大学博弈论讲义61页PPT

合集下载

博弈论基础PPT精品课程课件全册课件汇总

博弈论基础PPT精品课程课件全册课件汇总

自己处于c还是d。即K缺乏信息。 P
c
E
N
K
L
a
b
P
N
d
K
S
N
R’ K
e N’
0,140
80,0
0,0
40,110 13,120
2 扩展型
参与人对于结果的偏好性。K是否更希望博弈
终止点f而不是h上结束?
我们必须知道参与人关心什么,才能将终止
点根据每个参与人的偏好排列。通常用数字
表述参与人的偏好排序最为简便。这也称为
1 概述
这个理论在许多方面都是有用的。 首先,它提供了一种语言。 其次,它提供了应该框架,能够指导我们建立策略环 境模型。 其三,它有助于我们追朔,对行为假设的逻辑推理过 程。
1 概述
好几百年前,数学家就开 始研究室内游戏,试图构 造最优的游戏策略。
在1713年,沃尔德格雷夫 就某种纸牌游戏的解决方 法,与他的同事德莫特和 贝努利进行交流。沃尔德 格雷夫的解决方法,与现 代理论的结论相一致。
支付(payoff),或者效用(utilities)。
P
c
P
E
N
K
L
a
b
P
N
d
K
S
N
R’ K
e N’
0,140
80,0
0,0
40,110 13,120
2 扩展型
我们引入一些数学符号来考察博弈。
我们来看看一个市场博弈,两个厂商通过选择高价或者低价进行 竞争。
我们用参与人i表示任何一个参与人的数字代码。即在一个有n个 参与人的博弈中,i=1,2,…,n。 在某些博弈中,一个参与人可以在无限多个行动中进行选择。

博弈论完整版PPT课件

博弈论完整版PPT课件
R3 3, 2 0, 4 4, 3 50, 1 会将C4从C的战略空间中剔除, 所以 R4 2, 93 0, 92 0, 91 100, 90 R不会选择R4;
2-阶理性: C相信R相信C是理性的,C会将R4从R的战略空间中剔除, 所以 C不会选择C1;
3-阶理性: R相信C相信R相信C是理性的, R会将C1从C的战略空间中剔 除, R不会选择R1;
基本假设:完全竞争,完美信息
个人决策是在给定一个价格参数和收入的条 件下最大化自己的效用,个人的效用与其他人 无涉,所有其他人的行为都被总结在“价格”参数 之中
一般均衡理论是整个经济学的理论基石 和道义基础,市场机制是完美的,帕累托 最优成立,平等与效率可以兼顾。
.
3
然而在以下情况,上述结论不成立:
.
19
理性共识
0-阶理性共识:每个人都是理性的,但不知道其 他人是否是理性的;
1-阶理性共识:每个人都是理性的,并且知道其 他人也是理性的,但不知道其他人是否知道自己 是理性的;
2-阶理性共识:每个人都是理性的,并且知道其
他人也是理性的,同时知道其他人也知道自己是
理性的;但不知道其他人是否知道自己知道他们
如果你预期我会选择X,我就真的会选择X。
如果参与人事前达成一个协议,在不存在外部强 制的情况下,每个人都有积极性遵守这个协议,这 个协议就是纳什均衡。
.
28
应用1——古诺的双寡头垄断模型(1938)
假定:
只有两个厂商 面对相同的线形需求曲线,P(Q)=a-Q, Q=q1+q2 两厂商同时做决策; 假定成本函数为C(qi)=ciqi
劣策略:如果一个博弈中,某个参与人有占优策略,那么
该参与人的其他可选择策略就被称为“劣策略”。

《博弈论》课程ppt课件

《博弈论》课程ppt课件

10
图1 进攻与防守的基本式 G={N, S, u},其中N=(1,2), Si={(0,2),(1,1),(2,0)},ui (s1, s2) = ri,i = 1, 2。
守方 (0,2) (1,1) (2,0)
(0,2)
攻方 (1,1)
失败,成功
成功,失败
成功,失败
失败,成功
成功,失败
成功,失败
《博弈论》课程
(一)什么是博弈论
我们首先看几个例子。 例1 石头、剪刀、布
猪八戒
石头 石头 孙悟空 剪刀 布 未定,未定 找水,休息 休息,找水 剪刀 休息,找水 未定,未定 找水,休息 布 找水,休息 休息,找水 未定,未定
2
例2 诺曼底登陆
德军
加来设防 加来登陆 盟军
诺曼底登陆 成功,失败
诺曼பைடு நூலகம்设防 成功,失败
9
例4 进攻与防守 双方争夺一个据点,有两条进攻路线X和Y, 攻方有两个军,而防守方也有两个军,只有 当守方的兵力不少于攻方时,才能击退进攻, 否则据点将会失守。首先可知守方的防守方 案(即策略)为(0,2),(1,1),(2,0),即在X 线路和Y线路驻扎军队数,同样可以到的攻 方的进攻方案(0,2),(1,1)和(2,0)。容易看出, 行动并非策略,策略是行动方案。
正是由于博弈论将博弈如何出现均衡列为核心, 因而博弈论对于各门社会科学而言,就具有了方 法论意义,成为各门学科的有力分析工具。
6
(二)博弈表达的科学式
(1)博弈的策略式
如何将博弈表示成一种便于研究和分析的形式显然 是很重要的。如果用参与者、策略和收益函数来 科学地描述一个博弈,就称为博弈表达的策略式 (或基本式、标准式)。

博弈论讲义完整PPT课件

博弈论讲义完整PPT课件
• 两个寡头企业选择产量的博弈:
如果两个企业联合起来形成卡特尔,选择垄断利润最大化的产量,每 个企业都可以得到更多的利润。给定对方遵守协议的情况下,每个企业都 想增加产量,结果是,每个企业都只得到纳什均衡产量的利润,它严格小 于卡特而产量下的利润。
• 请举几个囚徒困境的例子
第18页/共293页
第一章 导论-囚徒困境
知识:完全信息博弈和不完全信息博弈。 ❖完全信息:每一个参与人对所有其他参与人的(对手)的特征、
战略空间及支付函数有准确的 知识,否则为不完全信息。
第33页/共293页
第一章 导论-基本概念
• 博弈的划分:
行动顺序 信息
完全信息
静态
完全信息静态博弈 纳什均衡
纳什(1950,1951)
不完全信息
不完全信息静态博弈 贝叶斯纳什均衡
0,300 0,300
纳什均衡:进入,默许;不进入,斗争
第29页/共293页
第一章 导论
• 人生是永不停歇的博弈过程,博弈意略达到合意的结果。 • 作为博弈者,最佳策略是最大限度地利用游戏规则,最
大化自己的利益; • 作为社会最佳策略,是通过规则使社会整体福利增加。
第30页/共293页
第一章 导论-基本概念
一只河蚌正张开壳晒太阳,不料,飞 来了一只鸟,张嘴去啄他的肉,河蚌连忙合 起两张壳,紧紧钳住鸟的嘴巴,鸟说:“今 天不下雨,明天不下雨,就会有死蚌肉。” 河蚌说:“今天不放你,明天不放你,就会 有死鸟。”谁也不肯松口,有一个渔夫看见 了,便过来把他们一起捉走了。
第17页/共293页
第一章 导论-囚徒困境
✓“要害”是否在于“利己主义”即“个人理
性”?
第20页/共293页

博弈论课件

博弈论课件
第一章
1 Part
博弈论简介
2 Part
博弈的要素
3 Part
博弈ห้องสมุดไป่ตู้分类
4 Part
课堂互动
假设我脸干净
A脸干净
如果我脸也干净
A

C一定知道自己脸脏 但C不知道
B
所以我脸脏
所以B一定知道自己脸脏 但B不知道,说明我的假设不正确 故我脸脏
第一章
1 Part
博弈论简介
2 Part
博弈的要素
3 Part
Static Game Perfect Information
教CO学NT要EN求TS:
NO.1 知 占识优目策标略均衡 NO.2 能 重力复目剔标除占优均衡 NO.3 情 纳感什目均标衡 NO.4 重混点合难策点略均衡
Static Game Perfect Information
通过经典案例分析,掌握重复剔除的占优策略、纳什均 衡与混合策略均衡理论。 培养分析问题、解决问题的能力。 体会博弈论的应用价值,开拓视野,激发学习兴趣。
自测题目
教学大纲
教学课件
相关视频 参考书目
教学课件
Teaching courseware
目录
• 第一章 博弈论概述
006
• 第二章 完全信息静态博弈
041
第一节 占优策略均衡
043
第二节 重复剔除的占优均衡
066
第三节 纳什均衡
088
第四节 混合策略均衡
106
第一章
教学要求
知识目标 掌握博弈论的概念、发展、分类与要素
42
第二章 完全信息静态博弈
1.1 博弈的策略式表述
在博弈论中,一个博弈可以用两种不同的方式来表达: 策略式表达 和 扩展式表达 。策略式表达更适合于静态 博弈,而扩展式表达更适合于讨论动态博弈。

博弈论最全完整ppt 讲解

博弈论最全完整ppt 讲解

完全信息
纳什均衡(NE)
子博弈完美纳什 均衡(SPNE)
不完全信息
贝氏纳什均衡 (BNE)
完美贝氏纳什均衡 (PBNE)及序贯均 衡(SE)
静态博弈与动态博弈
(static games and dynamic games)
同时决策或者同时行动的博弈属于静态 博弈;先后或序贯决策或者行动的博弈, 属于动态博弈
如果一个博弈在所有各种对局下全体参 与人之得益总和总是保持为一个常数, 这个博弈就叫常和博弈;
相反,如果一个博弈在所有各种对局下 全体参与人之得益总和不总是保持为一 个常数,这个博弈就叫非常和博弈。
常和博弈也是利益对抗程度最高的博弈。 非常和(变和)博弈蕴含双赢或多赢。
导论
四、主要参考文献
博弈论为众多学科提供了分析的概念和方 法:经济学和商学,政治科学,生物学, 心 理学和哲学。
如何在“博弈”中获胜?
日常生活中的博弈(“游戏”)往往指的是 诸如赌博和运动这样的东西: 赌抛硬币 百米赛跑 打网球/橄榄球
How can you win such games? 许多博弈都包含着运气、技术和策略。 策略是为了获胜所需要的一种智力的技巧。
威廉·维克瑞, 1914-1996, 生于美国
詹姆斯·莫里斯 1936年生于英国
2001年诺贝尔经济学奖获得者
三位美国学者乔治-阿克尔洛夫(George A. Akerlof)、迈克尔-斯彭斯(A. Michael Spence)和约瑟夫-斯蒂格利茨(Joseph E. Stiglitz)
获奖理由:在“对充满不对称信息市场进 行分析”领域做出了重要贡献。
即使决策或行动有先后,但只要局中人 在决策时都还不知道对手的决策或者行 动是什么,也算是静态博弈

第四篇博弈论PPT课件

第四篇博弈论PPT课件
• 此情况下由于博弈没有可预测的明确的博弈结果,所以就不能 确定博弈方的策略。但是是否在这样的博弈中,各博弈方选择 任何策略都是一样的,因此可以随意选择吗?
• 按博弈中的得益
• 零和博弈 (Zero-sum Games) (严格竞争博 弈)
(麻将、赌博、猜硬币)
• 常和博弈 (Constant-sum Games)
博弈)
(固定数量利润、财产分配的讨价还价
• 变和博弈 (Variable-sum Games) (囚徒 困境博弈、古诺模型)
• 按博弈过程的次序
囚犯困境博弈
• 个人理性选择的结果: -5)
(坦白,坦白)——(-5,
• 集体理性决策的结果: -1)
(抵赖,抵赖)——(-1,
• 个人理性不一定导致集体理性
• 现实中的囚徒困境模型:价格战、恶性广告竞争、军备竞赛等。
第12页/共83页
2、猜硬币博弈

硬 正面 币 反面 方
猜硬币方
正面
反面
-1,1
• 博弈论是系统研究各种博弈问题,寻求博弈方合理的策略选择 和合理选择策略时的博弈结果,并分析结果的经济、效率意义 的理论与方法。
第3页/共83页
二、博弈论发展的里程碑
• 古诺模型(Cournot) (1838)(两寡头通过 产量决策进行竞争的模型;
• 伯特兰德模型(Bertrand) (1883)(价格竞争) • 《博弈论与经济行为》(1944)
六、博弈的表示方法
• 标准型 (normal form ) 收益矩阵
对简单的博弈适用(二人有限博弈)
• 扩展型 (extensive form )
博弈树
适用于动态博弈
• 特征式

博弈论ppt课件

博弈论ppt课件

精选课件ppt
7
囚徒B 坦白
不坦白
囚徒A
坦白 -8,-8 0,-10
不坦白 -10,0 -1,-1
精选课件ppt
8
博弈的分类
ห้องสมุดไป่ตู้
1、从行动的先后次序来分,博弈可以分为 静态博弈 和 动态博弈。 静态博弈指在博弈中,参与人同时选择行动,或虽非同 时但后行动者并不知道前行动者采取了什么具体行动;
动态博弈指的是参与人的行动有先后顺序,且后行 动者能够观察到先行动者所选择的行动的博弈。
21世纪,应站在博弈论的前沿。尽管博弈经济学家很少,但其获诺贝尔
奖的比例最高。最能震动人类情感的是博弈,对未来最有影响力的还是
博弈。
精选课件ppt
6
著名的“囚徒困境”的例子
警察抓住了两个罪犯,但是警察局却缺乏足够的证据 指证他们所犯的罪行。如果罪犯中至少有一人供认犯 罪,就能确认罪名成立。为了得到所需的口供,警察 将这两名罪犯分别关押防止他们串供或结成攻守同盟, 并分别跟他们讲清了他们的处境和面临的选择:如果 他们两人都拒不认罪,则他们会被以较轻的妨碍公务 罪各判一年徒刑;如果两人中有一人坦白认罪,则坦 白者立即释放而另一人将重判10年徒刑;果两人都坦 白认罪,则他们将被各判8年监禁。问:两个罪犯会 如何选择(即是坦白还是抵赖)?
不过,2号推知3号的方案,就会提出“98,0,1,1”的方案,即放 弃3号,而给予4号和5号各一枚金币。由于该方案对于4号和5号来说 比在3号分配时更为有利,他们将支持他而不希望他出局而由3号来分 配。这样,2号将拿走98枚金币。
同样,2号的方案也会被1号所洞悉,1号并将提出(97,0,1,2,0) 或(97,0,1,0,2)的方案,即放弃2号,而给3号一枚金币,同时 给4号(或5号)2枚金币。由于1号的这一方案对于3号和4号(或5号) 来说,相比2号分配时更优,他们将投1号的赞成票,再加上1号自己 的票,1号的方案可获通过,97枚金币可轻松落入囊中。这无疑是1号 能够获取最大收益的方案了!答案是:1号强盗分给3号1枚金币,分 给4号或5号强盗2枚,自己独得97枚。分配方案可写成(97,0,1,2, 0)或(97,0,1,0,2)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档