(c,0),若双曲线上存在点P 使a sin∠PF 1F 2=csin∠PF 2F 1,则该双曲线的离心率的取值围是( )A .(1,2+1)B .(1,3)C .(3,+∞)D .(2+1,+∞) 答案 A解析 根据正弦定理得|PF 2|sin∠PF 1F 2=|PF 1|sin∠PF 2F 1,由a sin∠PF 1F 2=csin∠PF 2F 1,可得a |PF 2|=c |PF 1|,即|PF 1||PF 2|=c a=e ,所以|PF 1|=e |PF 2|. 因为e >1,所以|PF 1|>|PF 2|,点P 在双曲线的右支上. 又|PF 1|-|PF 2|=e |PF 2|-|PF 2|=|PF 2|(e -1) =2a , 解得|PF 2|=2ae -1. 因为|PF 2|>c -a (不等式两边不能取等号,否则题中的分式中的分母为0,无意义), 所以2a e -1>c -a ,即2e -1>e -1, 即(e -1)2<2,解得e <2+1. 又e >1,所以e ∈(1,2+1).5.(2014·)已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为( )A.433 B.233C .3D .2 答案 A解析 设|PF 1|=r 1,|PF 2|=r 2(r 1>r 2),|F 1F 2|=2c ,椭圆长半轴长为a 1,双曲线实半轴长为a 2,椭圆、双曲线的离心率分别为e 1,e 2,由(2c )2=r 21+r 22-2r 1r 2cos π3,得4c 2=r 21+r 22-r 1r 2.由⎩⎪⎨⎪⎧r 1+r 2=2a 1,r 1-r 2=2a 2,得⎩⎪⎨⎪⎧r 1=a 1+a 2,r 2=a 1-a 2,所以1e 1+1e 2=a 1+a 2c =r 1c.令m =r 21c 2=4r 21r 21+r 22-r 1r 2=41+r 2r 12-r 2r 1=4r 2r 1-122+34, 当r 2r 1=12时,m max =163, 所以(r 1c )max =433,即1e 1+1e 2的最大值为433. 6.(2014·)已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为( ) A .x ±2y =0 B.2x ±y =0 C .x ±2y =0 D .2x ±y =0 答案 A解析 由题意知e 1=c 1a ,e 2=c 2a, ∴e 1·e 2=c 1a ·c 2a =c 1c 2a 2=32.又∵a 2=b 2+c 21,c 22=a 2+b 2, ∴c 21=a 2-b 2,∴c 21c 22a 4=a 4-b 4a 4=1-(b a )4, 即1-(b a )4=34,解得b a =±22,∴b a =22. 令x 2a 2-y 2b2=0,解得bx ±ay =0, ∴x ±2y =0.7.若椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2a 2-y 2b2=1的离心率分别为e 1,e 2,则e 1e 2的取值围为________. 答案 (0,1)解析 可知e 21=a 2-b 2a 2=1-b 2a2,e 22=a 2+b 2a 2=1+b 2a2,所以e 21+e 22=2>2e 1e 1⇒0<e 1e 2<1.8.过双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的左焦点F 作圆x 2+y 2=a 24的切线,切点为E ,延长FE 交双曲线的右支于点P ,若E 为PF 的中点,则双曲线的离心率为________. 答案102解析 设双曲线的右焦点为F ′,由于E 为PF 的中点,坐标原点O 为FF ′的中点,所以EO ∥PF ′,又EO ⊥PF ,所以PF ′⊥PF ,且|PF ′|=2×a2=a ,故|PF |=3a ,根据勾股定理得|FF ′|=10a .所以双曲线的离心率为10a 2a =102. 9.(2014·)设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m,0)满足|PA |=|PB |,则该双曲线的离心率是________. 答案52解析 双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±bax .由⎩⎪⎨⎪⎧y =b a x ,x -3y +m =0,得A (am 3b -a ,bm3b -a),由⎩⎪⎨⎪⎧y =-b a x ,x -3y +m =0,得B (-am a +3b ,bma +3b), 所以AB 的中点C 坐标为(a 2m 9b 2-a 2,3b 2m9b 2-a2).设直线l :x -3y +m =0(m ≠0), 因为|PA |=|PB |,所以PC ⊥l , 所以k PC =-3,化简得a 2=4b 2. 在双曲线中,c 2=a 2+b 2=5b 2, 所以e =c a =52. 10.(2013·)设F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小角为30°,则双曲线C 的离心率为________. 答案3解析 不妨设|PF 1|>|PF 2|,则|PF 1|-|PF 2|=2a , 又∵|PF 1|+|PF 2|=6a , ∴|PF 1|=4a ,|PF 2|=2a . 又在△PF 1F 2中,∠PF 1F 2=30°, 由正弦定理得,∠PF 2F 1=90°, ∴|F 1F 2|=23a ,∴双曲线C 的离心率e =23a2a= 3.11.P (x 0,y 0)(x 0≠±a )是双曲线E :x 2a 2-y 2b2=1(a >0,b >0)上一点,M ,N 分别是双曲线E 的左,右顶点,直线PM ,PN 的斜率之积为15.(1)求双曲线的离心率;(2)过双曲线E 的右焦点且斜率为1的直线交双曲线于A ,B 两点,O 为坐标原点,C 为双曲线上一点,满足OC →=λOA →+OB →,求λ的值.解 (1)点P (x 0,y 0)(x 0≠±a )在双曲线x 2a 2-y 2b 2=1上,有x 20a 2-y 20b2=1. 由题意又有y 0x 0-a ·y 0x 0+a =15,可得a 2=5b 2,c 2=a 2+b 2=6b 2, 则e =c a =305. (2)联立⎩⎪⎨⎪⎧x 2-5y 2=5b 2,y =x -c ,得4x 2-10cx +35b 2=0.设A (x 1,y 1),B (x 2,y 2). 则⎩⎪⎨⎪⎧x 1+x 2=5c 2,x 1x 2=35b24.①设OC →=(x 3,y 3),OC →=λOA →+OB →, 即⎩⎪⎨⎪⎧x 3=λx 1+x 2,y 3=λy 1+y 2.又C 为双曲线上一点,即x 23-5y 23=5b 2, 有(λx 1+x 2)2-5(λy 1+y 2)2=5b 2.化简得λ2(x 21-5y 21)+(x 22-5y 22)+2λ(x 1x 2-5y 1y 2)=5b 2. 又A (x 1,y 1),B (x 2,y 2)在双曲线上, 所以x 21-5y 21=5b 2,x 22-5y 22=5b 2. 由(1)可知c 2=6b 2,由①式又有x 1x 2-5y 1y 2=x 1x 2-5(x 1-c )(x 2-c )=-4x 1x 2+5c (x 1+x 2)-5c 2=10b 2. 得λ2+4λ=0,解得λ=0或λ=-4.12.(2014·)如图,已知双曲线C :x 2a2-y 2=1(a >0)的右焦点为F .点A ,B 分别在C 的两条渐近线上,AF ⊥x 轴,AB ⊥OB ,BF ∥OA (O 为坐标原点).(1)求双曲线C 的方程;(2)过C 上一点P (x 0,y 0)(y 0≠0)的直线l :x 0x a 2-y 0y =1与直线AF 相交于点M ,与直线x =32相交于点N .证明:当点P 在C 上移动时,|MF ||NF |恒为定值,并求此定值.解 (1)设F (c,0), 直线OB 方程为y =-1ax ,直线BF 的方程为y =1a (x -c ),解得B (c 2,-c2a ).又直线OA 的方程为y =1ax ,则A (c ,c a ),k AB =c a --c 2a c -c 2=3a.又因为AB ⊥OB ,所以3a ·(-1a)=-1,解得a 2=3,故双曲线C 的方程为x 23-y 2=1.(2)由(1)知a =3,则直线l 的方程为x 0x3-y 0y =1(y 0≠0),即y =x 0x -33y 0. 因为c =a 2+b 2=2,所以直线AF 的方程为x =2, 所以直线l 与AF 的交点为M (2,2x 0-33y 0);直线l 与直线x =32的交点为N (32,32x 0-33y 0).则|MF |2|NF |2=2x 0-323y 0214+32x 0-323y 02 =2x 0-329y 204+94x 0-22=43·2x 0-323y 20+3x 0-22.因为P (x 0,y 0)是C 上一点,则x 203-y 20=1,代入上式得|MF |2|NF |2=43·2x 0-32x 20-3+3x 0-22=43·2x 0-324x 20-12x 0+9=43, 即|MF ||NF |=23=233为定值.。

相关文档
最新文档