太阳能电池材料的发展及应用

合集下载

太阳能电池的发展和应用前景

太阳能电池的发展和应用前景

太阳能电池的发展和应用前景随着环境问题的日益加剧,可再生能源成为了人们重要关注的焦点之一。

太阳能作为最为广泛利用的可再生能源之一,其发展和应用前景备受瞩目。

本文将围绕太阳能电池的发展历程、技术创新和应用前景展开,以期展示其在可持续能源领域的重要性。

首先,我们来看看太阳能电池的发展历程。

早在19世纪初,科学家们就开始研究太阳能的利用方式,当时太阳能电池的效率还十分低下。

然而,随着科技的不断进步,20世纪中叶,太阳能电池开始逐渐成熟,并进入实际应用阶段。

最早的太阳能电池主要由硅材料制成,效率只有几个百分点,而如今的太阳能电池效率已经可以达到20%以上。

这一巨大的进步离不开材料科学、工程技术和制造工艺的不断改进。

其次,太阳能电池领域的技术创新也为其应用前景带来了更多的可能性。

如今,除了传统的硅太阳能电池外,还涌现出了一系列新型太阳能电池。

比如,柔性太阳能电池可以被弯曲和折叠,适用于各种形状的表面;有机太阳能电池可以使用廉价原料进行生产,成本更低;钙钛矿太阳能电池则以高效率和简单制备工艺而备受关注。

这些新型太阳能电池的问世,使得太阳能的应用范围更加广泛,不仅可以用于光伏发电,还可以嵌入各种设备和建筑,实现更多领域的可持续发展。

另外,太阳能电池的应用前景也日益广阔。

首先是太阳能发电市场的扩大。

随着人们对绿色能源的追求,太阳能发电已经成为全球新能源市场的主要推动力之一。

尽管传统能源在供能方面仍然占主导地位,但太阳能电池在许多地区已经成为具有重要竞争力的发电方式。

同时,随着技术的进步和成本的下降,太阳能发电产业规模将进一步扩大,且具有持续增长的趋势。

除了发电领域,太阳能电池还在其他领域具有广泛的应用前景。

例如,太阳能电池可以嵌入移动设备、电动汽车和无人机等电子产品中,以延长续航时间和减少对传统能源的依赖。

太阳能电池还可以应用于建筑领域,成为绿色建筑的重要组成部分,通过建筑外墙、屋顶和窗户等表面吸收阳光并转化为电能,实现自给自足的能源供应系统。

光伏材料的研究及其在新能源开发中的应用

光伏材料的研究及其在新能源开发中的应用

光伏材料的研究及其在新能源开发中的应用光伏材料是指能够将太阳能转化为电能的材料,近年来,随着对能源可持续发展问题的日益重视,光伏材料的研究和开发逐渐成为一个热门领域。

本文将探讨光伏材料的研究发展、应用现状及其在新能源开发中的作用。

一、光伏材料研究发展光伏材料的发展始于20世纪50年代,当时,单晶硅被发现具有光电转换的能力,成为了最早应用于光伏电池制造的材料之一。

目前,光伏材料种类繁多,包括单晶硅、多晶硅、铜铟镓硒等无机材料以及聚合物、碳纳米管等有机材料,这些材料的性能和应用场景也不尽相同。

以单晶硅为例,它的电子结构和物理特性决定了其在光伏电池中的重要地位。

单晶硅能够实现高电子迁移率和长寿命,因此其在太阳能电池的效率、可靠性、使用寿命等方面都有着较为优异的表现。

但是单晶硅的制造成本和能源消耗很高,这也成为了其应用受限的主要因素。

铜铟镓硒材料则因具有优异的光吸收特性、高效能转换率、稳定性等优点,被认为是光伏材料的前途所在。

相较于单晶硅,其制造成本更低且能源消耗更少,且可以应用于大量生产。

不过,铜铟镓硒材料也存在着发电效率低、生产工艺难、资源富集不足等问题。

二、光伏材料在新能源开发中的应用光伏材料的应用已经不再局限于传统的太阳能电池,而是逐渐拓展到更广泛的领域。

下面从几个方面阐述光伏材料在新能源开发中的应用。

1. 太阳能光伏电池太阳能光伏电池是光伏材料的主要应用领域。

传统的太阳能电池使用单晶硅等无机材料作为基础材料,通过光电转换将太阳能转化为电能。

近年来,随着新型光伏材料不断推出,太阳能光伏电池的效率和稳定性也在不断提高,促进了太阳能发电技术的发展。

2. 储能系统光伏材料在储能系统中也有着广泛的应用。

光伏发电系统通过光电转换将太阳能转化为电能,将多余的电能储存在电池中,在需要时进行调用。

由于太阳能发电存在着波动性,因此储能系统对能源的稳定供应起着重要作用。

铅酸蓄电池、锂离子电池等大量储能系统选择使用光伏材料进行电池制造,以提高电池的效率和稳定性。

太阳能电池的发展历史

太阳能电池的发展历史

太阳能电池的发展历史太阳能电池是一种将太阳能转化为电能的装置,它的发展历史可以追溯到19世纪初。

本文将详细介绍太阳能电池的发展历程,包括关键技术突破、应用领域扩展以及未来发展趋势。

1. 太阳能电池的起源太阳能电池最早由法国物理学家爱德蒙·贝克勒尔于1839年发现。

他发现某些物质在受到光照时会产生电流,这被称为光电效应。

然而,贝克勒尔的发现并没有引起太多关注,太阳能电池的实际应用还需要等待几十年。

2. 第一代太阳能电池的发展第一代太阳能电池采用的是单晶硅或者多晶硅材料,于1954年由贝尔实验室的研究人员发明。

这种太阳能电池的效率相对较低,仅为6%,并且成本较高,限制了其商业化应用。

然而,这一突破为后续的研究提供了基础。

3. 第二代太阳能电池的突破第二代太阳能电池的突破发生在20世纪70年代末和80年代初。

研究人员开始使用非晶硅材料来创造太阳能电池,这种材料的成本更低,创造过程也更简单。

与第一代太阳能电池相比,第二代太阳能电池的效率有所提高,达到了10%摆布。

4. 第三代太阳能电池的发展第三代太阳能电池的研究主要集中在21世纪初。

这些太阳能电池采用了新型材料和结构,旨在提高效率并降低成本。

其中最有潜力的技术包括多结太阳能电池、有机太阳能电池和染料敏化太阳能电池。

这些新技术的研究仍在进行中,但已经取得了一些突破。

5. 太阳能电池的应用领域扩展随着太阳能电池技术的不断发展,其应用领域也在不断扩大。

最早的应用是在太空探索中,太阳能电池被用于为宇航员提供电力。

随后,太阳能电池开始在地面上的一些特定应用中使用,例如远程地区的电力供应和农村地区的电力照明。

现在,太阳能电池已经广泛应用于家庭光伏发电系统、商业光伏电站和城市建造的太阳能光伏系统。

6. 太阳能电池的未来发展趋势太阳能电池的未来发展趋势主要集中在提高效率、降低成本和改善可持续性。

研究人员正在探索新的材料和结构,以提高太阳能电池的效率。

同时,随着创造工艺的改进和规模效应的实现,太阳能电池的成本也将进一步降低。

太阳能电池的发展历史

太阳能电池的发展历史

太阳能电池的发展历史太阳能电池是一种将太阳能转化为电能的装置,其发展历史可以追溯到19世纪初。

本文将详细介绍太阳能电池的发展历程,包括关键技术突破、应用领域拓展以及未来发展趋势。

1. 太阳能电池的起源太阳能电池的概念最早由法国物理学家爱德蒙·贝克勒耳在1839年提出。

他发现,当光照射到某些材料上时,会产生微弱的电流。

这一现象被称为光电效应,为太阳能电池的发展奠定了基础。

2. 第一代太阳能电池:硒光电池在19世纪末,美国发明家查尔斯·费德尔和威廉·莫尔斯发明了第一种实用的太阳能电池,即硒光电池。

这种光电池利用硒的光电效应将太阳能转化为电能。

然而,硒光电池效率低下且成本高昂,限制了其应用范围。

3. 第二代太阳能电池:硅光电池20世纪50年代,贝尔实验室的科学家发明了硅光电池,标志着第二代太阳能电池的诞生。

硅光电池利用硅材料的光电效应将太阳能转化为电能。

硅光电池的效率相对较高,且成本逐渐降低,使其在航天、通信和农业等领域得到了广泛应用。

4. 第三代太阳能电池:多晶硅光电池和薄膜太阳能电池20世纪70年代,多晶硅光电池和薄膜太阳能电池成为第三代太阳能电池的代表。

多晶硅光电池采用多晶硅材料制造,相比单晶硅光电池,其制造成本更低,但效率稍低。

薄膜太阳能电池采用薄膜材料制造,具有灵活性和轻便性,适用于一些特殊应用场景。

5. 第四代太阳能电池:有机太阳能电池和钙钛矿太阳能电池近年来,有机太阳能电池和钙钛矿太阳能电池成为第四代太阳能电池的研究热点。

有机太阳能电池利用有机半导体材料将太阳能转化为电能,具有制造成本低、柔性可塑等优势。

钙钛矿太阳能电池利用钙钛矿材料的光电效应,具有高效率和制造成本低的特点。

6. 太阳能电池的应用领域拓展随着太阳能电池技术的不断进步,其应用领域也在不断拓展。

太阳能电池广泛应用于航天、通信、农业、建筑等领域。

在航天领域,太阳能电池被用于为卫星和航天器供电;在通信领域,太阳能电池被用于为远程通信设备和无线电台供电;在农业领域,太阳能电池被用于为灌溉系统和农业设备供电;在建筑领域,太阳能电池被用于建筑一体化和城市光伏发电。

太阳能电池的发展和应用

太阳能电池的发展和应用

太阳能电池的发展和应用太阳能电池被誉为未来能源的代表,是目前最为环保和可再生的能源之一。

近年来,随着技术的不断进步和成本的不断降低,太阳能电池的应用范围也在不断拓展。

本文将从太阳能电池的发展历程、技术原理、应用领域等方面进行探讨。

一、太阳能电池的发展历程太阳能电池的历史可以追溯到19世纪初,当时科学家们发现在某些材料中会发生光致电势差,即一种从光能转换为电能的现象。

随着对这种现象的深入研究,1954年,贝尔实验室的三位科学家成功地发明了第一块太阳能电池。

这种太阳能电池由单层硅制成,只能转换10%的光能,且制作成本昂贵,应用十分有限。

20世纪60年代,随着半导体技术的不断成熟,太阳能电池的制作工艺得到了很大的改进,应用领域也逐渐拓展。

上世纪70年代,随着国际油价的急剧上涨,太阳能电池开始得到广泛关注,各国政府也开始对太阳能电池技术进行投资支持。

此后,太阳能电池的技术水平和市场规模不断提高,应用范围也越来越广泛。

二、太阳能电池的技术原理太阳能电池是一种利用光生电效应将光能转换成电能的器件。

太阳能电池的基本结构是由一层n型半导体和一层p型半导体组成的p-n结,两者之间形成的势垒可以将光能转换为电能。

当太阳光照射到太阳能电池表面时,电子会被激发跃迁到导带中,形成正电荷空穴,这样就产生了电流。

太阳能电池的转换效率取决于材料的能带结构、电荷传输效率以及光吸收量等因素。

目前,太阳能电池的主要材料包括单晶硅、多晶硅、铠体硅、氨化铟镓锌和有机薄膜等。

其中,单晶硅是目前最为普及的材料,它的转换效率达到了20%以上,但制造成本较高;多晶硅制造成本较低,转换效率也较高,但是粗糙的表面会导致损失一定的光能;铠体硅则是一种新型材料,具有转换效率高、成本低、稳定性强等优势。

三、太阳能电池的应用领域太阳能电池是一种非常环保和可再生的能源,其应用领域非常广泛。

目前,太阳能电池的主要应用领域包括:家庭光伏发电、太阳能热水器、太阳能灯具、航空航天和卫星技术等。

太阳能电池综述:材料、政策驱动机制及应用前景

太阳能电池综述:材料、政策驱动机制及应用前景

太阳能电池综述:材料、政策驱动机制及应用前景一、本文概述随着全球能源需求的持续增长和对环境保护的日益关注,太阳能电池作为一种清洁、可再生的能源转换技术,已经引起了广泛关注。

本文旨在全面综述太阳能电池领域的最新研究进展,包括关键材料的发展、政策驱动机制以及应用前景。

文章首先介绍了太阳能电池的基本原理和分类,然后重点分析了不同类型太阳能电池的关键材料及其性能特点。

在此基础上,文章深入探讨了国家政策对太阳能电池发展的推动作用,包括补贴政策、税收优惠、研发资助等。

文章展望了太阳能电池在未来的应用前景,包括在建筑、交通、航天等领域的应用潜力。

通过本文的综述,旨在为读者提供一个全面、深入的了解太阳能电池领域的窗口,为相关研究和产业发展提供参考。

二、太阳能电池材料太阳能电池的性能和效率在很大程度上取决于所使用的材料。

随着科技的进步,太阳能电池材料的种类和性能也在不断发展。

目前,市场上主流的太阳能电池材料主要包括硅基材料、多元化合物材料、有机材料以及新兴材料如钙钛矿材料等。

硅基材料是最早也是目前应用最广泛的太阳能电池材料。

单晶硅和多晶硅因其稳定的性能和较高的光电转换效率而备受欢迎。

然而,硅基材料也存在一些限制,如成本较高、制备工艺复杂等。

为了降低成本,研究人员正在探索使用薄膜硅、纳米硅等新型硅基材料。

多元化合物材料主要包括铜铟镓硒(CIGS)、铜锌锡硫(CZTS)等。

这些材料具有较高的光电转换效率和较低的成本,因此在近年来得到了广泛的关注。

然而,多元化合物材料的稳定性和制备工艺仍需进一步改进。

有机材料太阳能电池以其轻质、柔性、可大面积制备等优势而受到关注。

有机太阳能电池主要使用聚合物或有机小分子作为光活性材料,通过光电转换过程产生电能。

尽管目前有机太阳能电池的光电转换效率相对较低,但其低廉的成本和潜在的应用场景使得这一领域具有巨大的发展潜力。

除了上述几种主流材料外,新兴材料如钙钛矿材料也备受瞩目。

钙钛矿材料具有优异的光电性能和较低的成本,被认为是一种极具潜力的下一代太阳能电池材料。

太阳能电池技术的进展与应用前景

太阳能电池技术的进展与应用前景

太阳能电池技术的进展与应用前景随着环境污染和气候变化的日益严重,为解决能源问题,太阳能电池作为一种清洁、可再生、无污染的能源,其技术得到了长足的发展,也成为各国研究的热点之一。

本文将分别从太阳能电池的技术进展和应用前景两个方面进行分析。

太阳能电池技术进展1.多晶硅太阳能电池多晶硅太阳能电池是目前最常见和应用最广泛的太阳能电池。

多晶硅太阳能电池的效率随着材料制备和工艺的改进不断提高,目前已经达到了21%左右。

同时,多晶硅太阳能电池在制造过程中能够产生较少的废料,具有比较成熟的商业化路线。

2.单晶硅太阳能电池单晶硅太阳能电池由单一晶体制成,其效率比多晶硅太阳能电池高,可达到22%以上。

同时,单晶硅太阳能电池的寿命更长,可达30年以上。

不过,由于单晶硅太阳能电池制造工艺较为复杂,成本相对较高,因此市场占有率较低。

3.无机钙钛矿太阳能电池无机钙钛矿太阳能电池是近年来新兴的太阳能电池材料之一。

其通过改变材料结构和优化器件结构设计,其效率可以达到24%以上。

同时,无机钙钛矿太阳能电池的可制备性高,可通过溶液法、气相沉积等快速、低成本的制备技术得到大面积的优质器件。

4.有机太阳能电池有机太阳能电池是太阳能电池技术中的新兴领域,其以有机半导体材料为基础,可实现制造柔性、轻便的太阳能电池。

此外,有机太阳能电池的生产工艺成本较低,未来有望应用于大规模生产。

虽然目前其效率较低,但其容易与其他材料结合的特点提高了其应用上的灵活性。

太阳能电池应用前景1.户用光伏随着太阳能电池技术不断升级和成本不断降低,越来越多的家庭开始安装太阳能电池板以满足自身用电需求,其中以光伏发电为主。

除了满足自家能源的需要,还可以将发电量卖给电网,实现信息时代的分发式能源供应。

2.工业光伏太阳能电池板不仅可以用于家庭光伏发电,同样也可以广泛应用于工业领域,例如:太阳能电站、工业厂房的穹顶、通讯基站和广告牌等。

随着技术的进步,太阳能电池板将广泛应用于更多的工业领域。

新型太阳能电池的发展和应用

新型太阳能电池的发展和应用

新型太阳能电池的发展和应用太阳能电池在目前的能源转型中扮演着重要的角色,它是一种能够将太阳能转化为电能的设备。

在这个领域中,随着技术的不断发展,新型太阳能电池成为了一个十分热门的话题。

本文将探讨新型太阳能电池的发展和应用。

一、太阳能电池的基础原理在了解新型太阳能电池之前,我们需要先了解太阳能电池的基础原理。

太阳能电池是一种能够将太阳能转化为电能的设备,它是通过光电效应来实现这一过程。

太阳能电池的基本结构包括p型半导体层、n型半导体层和p-n结,当太阳光照射到p-n结上时,光能将被转化为电子能,电子会从n型半导体流向p型半导体,形成一个电流,这样就实现了将太阳能转化为电能的目的。

二、新型太阳能电池的发展随着能源环境的变化,太阳能电池的市场需求不断增加,各种新型太阳能电池的出现也逐渐成为了一个热门话题。

下面列举一些新型太阳能电池:1.多晶硅太阳能电池多晶硅太阳能电池是目前应用最广泛的一种太阳能电池,具有高转化效率、寿命长等优点,可广泛应用于住宅、工业、商业等领域。

它的制作成本相对较低,但也受到了制作工艺和原材料的限制。

2.单晶硅太阳能电池单晶硅太阳能电池的转化效率比多晶硅太阳能电池还要高,但代价是制作成本更高。

由于其良好的温度特性和稳定性,单晶硅太阳能电池在高温和恶劣条件下的性能表现更出色。

3.非晶硅太阳能电池非晶硅太阳能电池是一种薄膜太阳能电池,其制作成本相对较低,但转化效率比较低。

这种太阳能电池适合于在光照弱的地方使用,比如室内照明等。

4.有机太阳能电池有机太阳能电池是一种新型太阳能电池,是通过有机分子的光电转换实现的。

由于其制作成本低,可以印刷制作,因此在大规模生产上有很高的潜力。

但由于目前技术限制,转化效率还比较低。

三、新型太阳能电池的应用新型太阳能电池的出现,不仅给能源转型带来了新的机遇,也拓展了太阳能电池的应用场景。

1.建筑领域随着环保意识的增强,建筑领域对太阳能电池的需求不断增加。

新型太阳能电池的出现,使其在建筑领域的应用更加广泛,比如可以做成电池玻璃、电池瓦等等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

太阳能电池材料的发展及应用
材料研1203 Z石南起新材料(或称先进材料)是指那些新近发展或正在发展之中的具有比传统材料的性能更为优异的一类材料。

新材料是指新近发展的或正在研发的、性能超群的一些材料,具有比传统材料更为优异的性能。

新材料技术则是按照人的意志,通过物理研究、材料设计、材料加工、试验评价等一系列研究过程,创造出能满足各种需要的新型材料的技术。

随着科学技术发展,人们在传统材料的基础上,根据现代科技的研究成果,开发出新材料。

新材料按组分为金属材料、无机非金属材料(如陶瓷、砷化镓半导体等)、有机高分子材料、先进复合材料四大类。

按材料性能分为结构材料和功能材料。

21世纪科技发展的主要方向之一是新材料的研制和应用。

新材料的研究,是人类对物质性质认识和应用向更深层次的进军。

功能材料是指那些具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。

功能材料是新材料领域的核心,是国民经济、社会发展及国防建设的基础和先导。

它涉及信息技术、生物工程技术、能源技术、纳米技术、环保技术、空间技术、计算机技术、海洋工程技术等现代高新技术及其产业。

功能材料不仅对高新技术的发展起着重要的推动和支撑作用,还对我国相关传统产业的改造和升级,实现跨越式发展起着重要的促进作用。

功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。

世界各国均十分重视功能材料的研发与应用,它已成为世界各国新材料研究发展的热点和重点,也是世界各国高技术发展中战略竞争的热点。

在全球新材料研究领域中,功能材料约占85%。

我国高技术
(863)计划、国家重大基础研究[973]计划、国家自然科学基金项目中均安排了许多功能材料技术项目(约占新材料领域70%比例),并取得了大量研究成果。

1、能源材料
太阳能电池材料是新能源材料研究开发的热点,IBM公司研制的多层复合太阳能电池,转换率高达40%。

美国能源部在全部氢能研究经费中,大约有50%用于储氢技术。

固体氧化物燃料电池的研究十分活跃,关键是电池材料,如固体电解质薄膜和电池阴极材料,还有质子交换膜型燃料电池用的有机质子交换膜等,都是研究的热点。

地球每天接收的太阳能,相当于整个世界一年所消耗的总能量的200倍。

太阳每秒发出的能量就大约相当于1.3亿亿吨标准煤完全燃烧时所释放出的全部热量。

包括风能、海洋能等,都是太阳能的子孙,都是太阳能转换而成。

太阳能是人类取之不尽用之不竭的可再生清洁能源。

太阳能电池(Solar Cells),也称为光伏电池,是将太阳光辐射能直接转换为电能的器件。

由这种器件封装成太阳能电池组件,再按需要将一定数量的组件组合成一定功率的太阳电池方阵,经与储能装置、测量控制装置及直流--交流变换装置等相配套,即构成太阳电池发电系统,也称为光伏发电系统。

2、太阳能电池的发展
几千年来人类无意识地利用太阳能来取暖和晾晒物品,直到19世纪末才出现了第一台太阳能热水器,而第一片太阳能电池的出现则是在1954年,其发展过程简列如下:
1893年法国科学家贝克勒尔发现“光生伏特效应”,即“光伏效应”。

1930年肖特基提出Cu2O势垒的“光伏效应”理论。

同年,朗格首次提出用“光伏效应”制造“太阳电池”,使太阳能变成电能。

1941年xx在硅上发现光伏效应。

1954年恰宾和皮尔松在美国贝尔实验室,首次制成了实用的单晶太阳能电池,效率为6%。

同年,韦克尔首次发现了砷化镓有光伏效应,并在玻璃上沉积硫化镉薄膜,制成了第一块薄膜太阳能电池。

1958年太阳能电池首次在空间应用,装备美国先锋1号卫星电源。

1959年第一个多晶硅太阳能电池问世,效率达5%。

1975年非晶硅太阳能电池问世。

1980年单晶硅太阳能电池效率达20%,砷化镓电池达22.5%,多晶硅电池达
14.5%,硫化镉电池达9.15%。

1998年单晶硅光伏电池效率达25%。

荷兰政府提出“荷兰百万个太阳光伏屋顶计划”,到20年完成。

3、太阳能电池研究现状
太阳能是很好的“绿色能源”,不产生任何的环境污染又是可再生能源。

制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电于转换反应。

根据所用材料的不同,太阳能电池可分为:
1、硅太阳能电池;
2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;
3、功能高分子材料制备的大阳能电池;
4、纳米晶太阳能电池等。

不论以何种材料来制作电池,对太阳能电池材料一般的要求有:
1、半导体材料的禁带不能太宽;
2、要有较高的光电转换效率:
3、材料本身对环境不造成污染;
4、材料便于工业化生产且材料性能稳定。

基于以上几个方面考虑,硅是最理想的太阳能电池材料,这也是太阳能电池以硅材料为主的主要原因。

目前光伏发电居世界各国前列的是日本、德国和美国。

中国光伏发电产业于20世纪70年代起步,90年代中期进入稳步发展时期。

太阳电池及组件产量逐年稳步增加。

经过30多年的努力,已迎来了快速发展的新阶段。

在“光明工程”先导项目和“送电到乡”工程等国家项目及世界光伏市场的有力拉动下,我国光伏发电产业迅猛发展。

到2007年年底,全国光伏系统的累计装机容量达到10万千瓦,从事太阳能电池生产的企业达到50余家,太阳能电池生产能力达到290万千瓦,太阳能电池年产量达到1188MW,超过日本和欧洲,并已初步建立起从原材料生产到光伏系统建设等多个环节组成的完整产业链,特别是多晶硅材料生产取得了重大进展,突破了年产千吨大关,冲破了太阳能电池原材料生产的瓶颈制约,为我国光伏发电的规模化发展奠定了基础。

虽然近年来我国太阳能电池相关的技术研发取得了突破,但是,与国外相比可能还存在一些差距,主要表现在技术水平、产业和市场发展等方面。

比如,几种典型太阳电池的实验室最好效率都比国外要低,我国单晶硅、多晶硅的实验室效率分别为19.8%、16.5%,而国外的分别为24.8%和19.8%。

4、太阳能电池材料分析
多晶硅薄膜太阳能电池
多晶硅是单质硅的一种形态。

熔融的单质硅凝固时,硅原子以金刚石晶格排列成晶核,如果这些晶核长成晶面取向不同的晶粒,则这些晶粒结合起来,结晶成多晶硅。

目前太阳能电池使用的多晶硅材料,多半是含有大量单晶颗粒的集合体,或用废次单晶硅料和冶金级硅材料熔化浇浇铸而成。

其工艺过程是选择电阻率为100~300欧姆.cm的多晶块料或单晶硅头尾料,经破碎,用1:5的氢氟酸和硝酸混合液进行适当的腐蚀,然后用去离子水冲洗呈中性,并烘干。

用石英坩埚装好多晶硅料,加入适量硼硅,放入浇铸炉,在真空状态中热化。

熔化后的英保温约20min,然后注入石墨铸模中,待慢慢凝固冷却后,既得多晶硅锭。

这种硅锭可铸成立方体,以便切片加工成方形太阳能电池片,可提高材制利用率和方便组装。

制备多晶硅薄膜电池多采用化学气相沉积法,包括低压化学气相沉积(LPCVD)和等离子增强化学气相沉积(PECVD)工艺。

此外,液相外延法(LPPE)和溅射沉积法也可用来制备多晶硅薄膜电池。

化学气相沉积主要是以SiH2Cl
2、SiHCl
3、Sicl4或SiH4,为反应气体,在一定的保护气氛下反应生成硅原子并沉积在加热的衬底上,衬底材料一般选用Si、SiO
2、Si3N4等。

但研究发现,在非硅衬底上很难形成较大的晶粒,并且容易在晶粒间形成空隙。

解决这一问题办法是先用LPCVD在衬底上沉炽一层较薄的非晶硅层,再将这层非晶硅层退火,得到较大的晶粒,然后再在这层籽晶上沉积厚的多晶硅薄膜,因此,再结晶技术无疑是很重要的一个环节,目前采用的技术主要有固相结晶法和中区熔再结晶法。

多晶硅薄膜电池除采用了再结晶工艺外,另外采用了几乎所有制备单晶硅太阳能电池的技术,这样制得的太阳能电池转换效率明显提高。

德国费莱堡太阳能研究所采用区馆再结晶技术在FZ Si衬底上制得的多晶硅电池转换效率为19%,日本三菱公司用该法制备电池,效率达16.42%。

液相外延(LPE)法的原理是通过将硅熔融在母体里,降低温度析出硅膜。

美国Astropower公司采用LPE制备的电池效率达
12.2%。

中国光电发展技术中心的陈哲良采用液相外延法在冶金级硅片上生长出硅晶粒,并设计了一种类似于晶体硅薄膜太阳能电池的新型太阳能电池,称之为“硅粒”太阳能电池,但有关性能方面的报道还未见到。

多晶硅薄膜电池由于所使用的硅远较单晶硅少,又无效率衰退问题,并且有可能在廉价衬底材料上制备,其成本远低于单晶硅电池,而效率高于非晶硅薄膜电池,因此,多晶硅薄膜电池不久将会在太阳能电地市场上占据主导地位。

5、结论
以上就与太阳能电池材料的发展状况进行了概述。

总的来看,太阳能利用的水平,最终取决于太阳能材料的发展水平。

新材料、新工艺的出现,可进一步提高人类利用太阳能的水平,也可以为未来的能源危机做好准备。

相关文档
最新文档