高一物理向心力典型例题(含答案)
高一物理向心力

四、竖直面内的圆周运动问题
1.没有支承的小球:如图所示,细绳系的小球或在轨道内
侧运动的小球,在最高点时的临界状态为只受重力,由
v2 mg m , 得 v gr . r
在最高点时:
(1)v=
gr 时,拉力或压力为零.
(2)v> gr 时,物体受向下的拉力或压力,并且随速度的
增大而增大.
(3)v< gr 时,物体不能达到最高点.(实际上球未到最高 点就脱离了轨道) 即绳类的临界速度为v临=
大,cos 小,两地随地球自转的角速度相同,因此北京随 地球自转的向心加速度比广州的小,D正确、C错误.
【规律方法】向心加速度公式的应用技巧 向心加速度的每一个公式都涉及三个物理量的变化关系, 必须在某一物理量不变时分析另外两个物理量之间的关系 . 在比较转动物体上做圆周运动的各点的向心加速度的大小 时,应先确定各点是线速度大小相等,还是角速度相同.在 线速度大小相等时,向心加速度与半径成反比,在角速度 相同时,向心加速度与半径成正比.
【解题指导】解答本题应注意以下两点
【标准解答】选C.向心力是产生圆周运动的条件而不是结 果,A错误;向心力只改变线速度方向,不改变线速度的大 小,B错误;做匀速圆周运动的物体的向心力就是该物体所 受外力的合力,C正确;向心力的方向是时刻变化的,向心
力是变力,D错误.
【规律方法】向心力与合外力判断方法 (1)向心力是按力的作用效果来命名的,它不是某种确定性 质的力,可以由某个力来提供,也可以由某个力的分力或 几个力的合力来提供.
(2)任何情况的圆周运动,向心力的方向一定指向圆心,向
心力是做圆周运动的物体需要的一个指向圆心的力,而不 是物体又受到一个新的力.
【典例1】(2011·吴江高一检测)关于向心力的说法中正确
向心力典型例题(附答案解析详解)

1、如图所示,半径为r的圆筒,绕竖直中心轴OO′转动,小物块a靠在圆筒的内壁上,它与圆筒的动摩擦因数为μ,现要使a不下滑,则圆筒转动的角速度ω至少为()A. B. C. D.2、下面关于向心力的叙述中,正确的是()A.向心力的方向始终沿着半径指向圆心,所以是一个变力B.做匀速圆周运动的物体,除了受到别的物体对它的作用外,还一定受到一个向心力的作用C.向心力可以是重力、弹力、摩擦力中的某个力,也可以是这些力中某几个力的合力,或者是某一个力的分力D.向心力只改变物体速度的方向,不改变物体速度的大小3、关于向心力的说法,正确的是()A.物体由于做圆周运动而产生了一个向心力B.向心力不改变圆周运动物体速度的大小C.做匀速圆周运动的物体其向心力即为其所受的合外力D.做匀速圆周运动的物体其向心力大小不变5、如图所示,质量为m的木块,从半径为r的竖直圆轨道上的A点滑向B点,由于摩擦力的作用,木块的速率保持不变,则在这个过程中A.木块的加速度为零B.木块所受的合外力为零C.木块所受合外力大小不变,方向始终指向圆心D.木块所受合外力的大小和方向均不变6、甲、乙两名溜冰运动员,M 甲=80 kg,M乙=40 kg,面对面拉着弹簧秤做圆周运动的溜冰表演,如图所示,两个相距0.9 m,弹簧秤的示数为9.2 N,下列判断正确的是()A.两人的线速度相同,约为40 m/sB.两人的角速度相同,为6 rad/sC.两人的运动半径相同,都是0.45 mD.两人的运动半径不同,甲为0.3 m,乙为0.6 m7、如图所示,在匀速转动的圆筒内壁上有一物体随圆筒一起转动而未滑动.若圆筒和物体以更大的角速度做匀速转动,下列说法正确的是()A.物体所受弹力增大,摩擦力也增大B.物体所受弹力增大,摩擦力减小C.物体所受弹力减小,摩擦力也减小D.物体所受弹力增大,摩擦力不变8、用细绳拴住一球,在水平面上做匀速圆周运动,下列说法中正确的是()A.当转速不变时,绳短易断B.当角速度不变时,绳短易断C.当线速度不变时,绳长易断D.当周期不变时,绳长易断9、如图,质量为m的木块从半径为R的半球形的碗口下滑到碗的最低点的过程中,如果由于摩擦力的作用使得木块的速率不变A.因为速率不变,所以木块加速度为零C.木块下滑过程中的摩擦力大小不变B.木块下滑的过程中所受的合外力越来越大D.木块下滑过程中的加速度大小不变,方向时刻指向球心解析:木块做匀速圆周运动,所受合外力大小恒定,方向时刻指向圆心,故选项A、B不正确.在木块滑动过程中,小球对碗壁的压力不同,故摩擦力大小改变,C错. 答案:D10、如图所示,在光滑的以角速度ω旋转的细杆上穿有质量分别为m和M的两球,两球用轻细线连接.若M>m,则()A.当两球离轴距离相等时,两球相对杆不动B.当两球离轴距离之比等于质量之比时,两球相对杆都不动C.若转速为ω时,两球相对杆都不动,那么转速为2ω时两球也不动D.若两球相对杆滑动,一定向同一方向,不会相向滑动解析:由牛顿第三定律可知M、m间的作用力相等,即F M=F m,F M=Mω2r M,F m=mω2rm,所以若M、m不动,则r M∶r m=m∶M,所以A、B不对,C 对(不动的条件与ω无关).若相向滑动,无力提供向心力,D对. 答案:CD 11、一物体以4m/s的线速度做匀速圆周运动,转动周期为2s,则物体在运动过程的任一时刻,速度变化率的大小为()A.2m/s2B.4m/s2C.0D.4πm/s2ω=2π/T=2π/2=πv=ω*r 所以r=4/πa=v∧2/r=16/(4/π)=4π12、在水平路面上安全转弯的汽车,向心力是()A.重力和支持力的合力B.重力、支持力和牵引力的合力C 汽车与路面间的静摩擦力 D.汽车与路面间的滑动摩擦力二、非选择题【共3道小题】1、如图所示,半径为R的半球形碗内,有一个具有一定质量的物体A,A与碗壁间的动摩擦因数为μ,当碗绕竖直轴OO′匀速转动时,物体A刚好能紧贴在碗口附近随碗一起匀速转动而不发生相对滑动,求碗转动的角速度.分析:物体A随碗一起转动而不发生相对滑动,物体做匀速圆周运动的角速度ω就等于碗转动的角速度ω.物体A做匀速圆周运动所需的向心力方向指向球心O,故此向心力不是重力而是由碗壁对物体的弹力提供,此时物体所受的摩擦力与重力平衡.解析:物体A做匀速圆周运动,向心力:F n=mω2R而摩擦力与重力平衡,则有μF n=mg 即F n=mg/μ由以上两式可得:mω2R= mg/μ即碗匀速转动的角速度为:ω=.2、汽车沿半径为R的水平圆跑道行驶,路面作用于车的摩擦力的最大值是车重的1/10,要使汽车不致冲出圆跑道,车速最大不能超过多少?解析:跑道对汽车的摩擦力提供向心力,1/10mg=mv2/r,所以要使汽车不致冲出圆跑道,车速最大值为v=. 答案:车速最大不能超过3、一质量m=2 kg的小球从光滑斜面上高h=3.5 m处由静止滑下,斜面的底端连着一个半径R=1 m的光滑圆环(如图所示),则小球滑至圆环顶点时对环的压力为_____________,小球至少应从多高处静止滑下才能通过圆环最高点,hmin=_________(g=10 m/s2).匀速圆周运动典型问题剖析匀速圆周运动问题是学习的难点,也是高考的热点,同时它又容易和很多知识综合在一起,形成能力性很强的题目,如除力学部分外,电学中“粒子在磁场中的运动”涉及的很多问题仍然要用到匀速圆周运动的知识,对匀速圆周运动的学习可重点从两个方面掌握其特点,首先是匀速圆周运动的运动学规律,其次是其动力学规律,现就各部分涉及的典型问题作点滴说明。
高一物理下册《向心力计算题综合复习》有答案

高一物理下册《向心力计算题综合复习》例1.长度为L=0.5m的轻质细杆OA,A端有一质量为m=3.0kg的小球,如图所示,小球以O点为圆心在竖直平面内做圆周运动(g取10m/s2)。
(1)通过最高点时小球的速率是2.0m/s,计算此时细杆OA受到的弹力;(2)通过最高点时小球的速率是3.0m/s,计算此时细杆OA受到的弹力。
例2.如图,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动。
现测得转台半径R=0.5m,离水平地面的高度H=0.8m,物块平抛落地过程水平位移的大小s=0.4m。
设物块所受的最大静摩擦力等于滑动摩擦力,取重力加速度g=10m/s2;求:(1)物块做平抛运动的初速度大小v0;(2)物块与转台间的动摩擦因数μ。
例3.如图所示,质量为m的木块,用一轻绳拴着,置于很大的水平转盘上,细绳穿过转盘中央的细管,与质量也为m的小球相连,木块与转盘间的最大静摩擦力为其重力的μ倍(μ=0.2),当转盘以角速度ω=4rad/s匀速转动时,要保持木块与转盘相对静止,木块转动半径的范围是多少?(g取10m/s2)例4.如图所示,一根长为0.5m的轻质细线,一端系着一个质量为0.8kg的小球(可视为质点),另一端固定在光滑圆锥体顶端,圆锥顶角的一半θ=37°(sin37°=0.6,cos37°=0.8),g取10m/s2;求:当小球随圆锥体围绕其中心轴线一起以ω=5rad/s做匀速圆周运动时,小球受到绳子的拉力与圆锥体的支持力。
例5.如图所示,一个光滑的圆锥体固定在水平桌面上,其轴线沿竖直方向,母线与轴线之间的夹角θ=60°,一条长度为L的绳(质量不计),一端固定在圆锥体的顶点O处,另一端拴着一个质量为m的小球(可看成质点),小球以角速度ω绕圆锥体的轴线做水平匀速圆周运动。
求:当小球以的角速度转动时所受拉力F T和支持力F N大小。
高一物理__向心力_习题、答案

向心力习题1.在匀速圆周运动中,下列物理量不变的是( )A .向心加速度B .线速度C .向心力D .角速度2.下列关于做匀速圆周运动的物体所受的向心力的说法中,正确的是 ( )A .物体除其他的力外还要受到—个向心力的作用B .物体所受的合外力提供向心力C .向心力是一个恒力D .向心力的大小—直在变化3.下列关于向心力的说法中正确的是( )A .物体受到向心力的作用才可能做圆周运动B .向心力是指向圆心方向的合力,是根据力的作用效果来命名的,但受力分析时应该画出C .向心力可以是重力、弹力、摩擦力等各种力的合力,也可以是其中某一种力或某几种力的合力D .向心力只改变物体运动的方向,不改变物体运动的快慢4. 如图所示的圆锥摆中,摆球A 在水平面上作匀速圆周运动,关于A 的受力情况,下列说法中正确的是( )A .摆球A 受重力、拉力和向心力的作用;B .摆球A 受拉力和向心力的作用;C .摆球A 受拉力和重力的作用;D .摆球A 受重力和向心力的作用。
5.如图所示,在匀速转动的圆筒内壁上紧靠着一个物体一起运动,物体所受向心力是 ()A .重力B .弹力C .静摩擦力D .滑动摩擦力 6.如图所示,一圆盘可绕通过圆盘中心O 且垂直于盘面的竖直轴转动,在圆盘上放置一小木块A ,它随圆盘一起做匀速圆周运动。
则关于木块A 的受力,下列说法正确的是( )A .木块A 受重力、支持力和向心力B .木块A 受重力、支持力和静摩擦力,静摩擦力的方向指向圆心C .木块A 受重力、支持力和静摩擦力,静摩擦力的方向与木块运动方向相反D .木块A 受重力、支持力和静摩擦力,静摩擦力的方向与木块运动方向相同7.甲、乙两个物体都做匀速圆周运动,其质量之比为1∶2,转动半径之比为1∶2,在相同时间里甲转过60°角,乙转过45°角。
则它们的向心力之比为( )A .1∶4B .2∶3C .4∶9D .9∶168.在如图所示的圆锥摆中,已知绳子长度为L ,绳子转动过程中与竖直方向的夹角为θ ,试求小球做圆周运动的周期。
高一物理同步练习(人教版新教材必修2)6.2 向心力 (解析版)

2019-2020学年高一物理同步练习(人教版新教材必修2)6.2 向心力一、基础篇1.在水平冰面上,狗拉着雪橇做变速圆周运动,O点为圆心,能正确的表示雪橇受到的牵引力F及摩擦力F f的图是()解析:选C雪橇所受的摩擦力方向一定与运动方向相反,沿圆周的切线方向,牵引力F有沿半径指向圆心的分力提供向心力,沿切向的分力与F f的合力改变雪橇速度的大小,故只有选项C正确。
2.关于向心力,下列说法中正确的是()A.物体由于做圆周运动而产生一个向心力B.向心力不改变物体做圆周运动的速度大小C.做匀速圆周运动的物体的向心力是恒力D.做一般曲线运动的物体所受的合力即为向心力解析:选B向心力是根据力的作用效果命名的,它不改变速度的大小,只改变速度的方向,选项A错误,B正确;做匀速圆周运动的物体的向心力始终指向圆心,方向在不断变化,是变力,选项C错误;做一般曲线运动的物体所受的合力通常可分解为切线方向的分力和法线方向的分力,切线方向的分力改变速度的大小,法线方向的分力改变速度的方向,选项D错误。
3.[多选]如图所示,四辆相同的小“自行车”固定在四根水平横杆上,四根杆子间的夹角均保持90°不变,且可一起绕中间的竖直轴转动。
当小“自行车”的座位上均坐上小孩并一起转动时,他们的()A.角速度相同B.线速度相同C.周期相同D.所需向心力大小相同解析:选AC小自行车在转动过程中,转动的周期相等,因此角速度相同,选项A、C正确;根据v=rω可知,线速度大小相等,但方向不同,所以选项B错误;由于不知道小朋友的质量关系,所以根据F向=mrω2可知,向心力大小关系不确定,选项D错误。
4.(2019·重庆高一检测)一个圆盘在水平面内匀速转动,盘面上有一个小物体随圆盘一起运动。
对小物体进行受力分析,下列说法正确的是()A.只受重力和支持力B.只受重力、支持力、摩擦力C.只受重力、支持力、向心力D.只受重力、支持力、摩擦力、向心力解析:选B小物体做匀速圆周运动,合力指向圆心,对小物体受力分析,受重力、支持力和静摩擦力,如图所示;重力和支持力平衡,静摩擦力提供向心力,故B正确。
高一物理 向心力向心加速度 典型例题解析

向心力向心加速度典型例题解析【例1】如图37-1所示,一个大轮通过皮带拉着小轮转动,皮带和两轮之间无相对滑动,大轮的半径是小轮半径的2倍,大轮上的一点S离转动轴的距离是半径的1/3.当大轮边缘上的P点的向心加速度是0.12m/s2时,大轮上的S点和小轮边缘上的Q点的向心加速度各为多大?解析:P点和S点在同一个转动轮子上,其角速度相等,即ωP=ωS.由向心加速度公式a=rω2可知:a s/a p=r s/r p,∴a s=r s/r p·a p=1/3×0.12m/s2=0.04m/s2.由于皮带传动时不打滑,Q点和P点都在由皮带传动的两个轮子边缘,这两点的线速度的大小相等,即v Q=v P.由向心加速度公式a=v2/r可知:a Q/a P =r P/r Q,∴a Q=r P/r Q×a P=2/1×0.12m/s2=0.24 m/s2.点拨:解决这类问题的关键是抓住相同量,找出已知量、待求量和相同量之间的关系,即可求解.【问题讨论】(1)在已知a p的情况下,为什么求解a s时要用公式a=rω2、求解a Q时,要用公式a=v2/r?(2)回忆一下初中电学中学过的导体的电阻消耗的电功率与电阻的关系式:P=I2R和P=U2/R,你能找出电学中的电功率P与电阻R的关系及这里的向心加速度a与圆周半径r的关系之间的相似之处吗?【例2】如图37-2所示,一圆盘可绕一通过圆盘中心O且垂直于盘面的竖直轴转动,在圆盘上放置一个木块,当圆盘匀角速转动时,木块随圆盘一起运动,那么[ ] A.木块受到圆盘对它的摩擦力,方向背离圆盘中心B.木块受到圆盘对它的摩擦力,方向指向圆盘中心C.因为木块随圆盘一起运动,所以木块受到圆盘对它的摩擦力,方向与木块的运动方向相同D.因为摩擦力总是阻碍物体的运动,所以木块所受到圆盘对它的摩擦力的方向与木块的运动方向相反解析:从静摩擦力总是阻碍物体间的相对运动的趋势来分析:由于圆盘转动时,以转动的圆盘为参照物,物体的运动趋势是沿半径向外,背离圆心的,所以盘面对木块的静摩擦力方向沿半径指向圆心.从做匀速圆周运动的物体必须受到一个向心力的角度来分析:木块随圆盘一起做匀速圆周运动,它必须受到沿半径指向圆心的合力.由于木块所受的重力和盘面的支持力都在竖直方向上,只有来自盘面的静摩擦力提供指向圆心的向心力,因而盘面对木块的静摩擦力方向必沿半径指向圆心.所以,正确选项为B.点拨:1.向心力是按效果命名的,它可以是重力、或弹力、或摩擦力,也可以是这些力的合力或分力所提供.2.静摩擦力是由物体的受力情况和运动情况决定的.【问题讨论】有的同学认为,做圆周运动的物体有沿切线方向飞出的趋势,静摩擦力的方向应该与物体的运动趋势方向相反.因而应该选取的正确答案为D.你认为他的说法对吗?为什么?【例3】如图37-3所示,在光滑水平桌面上有一光滑小孔O;一根轻绳穿过小孔,一端连接质量为m=1kg的小球A,另一端连接质量为M=4kg 的重物B.(1)当小球A沿半径r=0.1m的圆周做匀速圆周运动,其角速度为ω=10rad/s时,物体B对地面的压力为多大?(2)当A球的角速度为多大时,B物体处于将要离开、而尚未离开地面的临界状态?(g=10m/s2)点拨:小球A作匀速圆周运动,由绳子的拉力提供向心力,从而使B对地面的压力减少.当B物体将要离开而尚未离开地面时,小球A所需的向心力恰好等于重物B的重力参考答案(1)30N(2)20rad/s【例4】小球A和B用细线连接,可以在光滑的水平杆上无摩擦地滑动,已知它们的质量之比m1∶m2=3∶1,当这一装置绕着竖直轴做匀速转动且A、B两球与水平杆子达到相对静止时(如图37-4所示),A、B两球做匀速圆周运动的[ ] A.线速度大小相等B.角速度相等C.向心力的大小之比为F1∶F2=3∶1D.半径之比为r1∶r2=1∶3点拨:当两小球随轴转动达到稳定状态时,把它们联系在一起的同一根细线为A、B两小球提供的向心力大小相等;同轴转动的角速度相等;两小球的圆周轨道半径之和为细线的长度;两小球的线速度与各自的轨道半径成正比.【问题讨论】如果上述装置的转速增大,当转速增至某一数值时,细线会被拉断,断了细线后的A、B两个小球将如何运动?参考答案BD跟踪反馈1.如图37-5所示,用细线吊着一个质量为m的小球,使小球在水平面内做圆锥摆运动,关于这个小球的受力情况,下列说法中,正确的是[ ] A.受重力、拉力、向心力B.受重力、拉力C.只受重力D.以上说法均不正确2.如图37-6所示的皮带传动装置中,O为轮子A和B的共同转轴,O′为轮子C的转轴,A、B、C分别是三个轮子边缘上的质点,且R A=R C=2R B,则三质点的向心加速度大小之比a A∶a B∶a C等于[ ] A.4∶2∶1 B.2∶1∶2C∶1∶2∶4 D.4∶1∶4 3.如图37-7所示,水平光滑圆盘的中央有一小孔,让一根细绳穿过小孔,一端连结一个小球,另一端连结一个弹簧,弹簧下端固定在地板上,弹簧处在原长时,小球恰好处在圆心小孔处,让小球拉出小孔并使其作匀速圆周运动,证明其角速度为恒量,与旋转半径无关.4.用一根细绳拴一物体,使它在距水平地面高h=1.6m处的水平面内做匀速圆周运动,轨道的圆周半径r=1m.细绳在某一时刻突然被拉断,物体飞出后,落地点到圆周运动轨道圆心的水平距离S=3m,则物体做匀速圆周运动的线速度为多大?向心加速度多大?参考答案1.B 2.A 3.由题意可得kΔL=mω2ΔL,km/m 4v5m/s a25m/s2∴ω=.=,=。
人教版高一物理向心力和向心加速度习题及答案解析(3)

向心力和向心加速度(3)1.下列说法正确的是( )A .匀速圆周运动是匀变速曲线运动B .匀速圆周运动的线速度不变C .匀速圆周运动的加速度不变D .匀速圆周运动的角速度不变【解析】匀速圆周运动的加速度方向时刻变化,所以匀速圆周运动的加速度是不断变化的,不是匀变速曲线运动,所以A 和C 错误;又因为线速度的方向不断变化,所以线速度是变化的,B 错误;匀速圆周运动的角速度是保持不变的,所以D 正确。
【答案】D2.关于向心力的下列说法正确的是( )A .物体由于做圆周运动而产生了一个向心力B .向心力只改变做圆周运动物体的线速度的方向,不改变线速度的大小C .做匀速圆周运动的物体向心力是不变的D .以上说法均不正确【解析】物体不是由于做圆周运动而产生向心力,而是物体做圆周运动需要向心力,物体在向心力的作用下才能做圆周运动,所以A 错;因为向心力的方向与线速度的方向总是垂直,所以向心力不能改变线速度的大小,只能改变线速度的方向,所以B 正确;由于向心力的方向总是指向圆心,所以向心力的方向时刻改变,向心力是不断变化的,C 、D 错误;【答案】B3.关于做匀速圆周运动物体的线速度、角速度、周期之间的关系,下列说法正确的是( )A .线速度大的角速度一定大B .线速度大的周期一定小C .角速度大的半径一定小D .角速度大的周期一定小【解析】根据v=r ω可知,在r 一定的情况下,线速度大的角速度一定大,所以A 错;根据Tr v π2=可知,在r 一定的情况下,线速度大的周期一定小,所以B 错;角速度是反映物体转动快慢的物理量,它与半径无关,由ω=v r知,只有当线速度v 一定时,角速度ω才与半径r 成反比,所以C 错;根据Tπω2=可知,角速度与周期成反比,所以D 正确。
【答案】D4.关于质点做匀速圆周运动的下列说法正确的是( )A .由a =v 2r知,a 与r 成反比 B .由a =ω2r 知,a 与r 成正比 C .由ω=v r知,ω与r 成反比 D .由ω=2πn 知,ω与转速n 成正比 【解析】由a =v 2r知,只有在v 一定时,a 才与r 成反比,如果v 不一定,则a 与r 不成反比,同理,只有当ω一定时,a 才与r 成正比;v 一定时,ω与r 成反比;因2π是定值,故ω与n 成正比。
高一物理必修二第五章 向心力 向心加速度基础练习题(带参考答案)

一、学习要点1.理解向心力的概念和公式的确切含义,并能用向心力的公式进行计算;2.理解向心加速度的概念和公式;3.知道在变速圆周运动中,可用上述公式求质点在某一点的向心力和向心加速度; 4.会根据向心力和牛顿第二定律的知识分析和讨论与圆周运动相关的物理现象。
二、学习内容(一)向心力1.做圆周运动的物体要受到与速度方向______且指向______的外力作用,这个力就是向心力;2.向心力是根据 命名的,它可以是重力、弹力、摩擦力等各种性质的力,也可以是它们的合力,还可以是某个力的分力; 3.向心力的大小:F =_____________=_____________=_____________;4.方向:总是指向________,但方向时刻在变化,因此是一个_____力(填“变”或“恒”),圆周运动是一种_______________运动(填“匀加速”或“变加速”)。
5.向心力只改变速度的_________,不改变速度的_________。
问题1:向心力是一种怎样的力?匀速圆周运动是不是一种匀变速曲线运动? 例1.下列关于做匀速圆周运动的物体所受的向心力的说法中,正确的是( )A .物体除其他的力外还要受到一个向心力的作用B .物体所受的合外力提供向心力C .向心力是一个恒力D .向心力的大小一直在变化 练习1.(多选题)关于向心力的说法正确的是( )A .向心力不改变做圆周运动物体速度的大小B .做匀速圆周运动的物体受到的向心力即为物体受到的合力C .做匀速圆周运动的物体的向心力是不变的D .物体由于做圆周运动而产生了一个向心力问题2:如何理解圆周运动的向心力?例2.一只小狗拉着雪橇在水平冰面上沿着圆弧形的道路匀速行驶,图1为雪橇受到的牵引力F 及摩擦力F 1的示意图(O 为圆心),其中正确的是( )练习2.(多选题)如图2所示,物块P 置于水平转盘上随转盘一起运动,图中c 沿半径指向圆心,a 与c 垂直,下列说法正确的是( )A .当转盘匀速转动时,P 受摩擦力方向可能为a 方向B .当转盘加速转动时,P 受摩擦力方向可能为b 方向C .当转盘加速转动时,P 受摩擦力方向可能为c 方向D .当转盘减速转动时,P 受摩擦力方向可能为d 方向(二)向心加速度1.物体在向心力作用下产生的加速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向心力典型例题(附答案详解)一、选择题【共12道小题】1、如图所示,半径为r的圆筒,绕竖直中心轴OO′转动,小物块a靠在圆筒的壁上,它与圆筒的动摩擦因数为μ,现要使a不下滑,则圆筒转动的角速度ω至少为()A. B. C. D.解析:要使a不下滑,则a受筒的最大静摩擦力作用,此力与重力平衡,筒壁给a的支持力提供向心力,则N=mrω2,而fm=mg=μN,所以mg=μmr ω2,故 . 所以A、B、C均错误,D正确.2、下面关于向心力的叙述中,正确的是()A.向心力的方向始终沿着半径指向圆心,所以是一个变力B.做匀速圆周运动的物体,除了受到别的物体对它的作用外,还一定受到一个向心力的作用C.向心力可以是重力、弹力、摩擦力中的某个力,也可以是这些力中某几个力的合力,或者是某一个力的分力D.向心力只改变物体速度的方向,不改变物体速度的大小解析:向心力是按力的作用效果来命名的,它可以是物体受力的合力,也可以是某一个力的分力,因此,在进行受力分析时,不能再分析向心力.向心力时刻指向圆心与速度方向垂直,所以向心力只改变速度的方向,不改变速度的大小,即向心力不做功. 答案:ACD3、关于向心力的说法,正确的是()A.物体由于做圆周运动而产生了一个向心力B.向心力不改变圆周运动物体速度的大小C.做匀速圆周运动的物体其向心力即为其所受的合外力D.做匀速圆周运动的物体其向心力大小不变解析:向心力并不是物体受到的一个特殊力,它是由其他力沿半径方向的合力或某一个力沿半径方向的分力提供的.因为向心力始终与速度方向垂直,所以向心力不会改变速度的大小,只改变速度的方向.当质点做匀速圆周运动时,向心力的大小保持不变. 答案:BCD4、在光滑水平面上相距20 cm的两点钉上A、B两个钉子,一根长1 m的细绳一端系小球,另一端拴在A钉上,如图所示.已知小球质量为0.4 kg,小球开始以2 m/s的速度做水平匀速圆周运动,若绳所能承受的最大拉力为4 N,则从开始运动到绳拉断历时为()A.2.4π sB.1.4π sC.1.2π sD.0.9π s解析:当绳子拉力为4 N时,由F=可得r=0.4 m.小球每转半个周期,其半径就减小0.2 m,由分析知,小球分别以半径为1 m,0.8 m和0.6 m各转过半个圆周后绳子就被拉断了,所以时间为t==1.2π s. 答案:C5、如图所示,质量为m的木块,从半径为r的竖直圆轨道上的A点滑向B 点,由于摩擦力的作用,木块的速率保持不变,则在这个过程中A.木块的加速度为零B.木块所受的合外力为零C.木块所受合外力大小不变,方向始终指向圆心D.木块所受合外力的大小和方向均不变解析:木块做匀速圆周运动,所以木块所受合外力提供向心力. 答案:C主要考察知识点:匀速圆周运动、变速圆周运动、离心现象及其应用6、甲、乙两名溜冰运动员,M甲=80 kg,M乙=40 kg,面对面拉着弹簧秤做圆周运动的溜冰表演,如图所示,两个相距0.9 m,弹簧秤的示数为9.2 N,下列判断正确的是()A.两人的线速度相同,约为40 m/sB.两人的角速度相同,为6 rad/sC.两人的运动半径相同,都是0.45 mD.两人的运动半径不同,甲为0.3 m,乙为0.6 m解析:甲、乙两人绕共同的圆心做圆周运动,他们间的拉力互为向心力,他们的角速度相同,半径之和为两人的距离.设甲、乙两人所需向心力为F向,角速度为ω,半径分别为r甲、r乙.则F向=M甲ω2r甲=M乙ω2r乙=9.2 N ①r甲+r乙=0.9 m ②由①②两式可解得只有D正确答案:D7、如图所示,在匀速转动的圆筒壁上有一物体随圆筒一起转动而未滑动.若圆筒和物体以更大的角速度做匀速转动,下列说确的是()A.物体所受弹力增大,摩擦力也增大B.物体所受弹力增大,摩擦力减小C.物体所受弹力减小,摩擦力也减小D.物体所受弹力增大,摩擦力不变析:物体在竖直方向上受重力G与摩擦力F,是一对平衡力,在向心力方向上受弹力F N.根据向心力公式,可知F N=mω2r,当ω增大时,F N增大,选D.8、用细绳拴住一球,在水平面上做匀速圆周运动,下列说法中正确的是()A.当转速不变时,绳短易断B.当角速度不变时,绳短易断C.当线速度不变时,绳长易断D.当周期不变时,绳长易断析:由公式a=ω2R=知,当角速度(转速)不变时绳长易断,故A、B错误.周期不变时,绳长易断,故D正确.由,当线速度不变时绳短易断,C错9、如图,质量为m的木块从半径为R的半球形的碗口下滑到碗的最低点的过程中,如果由于摩擦力的作用使得木块的速率不变A.因为速率不变,所以木块加速度为零C.木块下滑过程中的摩擦力大小不变B.木块下滑的过程中所受的合外力越来越大D.木块下滑过程中的加速度大小不变,方向时刻指向球心解析:木块做匀速圆周运动,所受合外力大小恒定,方向时刻指向圆心,故选项A、B不正确.在木块滑动过程中,小球对碗壁的压力不同,故摩擦力大小改变,C错. 答案:D10、如图所示,在光滑的以角速度ω旋转的细杆上穿有质量分别为m和M 的两球,两球用轻细线连接.若M>m,则()A.当两球离轴距离相等时,两球相对杆不动B.当两球离轴距离之比等于质量之比时,两球相对杆都不动C.若转速为ω时,两球相对杆都不动,那么转速为2ω时两球也不动D.若两球相对杆滑动,一定向同一方向,不会相向滑动解析:由牛顿第三定律可知M、m间的作用力相等,即F M=F m,F M=Mω2r M,F m=mω2rm,所以若M、m不动,则r M∶r m=m∶M,所以A、B不对,C对(不动的条件与ω无关).若相向滑动,无力提供向心力,D对. 答案:CD 11、一物体以4m/s的线速度做匀速圆周运动,转动周期为2s,则物体在运动过程的任一时刻,速度变化率的大小为()A.2m/s2B.4m/s2C.0D.4π m/s2ω=2π/T=2π/2=πv=ω*r所以r=4/πa=v∧2/r=16/(4/π)=4π12、在水平路面上安全转弯的汽车,向心力是()A.重力和支持力的合力B.重力、支持力和牵引力的合力C 汽车与路面间的静摩擦力 D.汽车与路面间的滑动摩擦力二、非选择题【共3道小题】1、如图所示,半径为R的半球形碗,有一个具有一定质量的物体A,A与碗壁间的动摩擦因数为μ,当碗绕竖直轴OO′匀速转动时,物体A刚好能紧贴在碗口附近随碗一起匀速转动而不发生相对滑动,求碗转动的角速度.分析:物体A随碗一起转动而不发生相对滑动,物体做匀速圆周运动的角速度ω就等于碗转动的角速度ω.物体A做匀速圆周运动所需的向心力方向指向球心O,故此向心力不是重力而是由碗壁对物体的弹力提供,此时物体所受的摩擦力与重力平衡.解析:物体A做匀速圆周运动,向心力:F n=mω2R而摩擦力与重力平衡,则有μF n=mg 即F n=mg/μ由以上两式可得:mω2R= mg/μ即碗匀速转动的角速度为:ω=.2、汽车沿半径为R的水平圆跑道行驶,路面作用于车的摩擦力的最大值是车重的1/10,要使汽车不致冲出圆跑道,车速最大不能超过多少?解析:跑道对汽车的摩擦力提供向心力,1/10mg=mv2/r,所以要使汽车不致冲出圆跑道,车速最大值为v=. 答案:车速最大不能超过3、一质量m=2 kg的小球从光滑斜面上高h=3.5 m处由静止滑下,斜面的底端连着一个半径R=1 m的光滑圆环(如图所示),则小球滑至圆环顶点时对环的压力为_____________,小球至少应从多高处静止滑下才能通过圆环最高点,hmin=_________(g=10 m/s2).解析:①设小球滑至圆环顶点时速度为v1,则mgh=mg·2R+ 1/2mv12F n+mg= mv12/R 得:F n=40 N②小球刚好通过最高点时速度为v2,则mg= mv22/R又mgh′=mg2R+1/2 mv22/R得h′=2.5R答案:40 N;2.5R匀速圆周运动典型问题剖析匀速圆周运动问题是学习的难点,也是高考的热点,同时它又容易和很多知识综合在一起,形成能力性很强的题目,如除力学部分外,电学中“粒子在磁场中的运动”涉及的很多问题仍然要用到匀速圆周运动的知识,对匀速圆周运动的学习可重点从两个方面掌握其特点,首先是匀速圆周运动的运动学规律,其次是其动力学规律,现就各部分涉及的典型问题作点滴说明。
(一)运动学特征及应用匀速圆周运动的加速度、线速度的大小不变,而方向都是时刻变化的,因此匀速圆周运动是典型的变加速曲线运动。
为了描述其运动的特殊性,又引入周期(T )、频率(f )、角速度(ω)等物理量,涉及的物理量及公式较多。
因此,熟练理解、掌握这些概念、公式,并加以灵活选择运用,是我们学习的重点。
1. 基本概念、公式的理解和运用[例1] 关于匀速圆周运动,下列说确的是( )A. 线速度不变B. 角速度不变C. 加速度为零D. 周期不变 解析:匀速圆周运动的角速度和周期是不变的;线速度的大小不变,但方向时刻变化,故匀速圆周运动的线速度是变化的,加速度不为零,答案为B 、D 。
[例2] 在绕竖直轴匀速转动的圆环上有A 、B 两点,如图1所示,过A 、B 的半径与竖直轴的夹角分别为30°和60°,则A 、B 两点的线速度之比为 ;向心加速度之比为 。
解析:A 、B 两点做圆周运动的半径分别为R R r A 2130sin =︒= R R r B 2360sin =︒=它们的角速度相同,所以线速度之比3331====B A B A B A r r r r v v ωω 加速度之比3322==B B A A B A r r a a ωω 2. 传动带传动问题[例3] 如图2所示,a 、b 两轮靠皮带传动,A 、B 分别为两轮边缘上的点,C 与A 同在a 轮上,已知B A r r 2=,B r OC =,在传动时,皮带不打滑。
求:(1)=B C ωω: ;(2)=B C v v : ;(3)=B C a a : 。
解析:A 、C 两点在同一皮带轮上,它们的角速度相等,即C A ωω=,由于皮带不打滑,所以A 、B 两点的线速度大小相等,即B A v v =。
(1)根据r v=ω知21===A B B A B C r r ωωωω (2)根据ωr v =知21====A B A C A C B C r r r r v v v v (3)根据ωv a =知412121=⨯==B B C C B C v v a a ωω 点评:共轴转动的物体上各点的角速度相同,不打滑的皮带传动的两轮边缘上各点线速度大小相等,这样通过“角速度”或“线速度”将比较“遥远”的两个质点的运动学特点联系在一起。
(二)动力学特征及应用物体做匀速圆周运动时,由合力提供圆周运动的向心力 且有222)2(Tmr mr r v m ma F F πω=====向向合方向始终指向圆心1. 基本概念及规律的应用[例4] 如图3所示,质量相等的小球A 、B 分别固定在轻杆的中点和端点,当杆在光滑水平面上绕O 点匀速转动时求杆OA 和AB 段对球A 的拉力之比。