2020年四川省成都七中中考数学二诊试卷(附详解)
成都七中高2020届高三数学二诊模拟试题(理科)含答案

成都七中高2020届高三二诊数学模拟考试(理科)(满分150分,用时120分钟)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{}0652<--=x xx A ,{}02<-=x x B ,则=B A I ( )A .{}23<<-x x B .{}22<<-x x C .{}26<<-x x D .{}21<<-x x2.设i z i -=⋅+1)1(,则复数z 的模等于( )A .2B .2C .1D .3 3.已知α是第二象限的角,43)tan(-=+απ,则=α2sin ( ) A .2512 B .2512- C .2524 D .2524-4.设5.0log 3=a ,3.0log 2.0=b ,3.02=c ,则c b a ,,的大小关系是( )A .c b a <<B .b c a <<C .b a c <<D .a b c <<5.阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的32,并且球的表面积也是圆柱表面积的32”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为π24,则该圆柱的内切球体积为( )A .π34B .π16C .π316 D .π3326.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是空气 质量合格,下面四种说法不.正确..的是( )A .1月至8月空气质量合格天数超过20天的月份有5个B .第二季度与第一季度相比,空气质量合格天数的比重下降了C .8月是空气质量最好的一个月D .6月的空气质量最差7.设等比数列{}n a 的前n 项和为n S , 则“2312a a a <+”是“012<-n S ”的( )A .充分不必要B .必要不充分C .充要D .既不充分也不必要8.设x ,y 满足⎪⎩⎪⎨⎧≤--≥-≥+22142y x y x y x ,则y x z +=的取值范围是( )A .[]3,5-B .[]3,2C .[)+∞,2D . (]3,∞-9.设函数1sin )(22+=x xx x f ,则)(x f y =,[]ππ,-∈x 的大致图象大致是的( )ABCD10.在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若1a =,23c =,sin sin 3b A a B π⎛⎫=- ⎪⎝⎭,则sin C =( ) A .3B .21 C .21 D .1957 11.如图示,三棱椎ABC P -的底面ABC 是等腰直角三角形,︒=∠90ACB ,且2===AB PB PA ,3=PC ,则PC 与面PAB 所成角的正弦值等于( )A .31B .36C .33D .3212.在ABC ∆中,2=AB ,3=AC ,︒=∠60A ,O 为ABC ∆的外心,若AC y AB x AO +=,R y x ∈,,则=+y x 32( )A .2B .35C .34 D .23二、填空题:本题共4小题,每小题5分,共20分.PCA13.在6)(a x +的展开式中的3x 系数为160,则=a _______.14.已知函数)(x f 是定义在R 上的奇函数,且0>x 时,x x x f 2)(2-=,则不等式x x f >)(的解集为__________.15.若对任意R x ∈,不等式0≥-kx e x 恒成立,则实数k 的取值范围是 .16.已知椭圆)0(1:2222>>=+b a by a x C 的左右焦点分别为1F ,2F ,上顶点为A ,延长2AF交椭圆C 于点B ,若△1ABF 为等腰三角形,则椭圆的离心率=e ______.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题 考生都必须作答.第22、23为选考题,考生仅选一个作答.17.设数列{}n a 是公差不为零的等差数列,其前n 项和为n S ,11=a ,若1a ,2a ,5a 成等比数列.(Ⅰ)求n a 及n S ; (Ⅱ)设*)(1121N n a b n n ∈-=+,设数列{}n b 的前n 项和n T ,证明:41<n T . 18.2019年6月,国内的5G 运营牌照开始发放.从2G 到5G ,我们国家的移动通信业务用了不到20年 的时间,完成了技术上的飞跃,跻身世界先进水平.为了解高校学生对5G 的消费意愿,2019年8月, 从某地在校大学生中随机抽取了1000人进行调查,样本中各类用户分布情况如下:我们将大学生升级5G 时间的早晚与大学生愿意为5G 套餐支付更多的费用作比较,可得出下图的关系(例如早期体验用户中愿意为5G 套餐多支付5元的人数占所有早期体验用户的40%).(Ⅰ)从该地高校大学生中随机抽取1人,估计该学生愿意在2021年或2021年之前升级到5G 的概率;(Ⅱ)从样本的早期体验用户和中期跟随用户中各随机抽取1人,以X 表示这2人中愿意为升级5G多支付10元或10元以上的人数,求X 的分布列和数学期望;(Ⅲ)2019年底,从这1000人的样本中随机抽取3人,这三位学生都已签约5G 套餐,能否认为样本中早期体验用户的人数有变化?说明理由.19.如图示,在三棱锥BCD A -中,2===BD BC AB ,32=AD ,2π=∠=∠CBD CBA ,点E 为AD 的中点.(Ⅰ)求证:平面ACD ⊥平面BCE ;(Ⅱ)若点F 为BD 的中点,求平面BCE 与平面ACF 所成锐二面角的余弦值.20.已知椭圆12222=+by a x (0>>b a )经过点)1,0(,离心率为23,A 、B 、C 为椭圆上不同的三点,且满足=++,O 为坐标原点.(Ⅰ)若直线AB 、OC 的斜率都存在,求证:OC AB k k ⋅为定值; (Ⅱ)求AB 的取值范围.21.设函数ax x e x f x --=221)(,R a ∈. (Ⅰ)讨论)(x f 的单调性;(Ⅱ)1≤a 时,若21x x ≠,2)()(21=+x f x f ,求证:021<+x x .(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.在直角坐标系xOy 中,直线l的参数方程为32t x y ⎧=-+⎪⎪⎨⎪=⎪⎩,(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为24cos 30ρρθ-+=. (Ⅰ)求l 的普通方程及C 的直角坐标方程; (Ⅱ)求曲线C 上的点P 到l 距离的取值范围. 23.已知a x x x f ++-=1)(,R a ∈.(Ⅰ) 若1=a ,求不等式4)(>x f 的解集; (Ⅱ))1,0(∈∀m ,R x ∈∃0,不等式)(1410x f mm >-+成立,求实数a 的取值范围.成都七中高2020届高三二诊模拟考试 数学理科参考解答13.2 14.()),3(0,3+∞-Y15.[]e ,0 1 6.33三、填空题17.解:(Ⅰ)设{}n a 的公差为d ,由题意有⎩⎨⎧⋅==512211a a a a ()0)4(111211≠⎩⎨⎧+⋅=+=⇒d d a a d a a 且⎩⎨⎧==⇒211d a ………………4分 所以()12121-=-+=n n a n()212n a a n S n n =+=…………6分(Ⅱ)因为()⎪⎭⎫⎝⎛+-=+=-=+111411411121n n n n a b n n ………8分所以⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=111...312121141n n T n …10分()411414111141<+-=⎪⎭⎫ ⎝⎛+-=n n T n ……12分 18.解:(Ⅰ)由题意可知,从高校大学生中随机抽取1人,该学生在2021年或2021年之前升级到5G 的概率估计为样本中早期体验用户和中期跟随用户的频率,即2705300.81000+=.……2分(Ⅱ)由题意X 的所有可能值为0,1,2,……3分记事件A 为“从早期体验用户中随机抽取1人,该学生愿意为升级5G 多支付10元或10元以上”, 事件B 为“从中期跟随用户中随机抽取1人,该学生愿意为升级5G 多支付10元或10元以上”, 由题意可知,事件A ,B 相互独立,且()140%0.6P A =-=,()145%0.55P B =-=, 所以(0)()(10.6)(10.55)0.18P X PAB ===--=,(1)()()()P X P AB AB P AB P AB ==+=+()(1())(1()()P A P B P A P B =-+-0.6(10.55)(10.6)0.55=⨯-+-⨯0.49=,(2)()0.60.550.33P X P AB ===⨯=, ……6分所以X 的分布列为故X 的数学期望()00.1810.4920.33 1.15E X =⨯+⨯+⨯=.……8分(Ⅲ)设事件D 为“从这1000人的样本中随机抽取3人,这三位学生都已签约5G 套餐”,则327031000()0.02C P D C =≈.……10分回答一:事件D 虽然发生概率小,但是发生可能性为0.02,所以认为早期体验用户没有发生变化. 回答二:事件D 发生概率小,所以可以认为早期体验用户人数增加. ……12分 19.(Ⅰ)证明:(第一问6分,证明了AD BC ⊥给4分)ACD BCE ACD AD BCE AD E BD BC ADBE AD BC ABD AD ED AE BD AB ABD BC CBD CBA 面面面面面面⊥⇒⎪⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎪⎬⎫⊂⊥⇒⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎬⎫=⊥⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂⇒⎭⎬⎫==⊥⇒=∠=∠I 2π(Ⅱ)解:以点B 为坐标原点,直线BC ,BD 分别为 x 轴,y 轴,过点B 且与平面BCD 垂直的直线为z 轴,建立空间直角坐标系,则()0,0,2=→BC ,⎪⎪⎭⎫ ⎝⎛=→23,21,0BE ,()0,1,2-=→CF ,()3,2,0=→BF 设面BCE 的一个法向量()1111,,z y x n =→,⎪⎩⎪⎨⎧⊥⊥BE n BC n 11⎪⎩⎪⎨⎧=+=⇒0232102111z y x ()1,3,0111-=−−→−→=n z 令…9分同理可得平面ACF 的一个法向量⎪⎪⎭⎫⎝⎛--=2,3,232n …10分31315,,cos 222222=⋅=><n n n n n n .……11分故平面BCE 与平面ACF 所成锐二面角的余弦值为31315.……12分20.(Ⅰ)证明:依题有⎪⎪⎩⎪⎪⎨⎧+===222231c b a a c b ⎪⎩⎪⎨⎧==⇒1422b a , 所以椭圆方程为1422=+y x .…2分设()11,y x A ,()11,y x B ,()11,y x C , 由O 为ABC ∆的重心123123,;x x x y y y ⇒+=-+=-又因为()()()()222211221212121244,4440+=+=⇒+-++-=x y x y x x x x y y y y ,……4分()312121212123121;.44-++⇒==-==⇒=--++AB OC AB OC y y y x x y y k k k k x x y y x x x ……6分(Ⅱ)解 ①当AB 的斜率不存在时:1212313,02,0=+=⇒=-=x x y y x x y111,||⇒=±=⇒=x y AB 代入椭圆得……7分 ②当AB 的斜率存在时,设直线为t kx y +=,这里0≠t 由⇒⎩⎨⎧=++=4422y x tkx y ()22222418440041;,∆>=>++-⇒++k x kt t t k x ……8分222228211,44,;4141-⎛⎫⇒⇒ ⎪⎝≥+-+⎭=k t t ktt C k k 代入椭圆方程:12||;-==AB x x ……11分综上,AB 的范围是[]32,3. ……12分21. 解:(Ⅰ)a x e x f x--=')(,令)()(x f x g '=.……1分则1)(-='x e x g ,令01)(=-='xe x g 得0=x .当)0,(-∞∈x 时, ,0)(<'x g 则)(x g 在)0,(-∞单调递减;当),0(+∞∈x 时, ,0)(>'x g 则)(x g 在),0(+∞单调递增.所以a g x g -==1)0()(min .……3分当1≤a 时,01)(min ≥-=a x g , 即0)()(≥'=x f x g ,则f(x)在R 上单调递增; ……4分 当1>a 时,01)(min <-=a x g ,易知当-∞→x 时,+∞→)(x g ;当+∞→x 时,+∞→)(x g ,由零点存在性定理知,21,x x ∃,不妨设21x x <,使得.0)()(21==x g x g 当),(1x x -∞∈时,0)(>x g ,即 0)(>'x f ; 当),(21x x x ∈时,0)(<x g ,即 0)(<'x f ; 当),(2+∞∈x x 时,0)(>x g ,即 0)(>'x f .所以)(x f 在),(1x -∞和),(2+∞x 上单调递增,在),(21x x 单调递减. ……6分(Ⅱ)证明:构造函数2)()()(--+=x f x f x F ,0≥x .22121)(22-⎥⎦⎤⎢⎣⎡+-+--=-ax x e ax x e x F x x ,0≥x . 22--+=-x e e x xx e e x F x x 2)(--='-0222)(=-⋅≥-+=''--x x x x e e e e x F (当0=x 时取=).所以)(x F '在[)+∞,0上单调递增,则0)0()(='≥'F x F ,所以)(x F 在[)+∞,0上单调递增,0)0()(=≥F x F .……9分这里不妨设02>x ,欲证021<+x x , 即证21x x -< 由(Ⅰ)知1≤a 时,)(x f 在R 上单调递增,则有)()(21x f x f -<,由已知2)()(21=+x f x f 有)(2)(21x f x f -=, 只需证)()(2)(221x f x f x f -<-= ,即证2)()(22>-+x f x f ……11分 由2)()()(--+=x f x f x F 在[)+∞,0上单调递增,且02>x 时,有02)()()(222>--+=x f x f x F ,故2)()(22>-+x f x f 成立,从而021<+x x 得证. ……12分 22.【解】(Ⅰ )直线l的参数方程为32t x y ⎧=-+⎪⎪⎨⎪=⎪⎩,(t 为参数), 消去参数t 可得l0y -+=;曲线C 的极坐标方程为24cos 30ρρθ-+=,可得C 的直角坐标方程为22430xy x +-+=.…………5分(2)C 的标准方程为()2221x y -+=,圆心为()2,0C ,半径为1,所以,圆心C 到l的距离为d == 所以点P 到l的距离的取值范围是1⎤⎥⎣⎦.………………10分 23、解: (Ⅰ)当1=a 时,⎪⎩⎪⎨⎧-≤-<<-≥=++-=.1,2,11,2,1,211)(x x x x x x x x f …………2分⎩⎨⎧>≥⇔>4214)(x x x f ,或⎩⎨⎧><<-4211x ,或⎩⎨⎧>--≤421x x ……4分2>⇔x ,或2-<x故不等式4)(>x f 的解集为),2()2,(+∞--∞Y ; (5)(Ⅱ)因为1)1()(1)(+=--+≥++-=a x a x a x x x f)1,0(∈∀m ,[]m m m m m m m m m m -+-+=-+-+=-+1145)1()141(141911425=-⋅-+≥m mm m (当31=m 时等号成立)……8分依题意,)1,0(∈∀m ,R x ∈∃0,有)(1410x f m m >-+则有91<+a解之得810<<-a故实数a 的取值范围是)8,10(-…………10分。
2020年四川省成都七中高考数学二诊试卷(文科)含答案

2020年四川省成都七中高考数学二诊试卷(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|x2﹣5x﹣6<0},B={x|x﹣2<0},则A∩B=()A.{x|﹣3<x<2}B.{x|﹣2<x<2}C.{x|﹣6<x<2}D.{x|﹣1<x<2}2.(5分)设(1+i)•z=1﹣i,则复数z的模等于()A.B.2C.1D.3.(5分)已知α是第二象限的角,,则sin2α=()A.B.C.D.4.(5分)设a=log30.5,b=log0.20.3,c=20.3,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.c<a<b D.c<b<a5.(5分)随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,如图是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面叙述不正确的是()A.1月至8月空气合格天数超过20天的月份有5个B.第二季度与第一季度相比,空气达标天数的比重下降了C.8月是空气质量最好的一个月D.6月份的空气质量最差6.(5分)阿基米德(公元前287年﹣公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的,并且球的表面积也是圆柱表面积的”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为24π,则该圆柱的内切球体积为()A.B.16πC.D.7.(5分)设等比数列{a n},则“a1+a3<2a2”是“a1<0”的()A.充分不必要B.必要不充分C.充要D.既不充分也不必要8.(5分)设x,y满足,则z=x+y的最小值为()A.﹣2B.﹣1C.1D.29.(5分)设函数,则y=f(x),x∈[﹣π,π]的大致图象大致是的()A.B.C.D.10.(5分)对任意x∈R,不等式e x﹣kx≥0恒成立,则实数k的取值范围是()A.[0,e)B.(0,e]C.[0,e]D.(﹣∞,e]11.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,若a=1,,,则sin C=()A.B.C.D.12.(5分)如图示,三棱椎P﹣ABC的底面ABC是等腰直角三角形,∠ACB=90°,且P A=PB=AB=,PC=,则点C到面P AB的距离等于()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知某校高一、高二、高三的人数分别为400、450、500,为调查该校学生的学业压力情况,现采用分层抽样的方法抽取一个容量为270的样本,则从高二年级抽取的人数为.14.(5分)已知,,则与夹角的余弦值为.15.(5分)已知f(x)是定义在R上的奇函数,当x>0时,f(x)=x2﹣2x,则不等式f(x)>x的解集用区间表示为.16.(5分)已知椭圆Γ:+=1(a>b>0),F1、F2是椭圆Γ的左、右焦点,A为椭圆Γ的上顶点,延长AF2交椭圆Γ于点B,若△ABF1为等腰三角形,则椭圆Γ的离心率为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答.17.(12分)设数列{a n}是公差不为零的等差数列,其前n项和为S n,a1=1.若a1,a2,a5成等比数列.(Ⅰ)求a n及S n;(Ⅱ)设b n=(n∈N*),求数列{b n}的前n项和T n.18.(12分)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量[0,0.1)[0.1,0.2)[0.2,0.3)[0.3,0.4)[0.4,0.5)[0.5,0.6)[0.6,0.7)频数13249265使用了节水龙头50天的日用水量频数分布表日用水量[0,0.1)[0.1,0.2)[0.2,0.3)[0.3,0.4)[0.4,0.5)[0.5,0.6)频数151310165(1)作出使用了节水龙头50天的日用水量数据的频率分布直方图;(2)估计该家庭使用节水龙头后,日用水量小于0.35m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表)19.(12分)如图所示,在三棱锥A﹣BCD中,AB=BC=BD=2,AD=2,∠CBA=∠CBD=,点E 为AD的中点.(Ⅰ)求证:AD⊥BC;(Ⅱ)求证:平面ACD⊥平面BCE;(Ⅲ)若F为BD的中点,求四面体CDEF的体积.20.(12分)已知椭圆(a>b>0)经过点(0,1),离心率为,A、B、C为椭圆上不同的三点,且满足,O为坐标原点.(Ⅰ)若直线y=x﹣1与椭圆交于M,N两点,求|MN|;(Ⅱ)若直线AB、OC的斜率都存在,求证:k AB•k OC为定值.21.(12分)设函数f(x)=e x﹣ax2﹣x﹣1,a∈R.(Ⅰ)a=0时,求f(x)的最小值;(Ⅱ)若f(x)≥0在[0,+∞)恒成立,求a的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.(10分)在直角坐标系xOy中,直线l的多数方程为,(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2﹣4ρcosθ+3=0.(1)求t的普通方程及C的直角坐标方程;(2)求曲线C上的点P到l距离的取值范围.23.已知f(x)=|x﹣1|+|x+a|(a∈R).(Ⅰ)若a=1,求不等式f(x)>4的解集;(Ⅱ)∀m∈(0,1),∃x0∈R,,求实数a的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题:本题共4小题,每小题5分,共20分.13.90;14.;15.(﹣3,0)∪(3,+∞);16.;三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答.17.解:(Ⅰ)设数列{a n}的公差不为零d(d≠0),∵a1=1,若a1,a2,a5成等比数列.∴,∴,∴a n=2n﹣1,(Ⅱ∵b n===.则数列{b n}的前n项和T n==18.解:(1)根据使用了节水龙头50天的日用水量频数分布表,作出使用了节水龙头50天的日用水量数据的频率分布直方图,如下图:(2)根据频率分布直方图得:该家庭使用节水龙头后,日用水量小于0.35m3的概率为:p=(0.2+1.0+2.6+1)×0.1=0.48.(3)由题意得未使用水龙头50天的日均水量为:(1×0.05+3×0.15+2×0.25+4×0.35+9×0.45+26×0.55+5×0.65)=0.48,使用节水龙头50天的日均用水量为:(1×0.05+5×0.15+13×0.25+10×0.35+16×0.45+5×0.55)=0.35,∴估计该家庭使用节水龙头后,一年能节省:365×(0.48﹣0.35)=47.45m3.19.解:(Ⅰ)证明:∵∠CBA=∠CBD=,∴AB⊥BC,BD⊥BC,∵AB∩BD=B,∴BC⊥平面ABD,∵AD⊂平面ABD,∴AD⊥BC.(Ⅱ)证明:∵AB=BC=BD=2,AD=2,∠CBA=∠CBD=,点E为AD的中点.∴BE⊥AD,AC=DC,∴CE⊥AD,∵BE∩CE=E,∴AD⊥平面BCE,∵AD⊂平面ACD,∴平面ACD⊥平面BCE.(Ⅲ)解:∵F为BD的中点,在四棱锥A﹣BCD中,AB=BC=BD=2,AD=2,∠CBA=∠CBD=,点E为AD的中点.∴EF==1,DF==1,DE==,∴S△DEF==.∴四面体CDEF的体积:V C﹣DEF===.20.解:(Ⅰ)由题意可得b=1,=,a2=b2+c2,解得a2=4,b2=1,所以椭圆的方程为:+y2=1,设M(x1,y1),N(x2,y2),联立直线与椭圆的方程可得:,整理可得:5x2﹣8x=0,解得x=0,或x=,x=0时,y=﹣1,x=时y=,即M(0,﹣1),N(,),所以|MN|===;(Ⅱ)证明:设A(x1,y1),B(x2,y2),由++=,可得C(﹣x1﹣x2,﹣y1﹣y2),因为直线AB、OC的斜率都存在,所以k AB=,k OC==,所以k AB•k OC=,因为A,B在椭圆上,所以,所以+y12﹣y22=0,即=﹣,所以可证:k AB•k OC为定值﹣.21.解:(I)当a=0时,f(x)=e x﹣x﹣1,f′(x)=e x﹣1,当x<0时,f′(x)<0,函数单调递减,当x>0时,f′(x)>0,函数单调递增,故当x=0时,函数取得最小值f(0)=0,(II)f′(x)=e x﹣2ax﹣1,令g(x)=e x﹣2ax﹣1,x≥0,则g′(x)=e x﹣2a,(i)当a时,g′(x)>0,函数g(x)在[0,+∞)上单调递增,g(x)≥g(0)=0,即f′(x)≥0,所以f(x)在[0,+∞)上单调递增,f(x)≥f(0)=0,满足题意;(ii)当a>时,由g′(x)=0可得x=ln(2a),当x∈(0,ln2a)时,g′(x)<0,函数g(x)在[0,+∞)上单调递减,所以f(x)在[0,+∞)上单调递减,f(x)<f(0)=0不合题意,综上可得,a的范围(﹣].(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.解:(1)直线l的参数方程为,(t为参数),消去参数t可得l的普通方程为.曲线C的极坐标方程为ρ2﹣4ρcosθ+3=0,可得C的直角坐标方程为x2+y2﹣4x+3=0.(2)C的标准方程为(x﹣2)2+y2=1,圆心为C(2,0),半径为1,所以,圆心C到l的距离为,所以,点P到l的距离的取值范围是.23.解:(Ⅰ)当a=1时,f(x)=|x﹣1|+|x+1|=,∵f(x)>4,∴或或,∴x>2或x<﹣2故不等式f(x)>4的解集为(﹣∞,﹣2)⋃(2,+∞).(Ⅱ)f(x)=|x﹣1|+|x+a|≥|(x+a)﹣(x﹣1)|=|a+1|.∀m∈(0,1),=(当时等号成立)依题意,∀m∈(0,1),∃x0∈R,有,则|a+1|<9,∴﹣10<a<8,故实数a的取值范围是(﹣10,8).。
2020年四川省成都七中高考数学二诊试卷(二)(有答案解析)

2020年四川省成都七中高考数学二诊试卷(二)一、选择题(本大题共12小题,共60.0分)1.已知复数z满足z(1+i)2=2-i(i为虚数单位),则|z|为()A. 2B.C.D. 12.设全集U=R,集合M={x|y=lg(x2-1)},N={x|0<x<2},则N∩(∁U M)=()A. {x|-2≤x<1}B. {x|0<x≤1}C. {x|-1≤x≤1}D. {x|x<1}3.在()n的二项展开式中,若第四项的系数为-7,则n=()A. 9B. 8C. 7D. 64.在△ABC中,A=60°,AB=2,且△ABC的面积为,则BC的长为()A. B. C. 2 D. 25.在区间内随机取两个数分别记为,,则使得函数有零点的概率为()A. B. C. D.6.如果执行如图所示的程序框图,输出的S=110,则判断框内应填入的条件是()A. k<10?B. k≥11?C. k≤10?D. k>11?7.已知函数f(x)=x+1,将f(x)的图象上的所有点的横坐标缩短到原来的,纵坐标保持不变;再把所得图象向上平移1个单位长度,得到函数y=g (x)的图象,若g(x1)•g(x2)=9,则|x1-x2|的值可能为()A. B. C. D.8.△ABC外接圆的半径为1,圆心为O,且2++=,||=||,则•等于()A. B. C. 3 D.9.给出下列说法:①“x=”是“tan x=1”的充分不必要条件;②命题“∃x0∈R,x0+≥2”的否定形式是“∀x∈R,x+>2”.③将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为30种.其中正确说法的个数为()A. 0B. 1C. 2D. 310.某多面体的三视图如图所示,则该几何体的体积与其外接球的体积之比为()A.B.C.D.11.设双曲线C:-=1(a>0,b>0)的左右焦点分别为F1,F2,以F1F2为直径的圆与双曲线左支的一个交点为P,若以OF1(O为坐标原点)为直径的圆与PF2相切,则双曲线C的离心率为()A. B. C. D.12.已知函数f(x)=若函数g(x)=f(f(x))-2恰有5个零点,且最小的零点小于-4,则a的取值范围是()A. (-∞,-1)B. (0,+∞)C. (0,1)D. (1,+∞)二、填空题(本大题共4小题,共20.0分)13.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x-y|的值为______.14.已知实数x,y满足,若x-y的最大值为6,则实数m=______.15.已知A,B两点都在以PC为直径的球O的表面上,AB⊥BC,AB=2,BC=4,若球O的体积为8π,则异面直线PB与AC所成角的余弦值为______.16.已知抛物线y2=8x的焦点为F,直线l过F且依次交抛物线及圆(x-2)2+y2=1于点A,B,C,D四点,则|AB|+4|CD|的最小值为______三、解答题(本大题共7小题,共84.0分)17.在数列{a n}中,a1=1,a n+1=,设b n=,n∈N*(Ⅰ)求证数列{b n}是等差数列,并求通项公式b n;(Ⅱ)设c n=b n•2n-1,且数列{c n}的前n项和S n,若λ∈R,求使S n-1≤λc n恒成立的λ的取值范围.18.某面包店推出一款新面包,每个面包的成本价为4元,售价为10元,该款面包当天只出一炉(一炉至少15个,至多30个),当天如果没有售完,剩余的面包以每个2元的价格处理掉.为了确定这一炉面包的个数,该店记录了这款新面包最近日需求量1518212427频数108732()根据表中数据可知,频数与日需求量(单位:个)线性相关,求关于的线性回归方程;(2)以30天记录的各日需求量的频率代替各日需求量的概率.若该店这款新面包出炉的个数为24,记当日这款新面包获得的总利润为X(单位:元)(ⅰ)若日需求量为15个,求X;(ⅱ)求X的分布列及其数学期望相关公式:==,=-19.如图,在三棱柱ABC-A1B1C1中,侧面ACC1A1⊥底面ABC,AA1=A1C=AC,AB=BC,AB⊥BC,E,F分别为AC,B1C1的中点.(1)求证:直线EF∥平面ABB1A1;(2)求二面角A1-BC-B1的余弦值.20.如图,已知椭圆C:的左焦点为F,点P为椭圆C上任意一点,且的最小值为,离心率为,直线l与椭圆C交于不同两点A、、B都在x轴上方,且.Ⅰ求椭圆C的方程;Ⅱ当A为椭圆与y轴正半轴的交点时,求直线l的方程;Ⅲ对于动直线l,是否存在一个定点,无论如何变化,直线l总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.21.已知函数f(x)=2x lnx+2x,g(x)=a(x-1)(a为常数,且).(1)若当x∈(1,+∞)时,函数f(x)与g(x)的图象有且只要一个交点,试确定自然数n的值,使得a∈(n,n+1)(参考数值,ln2≈0.69,ln3≈1.10,ln7≈1.95);(2)当x>3时,证明:f(x)(其中e为自然对数的底数).22.在直角坐标系xOy中,直线l的参数方程是(t为参数),曲线C的参数方程是,(φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求直线l和曲线C的极坐标方程;(Ⅱ)已知射线OP:θ1=α(其中0<α<)与曲线C交于O,P两点,射线OQ:θ2=与直线l交于Q点,若△OPQ的面积为1,求α的值和弦长|OP|.23.已知a>0,b>0,c>0,设函数f(x)=|x-b|+|x+c|+a,x∈R(Ⅰ)若a=b=c=1,求不等式f(x)<5的解集;(Ⅱ)若函数f(x)的最小值为1,证明:++≥18(a+b+c)-------- 答案与解析 --------1.答案:C解析:【分析】本题考查复数代数形式的乘法、除法运算,考查复数模的求法,是基础题.把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的公式计算.【解答】解:由z(1+i)2=2-i,得,∴,故选:C.2.答案:B解析:解:∵全集U=R,集合M={x|y=lg(x2-1)}={x|x<-1或x>1},∴C U M={x|-1≤x≤1},∵集合N={x|0<x<2},∴N∩(∁U M)={x|0<x≤1}.故选:B.由全集U=R,集合M={x|y=lg(x2-1)}={x|x<-1或x>1},先求出C U M,再由集合N能够求出N∩(∁U M).本题考查集合的交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答.3.答案:B解析:【分析】本题考查二项式定理的应用,二项展开式的特定项与特定项的系数,考查运算求解能力,属于中档题.先写出其通项,再令r=3,根据第四项的系数为-7,即可求出n的值.【解答】解:的二项展开式的通项为,∵第四项的系数为-7,∴r=3,∴C n3(-2-1)3=-7,解得n=8,故选:B.4.答案:B解析:解:∵在△ABC中,A=60°,AB=2,且△ABC的面积为,∴AB•AC•sin A=,即×2×AC×=,解得:AC=1,由余弦定理得:BC2=AC2+AB2-2AC•AB•cos A=1+4-2=3,则BC=.故选:B.利用三角形面积公式列出关系式,把AB,sin A,已知面积代入求出AC的长,再利用余弦定理即可求出BC的长.此题考查了余弦定理,三角形面积公式,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.5.答案:B解析:解:由题意知本题是一个几何概型,∵a,b使得函数f(x)=x2+2ax-b2+π有零点,∴△≥0∴a2+b2≥π试验发生时包含的所有事件是Ω={(a,b)|-π≤a≤π,-π≤b≤π}∴S=(2π)2=4π2,而满足条件的事件是{(a,b)|a2+b2≥π},∴s=4π2-π2=3π2,由几何概型公式得到P=,故选:B.先判断概率的类型,由题意知本题是一个几何概型,由a,b使得函数f(x)=x2+2ax-b2+π有零点,得到关于a、b的关系式,写出试验发生时包含的所有事件和满足条件的事件,做出对应的面积,求比值得到结果.高中必修中学习了几何概型和古典概型两种概率问题,先要判断该概率模型是不是古典概型,再找出随机事件A包含的基本事件的个数和试验中基本事件的总数.再看是不是几何概型,它的结果要通过长度、面积或体积之比来得到.6.答案:C解析:解:由程序可知,该程序是计算,由S=k(k+1)=110,得k=10,则当k=10时,k=k+1=10+1=11不满足条件,所以条件为k≤10.故选:C.阅读程序框图,可知程序执行的是求从2开始的前k个偶数的和,利用等差数列求和公式求出前k个偶数的和,由和等于110算出k的值,则判断框中的条件可求.本题考查了程序框图,是循环结构中的当型循环,即先判断后执行,满足条件执行循环,不满足条件跳出循环,算法结束,是基础题.7.答案:B解析:解:函数f(x)=x+1=sin2x-cos2x=2sin(2x-),将f(x)的图象上的所有点的横坐标缩短到原来的倍,得y=2sin(4x-)的图象;再把所得图象向上平移1个单位,得函数y=g(x)=2sin(4x-)+1的图象,若g(x1)•g(x2)=9,则4x-=+2kπ,k∈Z;解得x=+,k∈Z;其中x1、x2是三角函数g(x)最高点的横坐标,∴|x1-x2|的值为T的整数倍,且T==.故选:B.化函数f(x)为正弦型函数,根据三角函数图象变换写出函数y=g(x)的解析式,利用g(x1)•g(x2)=9求得x1、x2满足的条件,再求|x1-x2|的可能取值.本题考查了三角函数的图象与性质的应用问题,也考查了图象平移与变换问题,是基础题.8.答案:C解析:解:∵,∴,∴.∴O,B,C共线,BC为圆的直径,如图∴AB⊥AC.∵,∴=1,|BC|=2,|AC|=,故∠ACB=.则,故选:C.利用向量的运算法则将已知等式化简得到,得到BC为直径,故△ABC为直角三角形,求出三边长可得∠ACB的值,利用两个向量的数量积的定义求出的值.本题主要考查向量在几何中的应用、向量的数量积,向量垂直的充要条件等基本知识.求出△ABC为直角三角形及三边长,是解题的关键.9.答案:C解析:【分析】由充分必要条件的定义和正切函数值,可判断①;由特称命题的否定为全称命题,可判断②;先考虑将四人分为三组2,1,1,再安排到三个班,去除甲乙在同一个班,即可判断③.本题考查命题的真假判断,主要是充分必要条件的判断和命题的否定,以及分组的方法和排列组合应用题的解法,考查运算能力,属于基础题.【解答】①,“x=”可得“tan x=1”,反之由tan x=1,可得x=kπ+,k∈Z,“x=”是“tan x=1”的充分不必要条件,故①正确;②,命题“∃x0∈R,x0+≥2”的否定形式是“∀x∈R,x+<2”,故②错误;③,将甲乙丙丁四个人分为2,1,1,可有C=6种分法,再安排到三个班有6×6=36种方法,考虑甲乙分到同一个班,可得6种方法,即有甲乙不在同一个班的方法数为30,故③正确.故选:C.10.答案:A解析:【分析】本题考查了棱锥的结构特征与三视图,几何体的体积计算,是中档题.由三视图知该几何体是三棱锥,把它放入长方体中,计算棱锥的体积和棱锥外接球的直径与体积,求出体积比.【解答】解:由三视图知该几何体是三棱锥A-BCD,把它放入长方体中,如图所示:则三棱锥A-BCD的体积为V A-BCD=S△BCD•h=××2×4×2=,三棱锥外接球的直径为2R=AC,所以4R2=AC2=22+22+42=24,解得R=;所以外接球的体积为V球=πR3=•=8π,所以该几何体的体积与外接球的体积比为=.故选A.11.答案:D解析:解:设F1N=ON=MN=r,则OF2=2r,根据勾股定理MF2=2r,又△MF2N∽△PF1F2,∴e======,故选:D.设F1N=ON=MN=r,则OF2=2r,根据勾股定理MF2=2r,再利用相似三角形和双曲线的离心率公式即可求得此题要求学生掌握定义:到两个定点的距离之差等于|2a|的点所组成的图形即为双曲线.考查了数形结合思想、本题凸显解析几何的特点:“数研究形,形助数”,利用几何性质可寻求到简化问题的捷径.12.答案:C解析:解:作出函数f(x)=的图象如图,由y=的导数为y′=,当x>1时,y=递增;当0<x<1时,函数y=递减,可得x=1处y=取得极小值1,y=ax+3恒过定点(0,3),设t=f(x),可得g(x)=f(t)-2,当a≤0时,f(t)=2有两个实根,一个介于(0,1),另一个介于(2,3),t=f(x)不可能有五个实根;当a>0时,f(t)=2有三个实根,一个介于(0,1),另一个介于(2,3),还有一个小于0,t=f(x),t3<0时,最小的零点x5<-4,由at3+3=2,即t3=-,ax5+3=t3=-,可得3-4a>-,可得4a2-3a-1<0,解得-<a<1,由a>0可得0<a<1.故选:C.画出f(x)的图象,设t=f(x),可得g(x)=f(t)-2,结合函数g(x)=f(f(x))-2有5个零点,对a分类讨论求解.本题考查函数零点的判定,考查数形结合的解题思想方法及分类讨论的数学思想方法,属难题.13.答案:4解析:解:由题意可得:x+y=20,(x-10)2+(y-10)2=8,设x=10+t,y=10-t,则2t2=8,解得t=±2,∴|x-y|=2|t|=4,故答案为:4.利用平均数、方差的概念列出关于x、y的方程组,解这个方程组需要用一些技巧,因为不要直接求出x、y,只要求出|x-y|即可,故可设x=10+t,y=10-t,求解即可.本题考查统计的基本知识,样本平均数与样本方差的概念以及求解方程组的方法,比较简单.14.答案:8解析:解:由约束条件作出可行域如图,图形可知,要使直线x-y=6经过该平面区域内的点时,其在x轴上的截距达到最大,直线x+y-m=0必经过直线x-y=6与直线y=1的交点A(7,1),于是有7+1-m=0,即m=8.故答案为:8.依题意,在平面直角坐标系内画出题中的不等式组表示的平面区域及直线x-y=6,结合图形可知,要使直线x-y=6经过该平面区域内的点时,其在x轴上的截距达到最大,直线x+y-m=0必经过直线x-y=6与直线y=1的交点(7,1),于是有7+1-m=0,即m=8.本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.答案:解析:解:设球O的半径为R,则,得,如下图所示,分别取PA、AB、BC的中点M、N、E,连接MN、NE、ME、AE,易知,PA⊥平面ABC,∵AB⊥BC,∴,∴,∵E为BC的中点,则,∵M、N分别为PA、AB的中点,则MN∥PB,且,同理可得NE∥AC,且,所以,异面直线PB与AC所成的角为∠MNE或其补角,且,在△MNE中,,,ME=3,由余弦定理得.因此,异面直线PB与AC所成成的余弦值为.故答案为:.作出图形,分别取PA、AB、BC的中点M、N、E,连接MN、NE、ME、AE,利用中位线的性质并结合异面直线所成角的定义得出异面直线PB与AC所成的角为∠MNE或其补角,并计算出△MNE各边边长,利用余弦定理计算出cos∠MNE,即可得出答案.本题考查球体体积,考查异面直线的定义,同时也考查了余弦定理,考查计算能力与推理能力,属于中等题.16.答案:13解析:解:∵y2=8x,焦点F(2,0),准线l 0:x=-2,由圆:(x-2)2+y2=1,圆心(2,0),半径为1.由抛物线的定义得:|AF|=x A+2,又∵|AF|=|AB|+1,∴|AB|=x A+1同理:|CD|=x D+1当AB⊥x轴时,则x D=x A=2,∴|AB|+4|CD|=15.当AB的斜率存在且不为0,设AB:y=k(x-2)时,代入抛物线方程,得:k2x2-(4k2+8)x+4k2=0,∴x A x D=4,x A+x D=,∴|AB|+4|CD|=(x A+1)+4(x D+1)=5+x A+4x D≥5+2=13.当且仅当x A=4x D,即x A=4,x D=1时取等号,综上所述|AB|+4|CD|的最小值为13.故答案为:13.由抛物线的焦点弦公式:|AF|=x A+2,可得|AB|=x A+2同理:|CD|=x D+1,分类讨论,根据基本不等式的性质,即可求得|AB|+4|CD|的最小值.本题考查圆与抛物线的综合,考查基本不等式的运用,考查学生的计算能力,属于中档题.17.答案:(I)证法一:由条件知,,所以,,所以b n+1-b n=1,又,所以,数列{b n}是首项为1,公差为1的等差数列,故数列{b n}的通项公式为:b n=n.证法二:由条件,得=,又,所以,数列{b n}是首项为1,公差为1的等差数列,故数列{b n}的通项公式为:b n=n.(Ⅱ)解:由(Ⅰ)知,,则,①②由①-②得,==-1+(1-n)•2n∴∵c n>0,∴S n-1≤λc n恒成立,等价于对任意n∈N*恒成立.∵,∴λ≥2.解析:(I)证法一:由条件两边取倒数可得:,可得b n+1-b n=1,即可证明.证法二:由条件代入递推关系得=,即可证明.(Ⅱ)由(Ⅰ)知,,利用错位相减法即可得出S n.S n-1≤λc n恒成立,等价于对任意n∈N*恒成立.代入即可得出.本题考查了数列递推关系、等差数列的定义通项公式求和公式、错位相减法、不等式的解法,考查了推理能力与计算能力,属于中档题.18.答案:解:(1)根据近30天的数据,==21,==6,=15×10+18×8+21×7+24×3+27×2=567,=152+182+212+242+272=2295,∴====-=-0.7,∴=-=6+0.7×21=20.7.所以回归方程为=-0.7x+20.7.(2)(Ⅰ)若日需求量为15个,则X=15×(10-4)+(24-15)×(2-4)=72元,(Ⅱ)若日需求量为18个,则X=18×(10-4)+(24-18)×(2-4)=96元,若日需求量为21个,则X=21×(10-4)+(24-21)×(2-4)=120元,若日需求量为24个或者27个,则X=24×(10-4)=144.所以X的分布列为:X7296120144P所以E(X)=72×+96×+120×+144×=101.6元.解析:(1)求出,,∑x i y i,代入公式,求出,即可.(2)(Ⅰ)若日需求量为15,则可以以10元每个卖出15个,剩下的9个以2元每个卖出,即可求出X的值,(Ⅱ)计算出其他的日需求量所对应的X,列出分布列,求出期望即可.本题考查了随机变量的概率分布列,回归方程的求法,主要侧重考查计算,属中档题.19.答案:(1)证明:取A1C1的中点G,连接EG,FG,由于E,F分别为AC,B1C1的中点,所以FG∥A1B1;又A1B1⊂平面ABB1A1,FG⊄平面ABB1A1,所以FG∥平面ABB1A1;又AE∥A1G且AE=A1G,所以四边形AEGA1是平行四边形,则EG∥AA1;又AA1⊂平面ABB1A1,EG⊄平面ABB1A1,所以EG∥平面ABB1A1;又EG FG=G,EG、FG平面EFG,所以平面EFG∥平面ABB1A1;又EF⊂平面EFG,所以直线EF∥平面ABB1A1.(2)解:令AA1=A1C=AC=2,由于E为AC中点,则A1E⊥AC,又侧面AA1C1C⊥底面ABC,交线为AC,A1E⊂平面A1AC,则A1E⊥平面ABC,连接EB,可知EB,EC,EA1两两垂直;以E为原点,分别以EB,EC,EA1所在直线为x,y,z轴,建立空间直角坐标系,则B(1,0,0),C(0,1,0),A1(0,0,),A(0,-1,0),.所以,,,令平面A1BC的法向量为=(x1,y1,z1),由则,令,则=(,,1);令平面B1BC的法向量为=(x2,y2,z2),由则,令,则=(,,-1);由cos==,故二面角A1-BC-B1的余弦值为.解析:本题考查线面平行的判定,面面垂直的性质,考查利用空间向量求二面角的大小,考查空间想象能力以及计算能力,属于中档题.(1)取A1C1的中点G,连接EG,FG,推出FG∥A1B1.证明FG∥平面ABB1A1.推出EG∥AA1.得到EG∥平面ABB1A1.证明平面EFG∥平面ABB1A1.然后证明直线EF∥平面ABB1A1.(2)连接EB,可知EB,EC,EA1两两垂直.以E为原点,分别以EB,EC,EA1所在直线为x,y,z轴,建立空间直角坐标系,求出平面A1BC的法向量,平面B1BC的法向量,利用空间向量的数量积求解二面角A1-BC-B1的余弦值即可.20.答案:解:(Ⅰ)设椭圆的标准方程为:=1(a>b>0),∵离心率为,∴,∴a=,∵点P为椭圆C上任意一点,且|PF|的最小值为-1,∴c=1,∴a2=b2+c2=b2+1,解得a2=2,b2=1,∴椭圆C的方程为=1.(Ⅱ)由题意A(0,1),F(-1,0),∴k AF==1,∵∠OFA+∠OFB=180°.∴k BF=-1,∴直线BF为:y=-(x+1)=-x-1,代入,得3x2+4x=0,解得x=0或x=-,代入y=-x-1,得,舍,或,∴B(-,).∴=,∴直线AB的方程为:y=.(Ⅲ)存在一个定点M(-2,0),无论∠OFA如何变化,直线l总经过此定点.证明:∵∠OFA+∠OFB=180°,∴B在于x轴的对称点B1在直线AF上,设直线AF的方程为:y=k(x+1),代入,得()x2+2k2x+k2-1=0,由韦达定理得,,由直线AB的斜率,得AB的方程为:y-y1=(x-x1)令y=0,得:x=x1-y1•,y1=k(x1+1),-y2=k(x2+1),===≥=-2,∴对于动直线l,存在一个定点M(-2,0),无论∠OFA如何变化,直线l总经过此定点.解析:(Ⅰ)设椭圆的标准方程为:=1(a>b>0),由离心率为,点P为椭圆C上任意一点,且|PF|的最小值为-1,求出a2=2,b2=1,由此能求出椭圆C的方程.(Ⅱ)由题意A(0,1),F(-1,0),得k AF==1,从而k BF=-1,进而直线BF为:y=-x-1,代入,得3x2+4x=0,由此能求出直线AB的方程.(Ⅲ)由∠OFA+∠OFB=180°,知B在于x轴的对称点B1在直线AF上,设直线AF的方程为:y=k(x+1),由,得()x2+2k2x+k2-1=0,由此利用韦达定理、直线的斜率、直线方程,结合已知条件能求出对于动直线l,存在一个定点M(-2,0),无论∠OFA如何变化,直线l总经过此定点.本题考查椭圆方程的求法,考查直线方程的求法,考查直线是否过定点的判断与求法,属于难题,解题时要认真审题,注意椭圆性质的合理运用.21.答案:解:(1)记F(x)=f(x)-g(x)=2x lnx+(2-a)x+a,则F′(x)=2ln x+4-a,当a≤4时,因为x>1,F′(x)>0,函数F(x)单调递增,F(x)>F(1)=2,函数y=F(x)无零点,即函数f(x)与g(x)的图象无交点;当a>4时,令F′(x)=0,,且x∈(1,)时,F′(x)<0,x>时,F′(x)>0,所以,F(x)min=F(),函数f(x)与g(x)的图象有且只有一个交点,得F(x)min=F()=0,化简得a-=0,记h(a)=a-,h′(a)=1-<0,所以h(a)在(4,+∞)上单调递减,又h(6)=6-2e>0,h(7)=7-2e<0,所以a∈(6,7),即n=6.(2)由(1)得:当x>3时,f(x)≥g(x)=a(x-1)>6(x-1),只要证明:x>3时,6(x-1),即e ln(x-2)->0,记G(x)=e ln(x-2)-,则G′(x)=-=,记φ(x)=3ex2-(6e+4)x+3e+8,图象为开口向上的抛物线,对称轴为x=1+<3,且φ(3)=12e-4>0,所以当x>3时,φ(x)>0,即G′(x)>0,所以G(x)在区间(3,+∞)上单调递增,从而G(x)>G(3)=0,即e ln(x-2)->0,成立,所以f(x)成立.解析:本题考查利用导数求函数单调性、证明函数不等式,考查分类讨论思想、化归与转化思想,考查运算求解能力,属于较难题.(1)记F(x)=f(x)-g(x)=2x lnx+(2-a)x+a,则F′(x)=2ln x+4-a;当a≤4时,F(x)>F(1)=2,函数y=F(x)无零点,即函数f(x)与g(x)的图象无交点;当a>4时,可得F(x)min=F(),函数f(x)与g(x)的图象有且只有一个交点,得F(x)min=F()=0,化简得:a-=0,记h(a)=a-,利用导数可得a∈(6,7),即n=6.(2)由(1)得:当x>3时,f(x)≥g(x)=a(x-1)>6(x-1),只要证明:x>3时,6(x-1)即e ln(x-2)->0即可,记G(x)=e ln(x-2)-,利用导数既可证明.22.答案:解:(Ⅰ)直线l的参数方程是(t为参数),转换为直角坐标方程为:x-y+1=0.转换为极坐标方程为:ρcosθ-ρsinθ+1=0.曲线C的参数方程是,(φ为参数),转换为直角坐标方程为:(x-2)2+y2=4,转换为极坐标方程为:ρ=4cosθ.(Ⅱ)由于0<α<,所以:|OP|=4cosα,|OQ|==.所以:==1,所以:tanα=1,由于:0<α<,故:,所以:|OP|=4cos.解析:本题考查的知识要点:三角函数关系式的恒等变变换,参数方程直角坐标方程和极坐标方程之间的转换,三角形面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.(Ⅰ)直接利用转换关系,把参数方程直角坐标方程和极坐标方程之间进行转换.(Ⅱ)利用三角函数关系式的恒等变变换和三角形的面积公式的应用求出结果.23.答案:解:(Ⅰ)若a=b=c=1,不等式f(x)<5,即|x-1|+|x+1|<4,而|x-1|+|x+1|表示数轴上的x对应点到1、-1对应点的距离之和,而-2、2对应点到1、-1对应点的距离之和正好等于4,故它的解集为(-2,2).(Ⅱ)函数f(x)=|x-b|+|x+c|+a的最小值为|b+c|+a=b+c+a=1,∴(++)(b+c+a)=(++)•(a+b+b+c+a+c)=(+4+9)(a+b+b+c+a+c)≥•=18=18(a+b+c).解析:(Ⅰ)若a=b=c=1,不等式f(x)<5,即|x-1|+|x+1|<4,利用绝对值的意义求得它的解集.(Ⅱ)(++)(b+c+a)=(++)•(a+b+b+c+a+c),再利用柯西不等式求得要证的结论.本题主要考查绝对值的意义,绝对值不等式的解法,柯西不等式的应用,属于中档题.。
四川省成都七中2020届高三二诊模拟考试试题 文科数学【含解析】

【解析】
【分析】
作出不等式组表示的平面区域,作出直线 ,根据目标函数 的几何意义平移直线 ,当直线 经过平面区域内的点A时目标函数 有最小值,联立方程求出点A 坐标,代入目标函数求解即可.
【详解】根据题意,作出不等式组表示的平面区域如图所示:
作出直线 ,因为目标函数 的几何意义为直线 的纵截距,
解得 或 (舍去),
所以
;
(Ⅱ)因为
所以
.
【点睛】本题考查等比中项、等差数列的通项公式和前n项和公式及裂项相消法求和;考查运算求解能力;利用等比中项和等差数列通项公式正确求出 是求解本题的关键;属于中档题.
18.某家庭记录了未使用节水龙头 天 日用水量数据(单位: )和使用了节水龙头 天的日用水量数据,得到频数分布表如下:
对于选项C:因为 ,故选项C排除;
故选:B
【点睛】本题考查利用函数的奇偶性和特殊点函数值符号判断函数图象;考查运算求解能力和逻辑推理能力;选取合适的特殊点并判断其函数值符号是求解本题的关键;属于中档题、常考题型.
10.对任意 ,不等式 恒成立,则实数 的取值范围是( )
A. B. C. D.
【答案】C
3.已知 是第二象限的角, ,则 ( )
A. B. C. D.
【答案】D
【解析】
【分析】
利用诱导公式和同角三角函数的基本关系求出 ,再利用二倍角的正弦公式代入求解即可.
【详解】因为 ,
由诱导公式可得, ,
即 ,
因为 ,
所以 ,
由二倍角的正弦公式可得,
,
所以 .
故选:D
【点睛】本题考查诱导公式、同角三角函数的基本关系和二倍角的正弦公式;考查运算求解能力和知识的综合运用能力;属于中档题.
2020届四川省成都七中高三二诊数学模拟(文)试题及其详细解析

2020届四川省成都七中高三二诊数学模拟(文)试题一、单选题1.设集合{}2560A x x x =--<,{}20B x x =-<,则A B =I ( ) A .{}32x x -<< B .{}22x x -<< C .{}62x x -<< D .{}12x x -<<【答案】D【解析】利用一元二次不等式的解法和集合的交运算求解即可. 【详解】由题意知,集合}{16A x x =-<<,}{2B x x =<, 由集合的交运算可得,}{12A B x x ⋂=-<<. 故选:D【点睛】本题考查一元二次不等式的解法和集合的交运算;考查运算求解能力;属于基础题.2.设(1)1i z i +⋅=-,则复数z 的模等于( )A .B .2C .1D【答案】C【解析】利用复数的除法运算法则进行化简,再由复数模的定义求解即可. 【详解】因为(1)1i z i +⋅=-,所以()()()211111i i z i i i i --===-++⋅-,由复数模的定义知,1z ==.故选:C【点睛】本题考查复数的除法运算法则和复数的模;考查运算求解能力;属于基础题.3.已知α是第二象限的角,3tan()4πα+=-,则sin 2α=( ) A .1225B .1225-C .2425D .2425-【答案】D【解析】利用诱导公式和同角三角函数的基本关系求出2cos α,再利用二倍角的正弦公式代入求解即可. 【详解】因为3tan()4πα+=-, 由诱导公式可得,sin 3tan cos 4ααα==-, 即3sin cos 4αα=-, 因为22sin cos 1αα+=, 所以216cos 25α=, 由二倍角的正弦公式可得,23sin 22sin cos cos 2αααα==-,所以31624sin 222525α=-⨯=-. 故选:D 【点睛】本题考查诱导公式、同角三角函数的基本关系和二倍角的正弦公式;考查运算求解能力和知识的综合运用能力;属于中档题.4.设3log 0.5a =,0.2log 0.3b =,0.32c =,则,,a b c 的大小关系是( ) A .a b c << B .a c b <<C .c a b <<D .c b a <<【答案】A【解析】选取中间值0和1,利用对数函数3log y x =,0.2log y x =和指数函数2xy =的单调性即可求解. 【详解】因为对数函数3log y x =在()0,∞+上单调递增, 所以33log 0.5log 10<=,因为对数函数0.2log y x =在()0,∞+上单调递减, 所以0.20.20.20log 1log 0.3log 0.21=<<=, 因为指数函数2x y =在R 上单调递增, 所以0.30221>=, 综上可知,a b c <<. 故选:A 【点睛】本题考查利用对数函数和指数函数的单调性比较大小;考查逻辑思维能力和知识的综合运用能力;选取合适的中间值是求解本题的关键;属于中档题、常考题型.5.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面叙述不正确的是( )A .1月至8月空气合格天数超过20天的月份有5个B .第二季度与第一季度相比,空气达标天数的比重下降了C .8月是空气质量最好的一个月D .6月份的空气质量最差. 【答案】D【解析】由图表可知5月空气质量合格天气只有13天,5月份的空气质量最差.故本题答案选D .6.阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的23,且球的表面积也是圆柱表面积的23”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为24π,则该圆柱的内切球体积为( ) A .43π B .16πC .163π D .323π 【答案】D【解析】设圆柱的底面半径为r ,则其母线长为2l r =,由圆柱的表面积求出r ,代入圆柱的体积公式求出其体积,结合题中的结论即可求出该圆柱的内切球体积. 【详解】设圆柱的底面半径为r ,则其母线长为2l r =, 因为圆柱的表面积公式为2=22S r rl ππ+圆柱表, 所以222224r r r πππ+⨯=,解得2r =, 因为圆柱的体积公式为2=2V Sh r r π=⋅圆柱, 所以3=22=16V ππ⨯⨯圆柱,由题知,圆柱内切球的体积是圆柱体积的23, 所以所求圆柱内切球的体积为2232=16=333V V ππ=⨯圆柱.故选:D 【点睛】本题考查圆柱的轴截面及表面积和体积公式;考查运算求解能力;熟练掌握圆柱的表面积和体积公式是求解本题的关键;属于中档题.7.设等比数列{}n a 的前n 项和为n S , 则“1322a a a +<”是“10a <”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】利用等比数列的通项公式,结合充分条件和必要条件的定义进行判断; 【详解】因为22131,a a q a a q ==,所以若1322a a a +<成立,即21112a q q a a +<成立,整理可得,()2110a q -<成立, 因为1q =时,1322a a a +=, 所以1q ≠,即()210q ->, 所以可得10a <,即“1322a a a +<”是“10a <”的充分条件; 若10a <成立,因为()210q -≥,所以可得()2110a q -≤,即1322a a a +≤成立, 即由10a <不能推出1322a a a +<,故“1322a a a +<”不是“10a <”的必要条件;综上可知,“1322a a a +<”是“10a <”的充分不必要条件. 故选: A 【点睛】本题考查等比数列通项公式和充分条件与必要条件的判断;考查逻辑推理能力和运算求解能力;根据充分条件和必要条件的定义,结合等比数列的通项公式是求解本题的关键;属于中档题.8.设x ,y 满足24122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则z x y =+的最小值是( )A .5-B .2C .3D .没有最小值【答案】B【解析】作出不等式组表示的平面区域,作出直线0:0l x y +=,根据目标函数z 的几何意义平移直线0l ,当直线:l z x y =+经过平面区域内的点A 时目标函数z 有最小值,联立方程求出点A 坐标,代入目标函数求解即可. 【详解】根据题意,作出不等式组表示的平面区域如图所示:作出直线0:0l x y +=,因为目标函数z 的几何意义为直线y x z =-+的纵截距, 所以平移直线0l ,当直线:l z x y =+经过平面区域内的点A 时目标函数z 有最小值, 联立方程24220x y x y +=⎧⎨--=⎩,解得20x y =⎧⎨=⎩,所以点A 坐标为()2,0,把点A 的坐标代入目标函数z x y =+可得目标函数z 的最小值为2. 故选:B 【点睛】本题考查简单的线性规划问题;考查数形结合思想和运算求解能力;理解目标函数的几何意义是求解本题的关键;属于中档题、常考题型.9.设函数22sin ()1x xf x x =+,则()y f x =,[],x ππ∈-的大致图象大致是的( )A .B .C .D .【答案】B【解析】采用排除法:通过判断函数的奇偶性排除选项A ;通过判断特殊点(),2f f ππ⎛⎫⎪⎝⎭的函数值符号排除选项D 和选项C 即可求解. 【详解】对于选项A:由题意知,函数()f x 的定义域为R ,其关于原点对称,因为()()()()()2222sin sin 11x x x xf x f x x x ---==-=-+-+, 所以函数()f x 为奇函数,其图象关于原点对称,故选A 排除;对于选项D:因为2222sin 2202412f ππππππ⎛⎫⎛⎫ ⎪ ⎪⎛⎫⎝⎭⎝⎭==> ⎪+⎝⎭⎛⎫+ ⎪⎝⎭,故选项D 排除; 对于选项C:因为()()22sin 01f ππππ==+,故选项C 排除; 故选:B 【点睛】本题考查利用函数的奇偶性和特殊点函数值符号判断函数图象;考查运算求解能力和逻辑推理能力;选取合适的特殊点并判断其函数值符号是求解本题的关键;属于中档题、常考题型.10.对任意x ∈R ,不等式0x e kx -≥恒成立,则实数k 的取值范围是( ) A .[)0,e B .(]0,eC .[]0,eD .(],e -∞ 【答案】C【解析】由题意知,x e kx ≥对任意x ∈R 恒成立,设()g x kx =,则函数()g x 为过原点,斜率为k 的直线,求出直线()g x kx =与曲线xy e =相切时的k 值,利用数形结合即可求出实数k 的取值范围. 【详解】由题意可知, x e kx ≥对任意x ∈R 恒成立,设()g x kx =,则函数()g x 为过原点,斜率为k 的直线, 根据题意作图如下:易知0k ≥,由图可知,当直线()g x kx =与曲线xy e =相切时k 有最大值,因为xy e '=,设切点坐标为()00,x y ,由导数的几何意义知,00x x e kkx e ⎧=⎪⎨=⎪⎩,解得01x k e =⎧⎨=⎩, 所以实数k 的取值范围为[]0,e . 故选:C 【点睛】本题考查利用导数求切线的斜率及不等式恒成立问题的求解;考查数形结合思想和转化与化归能力;把不等式恒成立问题转化为两函数图象所对函数值的大小问题是求解本题的关键;属于中档题.11.在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若1a =,23c =,sin sin 3b A a B π⎛⎫=- ⎪⎝⎭,则sin C =( )A .3B 21 C 21 D 57 【答案】B【解析】利用两角差的正弦公式和边角互化思想可求得3tan 3B =,可得出6B π=,然后利用余弦定理求出b 的值,最后利用正弦定理可求出sin C 的值. 【详解】31sin sin cos sin 32b A a B B a B π⎛⎫=-=- ⎪⎝⎭Q ,即31sin sin sin cos sin sin 2A B A B A B =-,即3sin sin 3sin cos A B A A =, sin 0A >Q ,3sin 3cos B B ∴=,得3tan 3B =,0B Q π<<,6B π∴=.由余弦定理得2232cos 112212372b ac ac B =+-=+-⨯⨯⨯=, 由正弦定理sin sin c b C B=,因此,123sin 212sin 77c B C b ⨯===. 故选:B. 【点睛】本题考查三角形中角的正弦值的计算,考查两角差的正弦公式、边角互化思想、余弦定理与正弦定理的应用,考查运算求解能力,属于中等题.12.如图所示,三棱椎P ABC -的底面ABC 是等腰直角三角形,90ACB ︒∠=,且2PA PB AB ===,3PC =,则点C 到面PAB 的距离等于( )A .13B 6C 3D .23【答案】C【解析】取AB 的中点G ,连接,PG CG ,作CH PG ⊥,垂足为H ,利用线面垂直的判定定理证明AB ⊥平面PCG ,由线面垂直的性质可得AB CH ⊥,进而证得CH ⊥平面PAB ,在PCG ∆中,利用余弦定理和同角三角函数的基本关系求出sin PGC ∠,在Rt CHG ∆中求出CH 即可.【详解】取AB 的中点G ,连接,PG CG ,作CH PG ⊥,垂足为H ,如图所示:因为2PA PB AB ===,所以PAB ∆为等边三角形, 因为G 为AB 中点,所以PG AB ⊥, 又ABC ∆为等腰直角三角形,90ACB ︒∠=, 所以CG AB ⊥,又PG CG G =I , 所以AB ⊥平面PCG ,又CH ⊂平面PCG , 所以AB CH ⊥,因为CH PG ⊥,PG AB G ⋂=, 所以CH ⊥平面PAB ,即CH 即为点C 到面PAB 的距离, 因为在等边PAB ∆中,362PG ==在ABC ∆为等腰直角三角形中,222CG ==, 在PCG ∆中,由余弦定理可得,22222262323cos 23622PG CG PCPGC PG CG ⎛⎫+- ⎪+-⎝⎭⎝⎭∠===-⋅⨯⨯,所以2236sin 1cos 133PGC PGC ⎛⎫∠=-∠=--= ⎪ ⎪⎝⎭, 在Rt CHG ∆中,263sin 233CH CG CGP =⋅∠=⨯=, 所以点C 到面PAB 3故选:C 【点睛】本题考查利用线面垂直的判定定理和性质定理求点到面的距离;考查数形结合思想和逻辑推理能力;灵活运用线面垂直的判定与性质是求解本题的关键;属于中档题、常考题型.二、填空题13.已知某校高一、高二、高三的人数分别为400、450、500,为调查该校学生的学业压力情况,现采用分层抽样的方法抽取一个容量为270的样本,则从高二年级抽取的人数为__________. 【答案】90【解析】利用分层抽样方法:利用频率、频数与样本容量的关系按比例抽取即可. 【详解】由题意知,全校共有学生人数为1350人,其中高二年级有450人, 设高二年级抽取的人数为x 人,根据分层抽样按比例抽取可得,270450901350x =⨯=. 故答案为: 90 【点睛】本题考查利用分层抽样按比例抽取样本;考查运算求解能力;属于基础题.14.已知(1,2)a =r ,(1,1)b =-r ,则a r 与a b +r r夹角的余弦值为________.【解析】根据题意,利用向量坐标的线性运算求出a b +r r的坐标,分别求出,a a b +v v v ,()a b a +⋅r r r,代入夹角公式求解即可.【详解】由题意知,()0,3a b +=vv ,因为(1,2)a =r ,所以()01326a b a +⋅=⨯+⨯=v v v,由向量模的定义知,3a a b ==+==v v v ,由平面向量数量积的夹角公式可得,()cos a b a a a b θ+⋅===⋅+v v v v v v故答案为【点睛】本题考查平面向量坐标的线性运算及平面向量数量积的坐标表示和夹角公式;考查运算求解能力;熟练掌握平面向量数量积的坐标表示和夹角公式是求解本题的关键;属于中档题.15.已知()f x 是定义在R 上的奇函数,当0x >时,2()2f x x x =-,则不等式()f x x >的解集用区间表示为__________. 【答案】(3,0)(3,)-⋃+∞【解析】设0x < ,则0x -> ,由题意可得222222f x f x x x x x f x x x -=-=---=+∴=--()()()(),(),故当0x < 时,22f x x x ().=-- 由不等式f x x ()> ,可得22x x x x ⎧⎨-⎩>> ,或20 2x x x x ⎧⎨--⎩<,> 求得3x > ,或30x -<<, 故答案为(303,)(,).-⋃+∞ 16.已知椭圆Г:22221(0)x y a b a b+=>>,F 1、F 2是椭圆Г的左、右焦点,A 为椭圆Г的上顶点,延长AF 2交椭圆Г于点B ,若1ABF V 为等腰三角形,则椭圆Г的离心率为___________.【答案】3【解析】由题意可得等腰三角形的两条相等的边,设2BF t =,由题可得1BF 的长,在三角形1ABF 中,三角形12BF F 中由余弦定理可得1ABF ∠的值相等,可得,a c 的关系,从而求出椭圆的离心率 【详解】如图,若1ABF ∆为等腰三角形,则|BF 1|=|AB |.设|BF 2|=t ,则|BF 1|=2a −t ,所以|AB |=a +t =|BF 1|=2a −t ,解得a =2t ,即|AB |=|BF 1|=3t ,|AF 1|=2t ,设∠BAO =θ,则∠BAF 1=2θ,所以Г的离心率e =22||||OF c a AF ==sin θ,结合余弦定理,易得在1ABF ∆中,21cos 212sin 3θθ==-,所以21sin 3θ=,即e =sin θ故答案为:3.【点睛】此题考查椭圆的定义及余弦定理的简单应用,属于中档题.三、解答题17.设数列{}n a是公差不为零的等差数列,其前n项和为n S,11a=,若1a,2a,5a 成等比数列.(Ⅰ)求n a及n S;(Ⅱ)设211(N*)1nnb na+=∈-,求数列{}nb的前n项和nT.【答案】(Ⅰ)21na n=-,2nS n=;(Ⅱ)4(1)nnTn=+.【解析】(Ⅰ)设数列{}n a的公差为d,利用等比中项和等差数列通项公式得到关于1,a d的方程,求出1,a d代入公式即可;(Ⅱ)根据(Ⅰ)求出数列{}n b的通项公式,利用裂项相消法求和即可.【详解】(Ⅰ)设{}n a的公差为d,依题意有122151aa a a=⎧⎨=⋅⎩,即()()1211114aa d a a d=⎧⎪⎨+=⋅+⎪⎩,解得112ad=⎧⎨=⎩或11ad=⎧⎨=⎩(舍去),所以()12121na n n=+-=-()122n n n a a S n +== ; (Ⅱ)因为()211111114141n n b a n n n n +⎛⎫===- ⎪-++⎝⎭所以1111111...42231n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦11141n ⎛⎫=- ⎪+⎝⎭4(1)nn =+.【点睛】本题考查等比中项、等差数列的通项公式和前n 项和公式及裂项相消法求和;考查运算求解能力;利用等比中项和等差数列通项公式正确求出1,a d 是求解本题的关键;属于中档题.18.某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m )和使用了节水龙头50天的日用水量数据,得到频数分布表如下: 未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:0.35m的概率;(2)估计该家庭使用节水龙头后,日用水量小于3(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)47.45m.【答案】(1)直方图见解析;(2)0.48;(3)3【解析】(1)根据题中所给的使用了节水龙头50天的日用水量频数分布表,算出落在相应区间上的频率,借助于直方图中长方形的面积表示的就是落在相应区间上的频率,从而确定出对应矩形的高,从而得到直方图;(2)结合直方图,算出日用水量小于0.35的矩形的面积总和,即为所求的频率;(3)根据组中值乘以相应的频率作和求得50天日用水量的平均值,作差乘以365天得m,从而求得结果.到一年能节约用水多少3【详解】(1)频率分布直方图如下图所示:(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于30.35m 的频率为0.20.110.1 2.60.120.050.48⨯+⨯+⨯+⨯=;因此该家庭使用节水龙头后日用水量小于30.35m 的概率的估计值为0.48; (3)该家庭未使用节水龙头50天日用水量的平均数为()110.0510.1530.2520.3540.4590.55260.6550.4850x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=.该家庭使用了节水龙头后50天日用水量的平均数为()210.0510.1550.25130.35100.45160.5550.3550x =⨯+⨯+⨯+⨯+⨯+⨯=. 估计使用节水龙头后,一年可节省水()()30.480.3536547.45m -⨯=.【点睛】该题考查的是有关统计的问题,涉及到的知识点有频率分布直方图的绘制、利用频率分布直方图计算变量落在相应区间上的概率、利用频率分布直方图求平均数,在解题的过程中,需要认真审题,细心运算,仔细求解,就可以得出正确结果. 19.如图所示,在四棱锥A BCD -中,2AB BC BD ===,23AD =2CBA CBD π∠=∠=,点E 为AD 的中点.(Ⅰ) 求证:AD ⊥BC ;(Ⅱ)求证:平面ACD ⊥平面BCE ;(Ⅲ)若F 为BD 的中点,求四面体CDEF 的体积. 【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析;(Ⅲ3【解析】(Ⅰ)利用线面垂直的判定定理证明CB ⊥平面ABD ,再由线面垂直的性质定理即可得证;(Ⅱ)由(Ⅰ)知AD ⊥BC ,由题可知,BE AD ⊥,利用线面垂直的判定定理证得AD ⊥平面BCE ,再由面面垂直的判定定理即可得证;(Ⅲ)由(Ⅰ)知BC ⊥平面ABD ,由此可得CB 即为点C 到平面ABD 的距离,利用三角形的面积公式求出DEF ∆的面积,代入三棱锥的体积公式求解即可. 【详解】(Ⅰ)证明:因为2CBA CBD π∠=∠=,所以,BC BA BC BD ⊥⊥,又BA BD B =I , 由线面垂直的判定定理知,CB ⊥平面ABD , 因为AD ⊂平面ABD ,所以AD ⊥BC . (Ⅱ)证明:由(Ⅰ)知AD ⊥BC , 又AB BD =,点E 为AD 的中点, 所以BE AD ⊥,因为BE BC B =I , 由线面垂直的判定知,AD ⊥平面BCE , 又AD ⊂平面ACD ,由面面垂直的判定定理知, 平面ACD ⊥平面BCE .(Ⅲ)解:由(Ⅰ)知BC ⊥平面ABD , 因为2,23AB BD AD ===所以在ABD ∆中由余弦定理可得,(222222221cos 22222AB BD ADABD AB BD +-+-∠===-⋅⨯⨯,所以120ABD ∠=o ,又EF 为ABD ∆的中位线, 所以120EFD ∠=o , 所以13C DEF DEF V S CB -∆=⋅ 11(sin120)32EF FD CB ︒=⋅⋅⋅⋅11(112322=⋅⨯⨯⨯⨯=. 【点睛】本题考查利用线面垂直的判定与性质证明线线垂直、面面垂直及三棱锥体积的求解;考查逻辑推理能力和运算求解能力;熟练掌握线面垂直的判定与性质是求解本题的关键;属于中档题、常考题型.20.已知椭圆22221x y a b +=(0a b >>)经过点(0,1)A 、B 、C 为椭圆上不同的三点,且满足0OA OB OC ++=u u u r u u u r u u u r r,O 为坐标原点.(Ⅰ)若直线1y x =-与椭圆交于M ,N 两点,求MN ; (Ⅱ)若直线AB 、OC 的斜率都存在,求证:AB OC k k ⋅为定值. 【答案】(ⅠⅡ)证明见解析. 【解析】(Ⅰ)根据题意知1b =,结合离心率和,,a b c 之间的关系求出椭圆方程,然后与直线1y x =-联立求出交点M ,N 两点的坐标,代入两点间的距离公式求解即可; (Ⅱ)设()11,A x y ,()11,B x y ,()33,C x y ,由0OA OB OC ++=u u u r u u u r u u u r r,利用平面向量坐标的线性运算求出123,,x x x 之间的关系和123,,y y y 之间的关系,把,A B 两点坐标代入椭圆方程利用点差法求解即可得证. 【详解】(Ⅰ)解:依题有2221b ca abc =⎧⎪⎪=⎨⎪=+⎪⎩2241a b ⎧=⇒⎨=⎩ , 所以椭圆方程为2214x y +=,由122110114y x x x y y =-⎧=⎧⎪⇒⎨⎨=-+=⎩⎪⎩,或228535x y ⎧=⎪⎪⎨⎪=⎪⎩,所以MN ==(Ⅱ)证明:设()11,A x y ,()11,B x y ,()33,C x y ,则()123123,OA OB OC x x x y y y ++=++++u u u v u u u v u u u v, 由0OA OB OC ++=u u u r u u u r u u u r r知,123123,x x x y y y +=-+=-,由()()()()222211221212121244,4440+=+=⇒+-++-=x y x y x x x x y y y y ,所以()121212124AB y y x xk x x y y -+==--+,因为321321OC y y y k x x x +==+, 所以AB OC k k ⋅14=-为定值. 【点睛】本题考查椭圆的方程及其性质、直线与椭圆的位置关系、点差法的运用、平面向量坐标的线性运算;考查运算求解能力和逻辑推理能力和知识的综合运用能力;属于中档题、常考题型.21.设函数()21xf x e ax x =--+,a R ∈.(Ⅰ)0a =时,求()f x 的最小值;(Ⅱ)若()0f x ≥在[)0,+∞恒成立,求a 的取值范围.【答案】(Ⅰ)2;(Ⅱ)214e a -≤.【解析】(Ⅰ)对函数()f x 进行求导,利用导数判断函数()f x 的单调性求最值即可; (Ⅱ)由题知,()020f =>对任意a R ∈恒成立,当0x >时,()0f x ≥恒成立等价于210xe ax x --+≥对任意0x >恒成立,即21x e x a x -+≤对任意0x >恒成立,令()21x e x h x x-+=,0x >,对函数()h x 进行求导判断其单调性求()0,∞+上的最小值即可. 【详解】(Ⅰ)0a =时,()1xf x e x =-+,则()1xf x e =-' , 令()0f x '=,得0x =,当(),0x ∈-∞时,()0f x '<,()f x 在(),0-∞单调递减; 当()0,x ∈+∞,()0f x '>,()f x 在()0,∞+单调递增; 所以()()min 02f x f ==;(Ⅱ)由题意知,()020f =>对任意a R ∈恒成立, 当0x >时,()0f x ≥恒成立等价于210x e ax x --+≥对任意0x >恒成立,即21x e x a x-+≤对任意0x >恒成立, 令()21x e x h x x -+=,0x >,则()()()'321x x e h x x-+=, 所以当02x <<时,()'0h x <,函数()h x 单调递减;当2x >时,()'0h x >,函数()h x 单调递增,所以当2x =时函数()h x 有最小值为()2124e h -=,所以此时a 的取值范围为214e a -≤,综上可知所求a 的取值范围为214e a -≤. 【点睛】本题考查利用导数判断函数的单调性求最值、利用构造函数法求解不等式的恒成立问题;考查运算求解能力、转化与化归的能力、逻辑推理能力;灵活运用函数的单调性与导数之间的关系是求解本题的关键;属于综合型强、难度大型试题.22.在直角坐标系xOy 中,直线l的参数方程为32t x y ⎧=-+⎪⎪⎨⎪=⎪⎩.(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为24cos 30p ρθ-+=.(1)求l 的普通方程及C 的直角坐标方程;(2)求曲线C 上的点P 到l 距离的取值范围.【答案】(10y -+=,22430x y x +-+=.(2)1⎤-⎥⎣⎦【解析】(1)根据直线l的参数方程为3,2t x y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),消去参数t ,即可求得的l 的普通方程,曲线C 的极坐标方程为24cos 30p ρθ-+=,利用极坐标化直角坐标的公式:cos sin x y ρθρθ=⎧⎨=⎩,即可求得答案; (2)C 的标准方程为22(2)1x y -+=,圆心为(2,0)C ,半径为1,根据点到直线距离公式,即可求得答案.【详解】(1)直线l的参数方程为3,2t x y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),消去参数t∴l0y -+=.曲线C 的极坐标方程为24cos 30ρρθ-+=,利用极坐标化直角坐标的公式:cos sin x y ρθρθ=⎧⎨=⎩ ∴C 的直角坐标方程为22430x y x +-+=.(2)C 的标准方程为22(2)1x y -+=,圆心为(2,0)C ,半径为1∴圆心C 到l的距离为d ==, ∴点P 到l的距离的取值范围是1,122⎡⎤-+⎢⎥⎣⎦. 【点睛】本题解题关键是掌握极坐标化直角坐标的公式和点到直线距离公式,考查了分析能力和计算能力,属于中档题.23.已知()1f x x x a =-++()a R ∈.(Ⅰ) 若1a =,求不等式()4f x >的解集;(Ⅱ)(0,1)m ∀∈,0x R ∃∈,014()1f x m m+>-,求实数a 的取值范围. 【答案】(Ⅰ)(,2)(2,)-∞-+∞U ;(Ⅱ)(10,8)-.【解析】(Ⅰ)利用零点分段讨论法把函数()f x 改写成分段函数的形式,分1,11,1x x x ≥-<<≤-三种情况分别解不等式,然后取并集即可;(Ⅱ)利用绝对值三角不等式求出()f x 的最小值,利用均值不等式求出141m m+-的最小值,结合题意,只需()min min141f x m m ⎛⎫<+ ⎪-⎝⎭即可,解不等式即可求解. 【详解】(Ⅰ)当1a =时,2,1()112,112,1x x f x x x x x x ≥⎧⎪=-++=-<<⎨⎪-≤-⎩,1()424x f x x ≥⎧>⇔⎨>⎩,或1124x -<<⎧⎨>⎩,或124x x ≤-⎧⎨->⎩ 2x ⇔>,或2x <-所以不等式()4f x >的解集为(,2)(2,)-∞-+∞U ;(Ⅱ)因为()1()(1)1f x x x a x a x a =-++≥+--=+(0,1)m ∀∈,又[]1414()(1)11m m m m m m+=++--- 4151m m m m-=++-59≥+=(当13m =时等号成立), 依题意,(0,1)m ∀∈,0x R ∃∈,有014()1f x m m+>-, 则19a +<,解之得108a -<<,故实数a 的取值范围是(10,8)-.【点睛】 本题考查由存在性问题求参数的范围、零点分段讨论法解绝对值不等式、利用绝对值三角不等式和均值不等式求最值;考查运算求解能力、分类讨论思想、逻辑推理能力;属于中档题.。
2020届四川省成都市中考数学二模试卷((有答案))(已纠错)

四川省成都市中考数学二模试卷一.选择题(共10小题,满分30分,每小题3分)1.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>52.下列运算正确的是()A.3x+4y=7xy B.(﹣a)3•a2=a5C.(x3y)5=x8y5D.m10÷m7=m33.如图,几何体的左视图是()A.B.C.D.4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10135.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》6.某校举行汉字听写大赛,参赛学生的成绩如下表:成绩(分)8990929495人数46857对于这组数据,下列说法错误的是()A.平均数是92B.中位数是92C.众数是92D.极差是67.将抛物线y=x2先向下平移3个单位,再向左平移1个单位,则新的函数解析式为()A.y=(x+1)2+3B.y=(x﹣1)2+3C.y=(x﹣1)2﹣3D.y=(x+1)2﹣38.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6B.m<6C.m≤6且m≠2D.m<6且m≠29.如图,AB∥CD,那么()A.∠BAD与∠B互补B.∠1=∠2C.∠BAD与∠D互补D.∠BCD与∠D互补10.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1,弧K1K2,弧K2K3,弧K3K4,弧K4K5,弧K5K6,…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为L1,L2,L3,L4,L5,L6,….当AB=1时,L2016等于()A.B.C.D..二.填空题(共4小题,满分16分,每小题4分)11.(4分)若2x+y=4,x﹣=1,则4x2﹣y2=.12.(4分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.13.(4分)如图,平行四边形纸片ABCD中,AC=,∠CAB=30°,将平行四边形纸片ABCD折叠,使点A与点C重合,则折痕MN=.14.(4分)把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为.三.解答题(共6小题,满分54分)15.(12分)(1)计算:()﹣1﹣(π﹣2018)0﹣4cos30°(2)解不等式组:并把它的解集在数轴上表示出来.16.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.17.(8分)如图,飞机沿水平线AC飞行,在A处测得正前方停泊在海面上某船只P的俯角∠CAP(从高处观测低处的目标时,视线与水平线所成的锐角)为15°,飞行10km到达B处,在B处测得该船只的俯角∠CBP=52°,求飞机飞行的高度(精确到1m)18.(8分)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的沙县﹣﹣我最喜爱的沙县小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题:(1)请补全条形统计图;(2)在一个不透明的口袋中有4个完全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D.随机地摸出一个小球然后放回,再随机地摸出一个小球.请用列表或画树状图的方法,求出两次都摸到A 的概率.(3)近几年,沙县小吃产业发展良好,给沙县经济带来了发展.2011年底,小吃产业年营业额达50亿元,到了2013年底,小吃产业年营业额达60.5亿元.假设每年的小吃产业年营业额平均增长率不变,求这两年平均增长率是多少?(数据来源于网络)19.(10分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.20.(10分)已知:如图,BD为⊙O的直径,点A是劣弧BC的中点,AD交BC于点E,连接AB.(1)求证:AB2=AE•AD;(2)过点D作⊙O的切线,与BC的延长线交于点F,若AE=2,ED=4,求EF的长.四.填空题(共5小题,满分20分,每小题4分)21.(4分)春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为.22.(4分)当x=5.4,y=2.4时,代数式x2﹣2xy+y2的值是.23.(4分)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E 与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.则线段EF的最小值为.24.(4分)如图,把矩形ABCD绕着点A逆时针旋转90°可以得到矩形AEFG,则图中三角形AFC是三角形.25.(4分)二次函数y=ax2+bx+c的图象如图所示,其对称轴与x轴交于点(﹣1,0),图象上有三个点分别为(2,y1),(﹣3,y2),(0,y3),则y1、y2、y3的大小关系是(用“>”“<”或“=”连接).五.解答题(共3小题,满分30分)26.(8分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?27.(10分)【发现】如图①,已知等边△ABC,将直角三角板的60°角顶点D任意放在BC边上(点D 不与点B、C重合),使两边分别交线段AB、AC于点E、F.(1)若AB=6,AE=4,BD=2,则CF=;(2)求证:△EBD∽△DCF.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示,问:点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F(点E、F均不与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为(用含α的表达式表示).28.(12分)如图,已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0),C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由.四川省成都市中考数学二模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>5【分析】因为=﹣a(a≤0),由此性质求得答案即可.【解答】解:∵=x﹣5,∴5﹣x≤0∴x≥5.故选:C.【点评】此题考查二次根式的运算方法:=a(a≥0),=﹣a(a≤0).2.下列运算正确的是()A.3x+4y=7xy B.(﹣a)3•a2=a5C.(x3y)5=x8y5D.m10÷m7=m3【分析】根据同类项的定义、幂的运算法则逐一计算即可判断.【解答】解:A、3x、4y不是同类项,不能合并,此选项错误;B、(﹣a)3•a2=﹣a5,此选项错误;C、(x3y)5=x15y5,此选项错误;D、m10÷m7=m3,此选项正确;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握同类项的定义、幂的运算法则.3.如图,几何体的左视图是()A.B.C.D.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体,且长方形靠左.故选:A.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×1013【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.5.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》【分析】根据数学常识逐一判别即可得.【解答】解:A、《九章算术》是中国古代数学专著,作者已不可考,它是经历代各家的增补修订,而逐渐成为现今定本的;B、《几何原本》是古希腊数学家欧几里得所著的一部数学著作;C、《海岛算经》是中国学者编撰的最早一部测量数学著作,由刘徽于三国魏景元四年所撰;D、《周髀算经》原名《周髀》,是算经的十书之一,中国最古老的天文学和数学著作;故选:B.【点评】本题主要考查数学常识,解题的关键是了解我国古代在数学领域的成就.6.某校举行汉字听写大赛,参赛学生的成绩如下表:成绩(分)8990929495人数46857对于这组数据,下列说法错误的是()A.平均数是92B.中位数是92C.众数是92D.极差是6【分析】根据平均数、中位数、众数及极差的定义逐一计算即可判断.【解答】解:A、平均数为=,符合题意;B、中位数是=92,不符合题意;C、众数为92,不符合题意;D、极差为95﹣89=6,不符合题意;故选:A.【点评】本题考查了极差、众数、平均数、中位数的知识,解答本题的关键是掌握各知识点的概念.7.将抛物线y=x2先向下平移3个单位,再向左平移1个单位,则新的函数解析式为()A.y=(x+1)2+3B.y=(x﹣1)2+3C.y=(x﹣1)2﹣3D.y=(x+1)2﹣3【分析】由平移的规律即可求得答案.【解答】解:将抛物线y=x2向下平移3个单位,则函数解析式变为y=x2﹣3,将y=x2﹣3向左平移1个单位,则函数解析式变为y=(x+1)2﹣3,故选:D.【点评】本题主要考查二次函数的图象变换,掌握平移的规律是解题的关键,即“左加右减,上加下减”.8.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6B.m<6C.m≤6且m≠2D.m<6且m≠2【分析】当m﹣2=0,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,列不等式即可得到结论.【解答】解:当m﹣2=0,即m=2时,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,∵关于x的方程(m﹣2)x2﹣4x+1=0有实数根,∴△=(﹣4)2﹣4(m﹣2)•1≥0,解得:m≤6,∴m的取值范围是m≤6且m≠2,故选:C.【点评】本题考查了根的判别式和一元二次方程的定义,能根据根的判别式和已知得出不等式是解此题的关键.9.如图,AB∥CD,那么()A.∠BAD与∠B互补B.∠1=∠2C.∠BAD与∠D互补D.∠BCD与∠D互补【分析】根据两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补解答即可.【解答】解:∵AB∥CD,∴∠BAD与∠D互补,即C选项符合题意;当AD∥BC时,∠BAD与∠B互补,∠1=∠2,∠BCD与∠D互补,故选项A、B、D都不合题意,故选:C.【点评】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.10.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1,弧K1K2,弧K2K3,弧K3K4,弧K4K5,弧K5K6,…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为L1,L2,L3,L4,L5,L6,….当AB=1时,L2016等于()A.B.C.D..【分析】用弧长公式,分别计算出l1,l2,l3,…的长,寻找其中的规律,确定l2016的长.【解答】解:根据题意得:l1==,l2==,l3===π,则L2016=,故选:B.【点评】本题考查的是弧长的计算,先用公式计算,找出规律,求出l2016的长.二.填空题(共4小题,满分16分,每小题4分)11.(4分)若2x+y=4,x﹣=1,则4x2﹣y2=8.【分析】利用平方差公式分解因式,进而把已知代入求出答案.【解答】解:∵x﹣=1,∴2x﹣y=2,则4x2﹣y2=(2x+y)(2x﹣y)=4×2=8.故答案为:8.【点评】此题主要考查了公式法分解因式,正确应用公式是解题关键.12.(4分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.【点评】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.13.(4分)如图,平行四边形纸片ABCD中,AC=,∠CAB=30°,将平行四边形纸片ABCD折叠,使点A与点C重合,则折痕MN=2.【分析】根据翻折变换,可知△ONC≌△AOM,且是Rt△,在△ONC中解得NO.【解答】解:根据翻折变换,可知△ONC≌△AOM,且是Rt△,∵AC=,∠CAB=30°,∴在Rt△ONC,解得ON=1,∴MN=2.故答案为2.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.14.(4分)把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为y=﹣x.【分析】直接利用一次函数图象平移规律进而得出答案.【解答】解:把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为:y=﹣(x﹣1)﹣1=﹣x.故答案为:y=﹣x.【点评】此题主要考查了一次函数图象与几何变换,正确掌握平移规律是解题关键.三.解答题(共6小题,满分54分)15.(12分)(1)计算:()﹣1﹣(π﹣2018)0﹣4cos30°(2)解不等式组:并把它的解集在数轴上表示出来.【分析】(1)直接利用零指数幂、负指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案;(2)先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.【解答】(1)解:()﹣1﹣(π﹣2018)0﹣4cos30°=﹣2+2﹣1﹣4×=﹣3;(2)解不等式①得:x≤4解不等式②得:x≤2;∴不等式组的解集为:2≤x≤4不等式组的解集在数轴上表示:【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.17.(8分)如图,飞机沿水平线AC飞行,在A处测得正前方停泊在海面上某船只P的俯角∠CAP(从高处观测低处的目标时,视线与水平线所成的锐角)为15°,飞行10km到达B处,在B处测得该船只的俯角∠CBP=52°,求飞机飞行的高度(精确到1m)【分析】分别在直角三角形中,利用锐角三角函数定义表示出AC与BC,根据AC﹣BC=AB求出PC的长即可.【解答】解:在Rt△ACP中,tan∠PAC=,即AC=,在Rt△BCP中,tan∠CBP=,即BC=,由AB=AC﹣BC,得到﹣=10000,解得:PC=≈3388,则飞机飞行的高度为3388m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.18.(8分)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的沙县﹣﹣我最喜爱的沙县小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题:(1)请补全条形统计图;(2)在一个不透明的口袋中有4个完全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D.随机地摸出一个小球然后放回,再随机地摸出一个小球.请用列表或画树状图的方法,求出两次都摸到A 的概率.(3)近几年,沙县小吃产业发展良好,给沙县经济带来了发展.2011年底,小吃产业年营业额达50亿元,到了2013年底,小吃产业年营业额达60.5亿元.假设每年的小吃产业年营业额平均增长率不变,求这两年平均增长率是多少?(数据来源于网络)【分析】(1)总人数以及条形统计图求出喜欢“花椒饼”的人数,补全条形统计图即可;(2)列表得出所有等可能的情况数,找出恰好两次都摸到“A”的情况数,即可求出所求的概率;(3)设小吃产业年营业额平均增长率为x,根据等量关系为:2011年的利润×(1+增长率)2=2013年的利润,把相关数值代入即可列出方程.【解答】解:(1)喜欢花椒饼的人数为50﹣14﹣21﹣5=10(人),补全条形统计图如下:(2)列表如下:A B C DA(A,A)(B,A)(C,A)(D,A)B(A,B)(B,B)(C,B)(D,B)C(A,C)(B,C)(C,C)(D,C)D(A,D)(B,D)(C,D)(D,D)所有等可能的情况有16种,其中恰好两次都摸到“A”的情况有1种,则P=.(3)设小吃产业年营业额平均增长率为x,由题意可得:50×(1+x)2=60.5,解得:x=10%,答:这两年平均增长率是10%.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=;还考查了一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.19.(10分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.【分析】(1)把点A坐标分别代入反比例函数y=,一次函数y=x+b,求出k、b的值,再把点B的坐标代入反比例函数解析式求出n的值,即可得出答案;(2)求出直线AB与y轴的交点C的坐标,分别求出△ACO和△BOC的面积,然后相加即可;(3)根据A、B的坐标结合图象即可得出答案.【解答】解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C (0,3),∴S △AOB =S △AOC +S △BOC =×3×1+×3×4=7.5;(3)∵B (﹣4,﹣1),A (1,4),∴根据图象可知:当x >1或﹣4<x <0时,一次函数值大于反比例函数值.【点评】本题考查了一次函数和反比例函数的交点问题,用待定系数法求函数的解析式,三角形的面积,一次函数的图象等知识点,题目具有一定的代表性,是一道比较好的题目,用了数形结合思想. 20.(10分)已知:如图,BD 为⊙O 的直径,点A 是劣弧BC 的中点,AD 交BC 于点E ,连接AB . (1)求证:AB 2=AE •AD ;(2)过点D 作⊙O 的切线,与BC 的延长线交于点F ,若AE =2,ED =4,求EF 的长.【分析】(1)点A 是劣弧BC 的中点,即可得∠ABC =∠ADB ,又由∠BAD =∠EAB ,即可证得△ABE ∽△ADB ,根据相似三角形的对应边成比例,即可证得AB 2=AE •AD ;(2)由(1)求得AB 的长,又由BD 为⊙O 的直径,即可得∠A =90°,由DF 是⊙O 的切线,可得∠BDF =90°,在Rt △ABD 中,求得tan ∠ADB 的值,即可求得∠ADB 的度数,即可证得△DEF 是等边三角形,则问题得解.【解答】解:(1)证明:∵点A 是劣弧BC 的中点, ∴∠ABC =∠ADB .(1分) 又∵∠BAD =∠EAB , ∴△ABE ∽△ADB .(2分) ∴.∴AB 2=AE •AD .(2)解:∵AE =2,ED =4, ∵△ABE ∽△ADB ,∴,∴AB2=AE•AD,∴AB2=AE•AD=AE(AE+ED)=2×6=12.∴AB=2(舍负).(4分)∵BD为⊙O的直径,∴∠A=90°.又∵DF是⊙O的切线,∴DF⊥BD.∴∠BDF=90°.在Rt△ABD中,tan∠ADB=,∴∠ADB=30°.∴∠ABC=∠ADB=30°.∴∠DEF=∠AEB=60°,∠EDF=∠BDF﹣∠ADB=90°﹣30°=60°.∴∠F=180°﹣∠DEF﹣∠EDF=60°.∴△DEF是等边三角形.∴EF=DE=4.(5分)【点评】此题考查了相似三角形的判定与性质,圆的切线的性质,以及三角函数等知识.此题综合性较强,难度适中,解题的关键是数形结合思想的应用.四.填空题(共5小题,满分20分,每小题4分)21.(4分)春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为23.4.【分析】由折线统计图得出这五天游客数量从小到大排列为结果,再根据中位数的定义求解可得.【解答】解:将这5天的人数从小到大排列为21.9、22.4、23.4、24.9、25.4,所以这五天游客数量的中位数为23.4,故答案为:23.4.【点评】本题主要考查折线统计图与中位数,解题的关键是根据折线统计图得出数据,并熟练掌握中位数的概念.22.(4分)当x=5.4,y=2.4时,代数式x2﹣2xy+y2的值是9.【分析】把代数式分解因式,然后把数值代入,计算得出答案即可.【解答】解:x2﹣2xy+y2=(x﹣y)2当x=5.4,y=2.4时,原式=(5.4﹣2.4)2=9,故答案为9.【点评】此题考查因式分解和代数式的求值,掌握完全平方公式是解决问题的关键.23.(4分)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E 与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.则线段EF的最小值为4.【分析】根据“点到直线之间,垂线段最短”可得CD⊥AB时CD最小,由于EF=2CD,求出CD的最小值就可求出EF的最小值.【解答】解:连接CD,当CD⊥AB时,CD取得最小值,∵AB是半圆的直径,∴∠ACB=90°.∵AB=8,∠CBA=30°,∴AC=4,BC===4.∵CD⊥AB,∠CBA=30°,∴CD=BC=2.根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为2.∵点E与点D关于AC对称,∴CE=CD,∴∠CED=∠CDE,∵∠EFD+∠CED=90°,∠CDF+∠CDE=90°,∴∠F=∠CDF,∴CE=CD=CF,∴EF=2CD.∴线段EF的最小值为4,故答案为4【点评】本题考查了圆的综合题、轴对称的性质,垂线段最短,直角三角形30度角性质等知识,解题的关键是求出CD的最小值,学会利用垂线段最短解决最值问题,属于中考常考题型.24.(4分)如图,把矩形ABCD绕着点A逆时针旋转90°可以得到矩形AEFG,则图中三角形AFC是等腰直角三角形.【分析】根据旋转的性质知:两矩形是完全相同的矩形可知AC=AF,∠BAC+∠GAF=90°,则易证△ACF是等腰直角三角形.【解答】解:在矩形ABCD中,根据勾股定理知AC=,在矩形AEFG中,根据勾股定理知AF=.∵根据旋转的性质知,矩形ABCD和AEFG是两个大小完全相同的矩形,∠CAF=90°,∴AB=AE=GF,BC=AD=AG,∴AC=AF,∴△ACF是等腰直角三角形,故填:等腰直角.【点评】本题考查了旋转的性质、等腰直角三角形的判定与性质以及矩形的性质.注意,旋转前后的图形全等.25.(4分)二次函数y=ax2+bx+c的图象如图所示,其对称轴与x轴交于点(﹣1,0),图象上有三个点分别为(2,y1),(﹣3,y2),(0,y3),则y1、y2、y3的大小关系是y3<y2<y1(用“>”“<”或“=”连接).【分析】先确定抛物线对称轴为直线x=﹣1,然后二次函数的性质,通过比较三个点到直线x=﹣1的距离的大小得到y1、y2、y3的大小关系.【解答】解:∵抛物线的对称轴与x轴交于点(﹣1,0),∴抛物线的对称轴为直线x=﹣1,∵点(2,y1)到直线x=﹣1的距离最大,点(0,y3)到直线x=﹣1的距离最小,∴y3<y2<y1.故答案为y3<y2<y1.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.运用二次函数的性质是解决本题的关键.五.解答题(共3小题,满分30分)26.(8分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?【分析】(1)根据利润=销售价﹣进价列关系式;(2)总利润=每个的利润×销售量,销售量为400﹣10x,列方程求解,根据题意取舍;(3)利用函数的性质求最值.【解答】解:由题意得:(1)50+x﹣40=x+10(元)(2)设每个定价增加x元.列出方程为:(x+10)(400﹣10x)=6000解得:x1=10 x2=20要使进货量较少,则每个定价为70元,应进货200个.(3)设每个定价增加x元,获得利润为y元.y=(x+10)(400﹣10x)=﹣10x2+300x+4000=﹣10(x﹣15)2+6250当x=15时,y有最大值为6250.所以每个定价为65元时得最大利润,可获得的最大利润是6250元.(4分)【点评】应用题中求最值需先求函数表达式,再运用函数性质求解.此题的关键在列式表示销售价格和销售量.27.(10分)【发现】如图①,已知等边△ABC,将直角三角板的60°角顶点D任意放在BC边上(点D 不与点B、C重合),使两边分别交线段AB、AC于点E、F.(1)若AB=6,AE=4,BD=2,则CF=4;(2)求证:△EBD∽△DCF.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示,问:点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F(点E、F均不与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为1﹣cosα(用含α的表达式表示).【分析】(1)先求出BE的长度后发现BE=BD的,又∠B=60°,可知△BDE是等边三角形,可得∠BDE=60°,另外∠DEF=60°,可证得△CDF是等边三角形,从而CF=CD=BC﹣BD;(2)证明△EBD∽△DCF,这个模型可称为“一线三等角•相似模型”,根据“AA”判定相似;【思考】由角平分可联系到角平分线的性质“角平分线上点到角两边的距离相等”,可过D作DM⊥BE,DG⊥EF,DN⊥CF,则DM=DG=DN,从而证明△BDM≌△CDN可得BD=CD;【探索】由已知不能求得C△ABC=AB+BC+AC=2AB+2OB=2(m+m cosα),则需要用m和α是三角函数表示出C△AEF ,C△AEF=AE+EF+AF=AG+AH=2AG;题中直接已知点O是BC的中点,应用(2)题的方法和结论,作OG⊥BE,OD⊥EF,OH⊥CF,可得EG=ED,FH=DF,则C△AEF=AE+EF+AF=AG+AH=2AG,而AG=AB﹣BO,从而可求得.【解答】(1)解:∵△ABC是等边三角形,∴AB=BC=AC=6,∠B=∠C=60°.∵AE=4,∴BE=2,则BE=BD,∴△BDE是等边三角形,∴∠BED=60°,又∵∠EDF=60°,∴∠CDF=180°﹣∠EDF﹣∠B=60°,则∠CDF=∠C=60°,∴△CDF是等边三角形,∴CF=CD=BC=BD=6﹣2=4.故答案是:4;(2)证明:如图①,∵∠EDF=60°,∠B=60°,∴∠CDF+BDE=120°,∠BED+∠BDE=120°,。
四川省成都七中高2020届高三下学期二诊模拟试题理科数学(附答案)
成都七中高2020届高三二诊模拟考试数 学(理科)(满分150分,用时120分钟)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}0652<--=x x x A ,{}02<-=x x B ,则=B A I ( ) A .{}23<<-x x B .{}22<<-x x C .{}26<<-x x D .{}21<<-x x 2.设i z i -=⋅+1)1(,则复数z 的模等于( )A .2B .2C .1D .33.已知α是第二象限的角,43)tan(-=+απ,则=α2sin ( ) A .2512 B .2512- C .2524 D .2524-4.设5.0log 3=a ,3.0log 2.0=b ,3.02=c ,则c b a ,,的大小关系是( )A .c b a <<B .b c a <<C .b a c <<D .a b c << 5.阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的32, 并且球的表面积也是圆柱表面积的32”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积 为π24,则该圆柱的内切球体积为( )A .π34B .π16C .π316D .π332 6.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市1月至8月的空气 质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是空气 质量合格,下面四种说法不.正确..的是( )。
2020届四川省成都七中高三二诊数学模拟(理科)试题含答案
成都七中高2020届高三二诊数学模拟考试(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}2560A x x x =--<,{}20B x x =-<,则A B =I ( ) A. {}32x x -<< B. {}22x x -<< C. {}62x x -<<D. {}12x x -<<2.设(1)1i z i +⋅=-,则复数z 的模等于( )A.B. 2C. 1D.3.已知α是第二象限的角,3tan()4πα+=-,则sin 2α=( ) A.1225B. 1225-C.2425D. 2425-4.设3log 0.5a =,0.2log 0.3b =,0.32c =,则,,a b c 的大小关系是( ) A. a b c <<B. a c b <<C. c a b <<D. c b a <<5.阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的23,且球的表面积也是圆柱表面积的23”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为24π,则该圆柱的内切球体积为( ) A.43π B. 16πC.163π D.323π 6.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面叙述不正确的是( )A. 1月至8月空气合格天数超过20天的月份有5个B. 第二季度与第一季度相比,空气达标天数的比重下降了C. 8月是空气质量最好的一个月D. 6月份的空气质量最差.7.设等比数列{}n a 的前n 项和为n S ,则“1322a a a +<”是“210n S -<”的( ) A. 充分不必要 B. 必要不充分 C. 充要D. 既不充分也不必要8.设x ,y 满足24122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则z x y=+取值范围是( )A []5,3-B. []2,3C. [)2,+∞D. (],3-∞9.设函数22sin ()1x xf x x =+,则()y f x =,[],x ππ∈-的大致图象大致是的( )A.B.C.D.10.在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若1a =,c =,sin sin 3b A a B π⎛⎫=- ⎪⎝⎭,则sin C =( )的.A.B.C.D.11.如图示,三棱锥P ABC -的底面ABC 是等腰直角三角形,90ACB ∠=︒,且PA PB AB ==PC =PC 与面PAB 所成角的正弦值等于( )A.13B.C.D.312.在ABC ∆中,2AB =,3AC =,60A ∠=︒,O 为ABC ∆的外心,若AO x AB y AC =+u u u ru u u ru u u r,x ,y R ∈,则23x y +=( ) A. 2B.53C.43D.32二、填空题:本题共4小题,每小题5分,共20分.13.在6()x a +的展开式中的3x 系数为160,则a =_______.14.已知()f x 是定义在R 上的奇函数,当0x >时,2()2f x x x =-,则不等式()f x x >的解集用区间表示为__________.15.若函数()0x f x e ax =->恒成立,则实数a 的取值范围是_____.16.已知椭圆Г:22221(0)x y a b a b+=>>,F 1、F 2是椭圆Г的左、右焦点,A 为椭圆Г的上顶点,延长AF 2交椭圆Г于点B ,若1ABF V 为等腰三角形,则椭圆Г的离心率为___________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生仅选一个作答.17.设数列{}n a 是公差不为零的等差数列,其前n 项和为n S ,11a =,若1a ,2a ,5a 成等比数列. (1)求n a 及n S ;(2)设211(*)1n n b n N a+=∈-,设数列{}n b 的前n 项和n T ,证明:14n T <. 18.2019年6月,国内的5G 运营牌照开始发放.从2G 到5G ,我们国家的移动通信业务用了不到20年的时间,完成了技术上的飞跃,跻身世界先进水平.为了解高校学生对5G 的消费意愿,2019年8月,从某地在校大学生中随机抽取了1000人进行调查,样本中各类用户分布情况如下:我们将大学生升级5G 时间的早晚与大学生愿意为5G 套餐支付更多的费用作比较,可得出下图的关系(例如早期体验用户中愿意为5G 套餐多支付5元的人数占所有早期体验用户的40%).(1)从该地高校大学生中随机抽取1人,估计该学生愿意在2021年或2021年之前升级到5G概率;(2)从样本的早期体验用户和中期跟随用户中各随机抽取1人,以X 表示这2人中愿意为升级5G 多支付10元或10元以上的人数,求X 的分布列和数学期望;(3)2019年底,从这1000人的样本中随机抽取3人,这三位学生都已签约5G 套餐,能否认为样本中早期体验用户的人数有变化?说明理由.19.如图所示,在三棱锥A BCD -中,2AB BC BD ===,AD =2CBA CBD π∠=∠=,点EAD 中点.(1)求证:平面ACD ⊥平面BCE ;(2)若点F 为BD 中点,求平面BCE 与平面ACF 所成锐二面角的余弦值.20.已知椭圆22221x y a b +=(0a b >>)经过点(0,1),离心率为2,A 、B 、C 为椭圆上不同的三点,且满足0OA OB OC ++=u u u r u u u r u u u r r,O 为坐标原点.(1)若直线AB 、OC 的斜率都存在,求证:AB OC k k ⋅为定值; (2)求AB 的取值范围.21.设函数21()2x f x e x ax =--,a R ∈.(Ⅰ)讨论()f x 的单调性;(Ⅱ)1a ≤时,若12x x ≠,12()()2f x f x +=,求证:120x x +<.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.在直角坐标系xOy 中,直线l的参数方程为32t x y ⎧=-+⎪⎪⎨⎪=⎪⎩.(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为24cos 30p ρθ-+=. (1)求l 的普通方程及C 的直角坐标方程; (2)求曲线C 上的点P 到l 距离的取值范围.23.已知()1f x x x a =-++()a R ∈. (Ⅰ) 若1a =,求不等式()4f x >的解集; (Ⅱ)(0,1)m ∀∈,0x R ∃∈,014()1f x m m+>-,求实数a 取值范围.的参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.D2.C3.D4.A5.D6.D7.A8.C9.B 10.B 11.A 12.B二、填空题:本题共4小题,每小题5分,共20分.13. 214. (3,0)(3,)-⋃+∞ 15. 0a e ≤<16.3三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生仅选一个作答.17.(1)设{}n a 的公差为d ,由题意有122151a a a a =⎧⎨=⋅⎩()121111(4)a a d a a d =⎧⎪⇒⎨+=⋅+⎪⎩, 且0d ≠112a d =⎧⇒⎨=⎩,所以()12121n a n n =+-=-,()122n n n a a S n +==;(2)因为()211111114141n n b a n n n n +⎛⎫===- ⎪-++⎝⎭,所以1111111...42231n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦, ()111111414414n T n n ⎛⎫=-=-< ⎪++⎝⎭. 18.(1)由题意可知,从高校大学生中随机抽取1人,该学生在2021年或2021年之前升级到5G 的概率估计为样本中早期体验用户和中期跟随用户的频率,即2705300.81000+=.(2)由题意X 的所有可能值为0,1,2,记事件A 为“从早期体验用户中随机抽取1人,该学生愿意为升级5G 多支付10元或10元以上”, 事件B 为“从中期跟随用户中随机抽取1人,该学生愿意为升级5G 多支付10元或10元以上”, 由题意可知,事件A ,B 相互独立,且()140%0.6P A =-=,()145%0.55P B =-=, 所以(0)()(10.6)(10.55)0.18P X P AB ===--=,(1)()()()P X P AB AB P AB P AB ==+=+()(1())(1()()P A P B P A P B =-+- 0.6(10.55)(10.6)0.55=⨯-+-⨯0.49=, (2)()0.60.550.33P X P AB ===⨯=,所以X 的分布列为故X数学期望()00.1810.4920.33 1.15E X =⨯+⨯+⨯=.(3)设事件D 为“从这1000人的样本中随机抽取3人,这三位学生都已签约5G 套餐”,那么327031000()0.02C P D C =≈.回答一:事件D 虽然发生概率小,但是发生可能性为0.02,所以认为早期体验用户没有发生变化. 回答二:事件D 发生概率小,所以可以认为早期体验用户人数增加. 19.(1)因为2CBA CBD π∠=∠=,所以BC ⊥平面ABD ,因为AD ⊂平面ABD ,所以BC AD ⊥.因为AB BD =,点E 为AD 中点,所以BE AD ⊥. 因为BC BE B =I ,所以AD ⊥平面BCE .因为AD ⊂平面ACD ,所以平面ACD ⊥平面BCE .(2)以点B 为坐标原点,直线,BC BD 分别为x 轴,y 轴,过点B 与平面BCD 垂直的直线为z 轴,建立空间直角坐标系,则()0,0,0B,(0,A -,()2,0,0C ,()0,2,0D,10,2E ⎛ ⎝⎭,()0,1,0F ,()2,0,0BC =u u u r,10,22BE ⎛= ⎝⎭u u u r ,()2,1,0CF =-u u u r,(0,AF =u u u r ,设平面BCE 的一个法向量()111,,n x y z =r ,则0,0,n BC n BE ⎧⋅=⎨⋅=⎩u u u v v u u u v v即11120,10,2x y z =⎧⎪⎨=⎪⎩ 取11z =,则10x =,1y =()0,n =r,设平面ACF 的一个法向量()222,,m x y z =u r ,则0,0,m AF m CF ⎧⋅=⎨⋅=⎩u u u v v u u u v v即222220,20,y x y ⎧+=⎪⎨-+=⎪⎩取22z =,则2x =,2y =2m ⎛⎫= ⎪ ⎪⎝⎭u r , 设平面BCE 与平面ACF 所成锐二面角为θ,则cos cos n m θ=⋅==r u r所以平面BCE 与平面ACF.20.(1)依题有2221b c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩2241a b ⎧=⇒⎨=⎩,所以椭圆方程为2214x y +=.设()11,A x y ,()22,B x y ,()33,C x y ,由O 为ABC ∆的重心123x x x ⇒+=-,123y y y +=-;又因为221144x y +=,()()()()2222121212124440x y x x x x y y y y +=⇒+-++-=,()121212124AB y y x x k x x y y -+⇒==--+,31231214OC AB OC y y y k k k x x x +==⇒=-+,(2)当AB 的斜率不存在时:12x x =,123102y y x x +=⇒=-,30=y , 代入椭圆得,11x =±,1||y AB =⇒= 当AB 的斜率存在时:设直线为y kx t =+,这里0t ≠,由2244y kx t x y =+⎧⇒⎨+=⎩()222418440k x ktx t +++-=,22041k t ∆>⇒->, 根据韦达定理有122841kt x x k +=-+,21224441t x x k -⋅=+,122241t y y k +=+, 故2282,4141kt t C k k -⎛⎫ ⎪++⎝⎭,代入椭圆方程有2221144k t t =-⇒≥,又因为12||AB x x -==,综上,AB的范围是.21.(1)()x f x e x a '=--,令()()g x f x '=,则()1x g x e '=-,令()10xg x e -'==得0x =,当(,0)x ∈-∞时,()0g x '<则()g x 在(,0)-∞单调递减,当(0,)x ∈+∞时,()0g x '>则()g x 在(0,)+∞单调递增,所以min ()(0)1g x g a ==-,当1a ≤时,min ()10g x a =-≥,即()()0g x f x '=≥,则()f x 在R 上单调递增,当1a >时,min ()10g x a =-<,易知当x →-∞时,()g x →+∞,当x →+∞时,()g x →+∞,由零点存在性定理知,12,x x ∃,不妨设12x x <,使得12()()0g x g x ==,当1(,)x x ∈-∞时,()0>g x ,即()0f x '>,当12(,)x x x ∈时,()0<g x ,即()0f x '<,当2(,)x x ∈+∞时,()0>g x ,即()0f x '>,所以()f x 在1(,)x -∞和2(,)x +∞上单调递增,在12(,)x x 单调递减;(2)证明:构造函数()()()2F x f x f x =+--,0x ≥, 2211()222x x F x e x ax e x ax -⎡⎤=--+-+-⎢⎥⎣⎦,0x ≥, 整理得2()2x x F x e e x -=+--,()2x x F x e e x --'=-,()220x x F x e e -''=+-≥=(当0x =时等号成立), 所以()F x '在[)0,+∞上单调递增,则()(0)0F x F ''≥=, 所以()F x 在[)0,+∞上单调递增,()(0)0F x F ≥=,这里不妨设20x >,欲证120x x +<,即证12x x <-由(1)知1a ≤时,()f x 在R 上单调递增,则需证12()()f x f x <-,由已知12()()2f x f x +=有12()2()f x f x =-,只需证122()2()()f x f x f x =-<-,即证22()()2f x f x +->,由()()()2F x f x f x =+--在[)0,+∞上单调递增,且20x >时,有222()()()20F x f x f x =+-->,故22()()2f x f x +->成立,从而120x x +<得证. (二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.(1)直线l的参数方程为3,2t x y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),消去参数t∴l0y -+=.曲线C 的极坐标方程为24cos 30ρρθ-+=, 利用极坐标化直角坐标的公式:cos sin x y ρθρθ=⎧⎨=⎩∴C 的直角坐标方程为22430x y x +-+=.(2)C 的标准方程为22(2)1x y -+=,圆心为(2,0)C ,半径为1∴圆心C 到l的距离为d ==, ∴点P 到l的距离的取值范围是1,122⎡⎤-+⎢⎥⎣⎦. 23.(Ⅰ)当1a =时,2,1()112,112,1x x f x x x x x x ≥⎧⎪=-++=-<<⎨⎪-≤-⎩,1()424x f x x ≥⎧>⇔⎨>⎩,或1124x -<<⎧⎨>⎩,或124x x ≤-⎧⎨->⎩2x ⇔>,或2x <-所以不等式()4f x >的解集为(,2)(2,)-∞-+∞U ; (Ⅱ)因为()1()(1)1f x x x a x a x a =-++≥+--=+ (0,1)m ∀∈,又[]1414()(1)11m m m m m m+=++--- 4151m m m m-=++-59≥+=(当13m =时等号成立), 依题意,(0,1)m ∀∈,0x R ∃∈,有014()1f x m m+>-, 则19a +<,解之得108a -<<,故实数a 的取值范围是(10,8)-.。
2020年四川省成都市中考数学二诊试卷含答案
析式为( )
A.
B.
C.
D.
10. 如图,正方形 ABCD 的正三角形 AEF 都内接于⊙O,则 ∠DAF 的度数是( )
A. 45° B. 30° C. 15° D. 10°
二、填空题(本大题共 9 小题,共 36.0 分) 11. 因式分解:xy2-9x=______.
12. 已知关于 x 的方程
28. 如图,在平面直角坐标系中,已知抛物线 y=ax2+bx+c(a<0)经过点 A(-1,0)、
B(4,0)与 y 轴交于点 C,tan∠ABC= .
(1)求抛物线的解析式; (2)点 M 在第一象限的抛物线上,ME 平行 y 轴交直线 BC 于点 E,连接 AC、CE ,当 ME 取值最大值时,求△ACE 的面积. (3)在 y 轴负半轴上取点 D(0,-1),连接 BD,在抛物线上是否存在点 N,使 ∠BAN=∠ACO-∠OBD?若存在,请求出点 N 的坐标;若不存在,请说明理由.
第 1 页,共 22 页
A. 57
B. 40
C. 73
D. 65
8. 关于 x 的一元二次方程式 x2-ax-2=0,下列结论一定正确的是( )
A. 该方程有两个相等的实数根
B. 该方程有两个不相等的实数根
C. 该方程没有实数根
D. 无法确定
9. 将抛物线
向右平移 3 个单位,再向下平移 2 个单位,得到抛物线解
中考数学二诊试卷
题号 得分
一
二
三
四
总分
一、选择题(本大题共 10 小题,共 30得失相反,要令正负以名之”,意思是:今有两数若 其意义相反,则分别叫做正数与负数,若收入 60 元记作+60 元,则-20 元表示( )
2020届成都七中高三文科数学二诊模拟考试试卷答案
成都七中高2020届高三二诊模拟考试 数学文科参考答案一、选择题二、填空题13.90 14.55215.()),3(0,3+∞- 16.33三、解答题17.解:(Ⅰ)设{}n a 的公差为d ,依题意有⎩⎨⎧⋅==512211a a a a ()0)4(111211≠⎩⎨⎧+⋅=+=⇒d d a a d a a 且⎩⎨⎧==⇒211d a ………4分 所以()12121-=-+=n n a n ()212n a a n S n n =+=………6分 (Ⅱ)因为()⎪⎭⎫⎝⎛+-=+=-=+111411411121n n n n a b n n ……8分所以⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=111...312121141n n T n ⎪⎭⎫ ⎝⎛+-=11141n)1(4+=n n…………12分18.(Ⅰ )频率分布直方图如下图所示: …4分(Ⅱ)根据以上数据,该家庭使用节水龙头后50天日用水量小于30.35m 的频率为0.20.110.1 2.60.120.050.48⨯+⨯+⨯+⨯=;因此该家庭使用节水龙头后日用水量小于30.35m 的概率的估计值为0.48;…7分(Ⅲ)该家庭未使用节水龙头50天日用水量的平均数为()110.0510.1530.2520.3540.4590.55260.6550.4850x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=…9分该家庭使用了节水龙头后50天日用水量的平均数为()210.0510.1550.25130.35100.45160.5550.3550x =⨯+⨯+⨯+⨯+⨯+⨯=.…11分估计使用节水龙头后,一年可节省水()()30.480.3536547.45m -⨯=. …12分 仅供四川省崇州市崇庆中学使用四川省崇州市崇庆中学使用仅供21.(Ⅰ)0=a 时,1)(--=x e x f x ,则1)(-='xe xf 令0)(='x f 得0=x …2分 当()0,∞-∈x 时,0)(<'x f ,)(x f 在()0,∞-单调递减;当()+∞∈,0x ,0)(>'x f ,)(x f 在()+∞,0单调递增;…………4分所以0)0()(min ==f x f …5分(Ⅱ)12)(--='ax e x f x,注意到0)0(=f ,故0)(≥x f 的充分条件是012)(≥--='ax e x f x恒成立. 令12)()(--='=ax e x f x h x,则a e x h x2)(-='即0)(≥x h 在[)+∞,0恒成立,又注意到0)0(=h , 则0)(≥x h 其必要条件是021)0(≥-='a h ,解得21≤a .……10分 事实上,21≤a 时,1)(2---=x ax e x f x 0112)(≥--≥--='x e ax e x f xx(由(Ⅰ)易知) 即)(x f 在[)+∞,0单调递增,则0)0()(=≥f x f 恒成立. 综上, a 的取值范围是]21,(-∞.……………12分22解 :(Ⅰ )直线l的参数方程为322t x y ⎧=-+⎪⎪⎨⎪=⎪⎩,(t 为参数),消去参数t 可得l0y -+=; 曲线C 的极坐标方程为24cos 30ρρθ-+=,可得C 的直角坐标方程为22430x y x +-+=.……………5分仅供四川省崇州市崇庆中学使用(Ⅱ)C 的标准方程为()2221x y -+=,圆心为()2,0C ,半径为1,所以,圆心C 到l的距离为d ==所以,点P 到l的距离的取值范围是1,122⎡⎤-+⎢⎥⎣⎦.……………10分 23、解: (Ⅰ)当1=a 时,⎪⎩⎪⎨⎧-≤-<<-≥=++-=.1,2,11,2,1,211)(x x x x x x x x f …………2分⎩⎨⎧>≥⇔>4214)(x x x f ,或⎩⎨⎧><<-4211x ,或⎩⎨⎧>--≤421x x2>⇔x ,或2-<x故不等式4)(>x f 的解集为),2()2,(+∞--∞ ;………………5分 (Ⅱ)因为1)1()(1)(+=--+≥++-=a x a x a x x x f)1,0(∈∀m ,[])1()141(141m m m m m m -+-+=-+m mm m -+-+=1145911425=-⋅-+≥mm m m (当31=m 时等号成立)……8分依题意,)1,0(∈∀m ,R x ∈∃0,有)(1410x f m m >-+则91<+a解之得810<<-a故实数a 的取值范围是)8,10(- ……10分仅供四川省崇州市崇庆中学使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年四川省成都七中中考数学二诊试卷1.下列各数中,负数是()A. −|−3|B. −(−3)C. (−3)2D. (−3)02.如图所示的几何体是由几个大小相同的小正方体搭成的,其俯视图是()A. B.C. D.3.2018年,成都提出了“三城三都”6个三年行动计划(2018−2020年),计划中提出,到2020年成都将实现旅游收入5800亿元.数据580000000000用科学记数法可表示为()A. 0.58×1012B. 58×1010C. 5.8×1010D. 5.8×10114.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是()A. 科克曲线B. 笛卡尔心形线C. 赵爽弦图D. 斐波那契螺旋线5.下列计算正确的是()A. 2x2+3x3=5x5B. x2⋅x3=x6C. (2x2)3=6x6D. x3÷x2=x6.如图,将“笑脸”图标向右平移4个单位,再向下平移2个单位,则在“笑脸”图标中的点P的对应点的坐标是()A. (−1,2)B. (−9,2)C. (−1,6)D. (−9,6)7.如图,AB//CD,∠FGB=154°,FG平分∠EFD,则∠AEF的度数等于()A. 26°B. 52°C. 54°D. 77°8.某班17名女同学的跳远成绩如下表所示:成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80 1.85 1.90人数23234111这些女同学跳远成绩的众数和中位数分别是()A. 1.70,1.75B. 1.75,1.70C. 1.70,1.70D. 1.75,1.7259.若关于x的一元二次方程x2−2x+m=0有实数根,则实数m的取值范围是()A. m<1B. m≤1C. m>1D. m≥110.如图是二次函数y=ax2+bx+c的图象,对于下列说法:①ac>0,②2a+b>0,③4ac<b2,④a+b+c<0,⑤当x>0时,y随x的增大而减小,其中正确的是()A. ①②③B. ①②④C. ②③④D. ③④⑤11.因式分解:9mx2−my2=______.12.如图,⊙O的直径AB过弦CD的中点E,若∠C=26°,则∠D=______.13. 如图,在△ABC 中,分别以点A 和点C 为圆心,大于12AC 长为半径画弧,两弧相交于点M 、N ;作直线MN 分别交BC 、AC 于点D 、点E ,若AE =3m ,△ABD 的周长为13cm ,则△ABC 的周长为______.14. 已知点P(x 0,y 0)到直线y =kx +b 的距离可表示为d =00√1+k 2,例如:点(0,1)到直线y =2x +6的距离d =√1+22=√5.据此进一步可得点(2,−1)到直线y =x −4之间的距离为______.15. (1)计算:|√3−2|−√83+sin60°+(12)−1(2)解不等式组:{5x +2>3(x −1)12x −1≤7−32x ,并求出所有非负整数解的和.16. 先化简,再求值:(x −3xx+1)÷x−2x 2+2x+1,其中x =cos45°.17.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,我校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解:B.比较了解:C.基本了解:D.不了解,根据调查统计结果,绘制了不完整的两种统计图表.请结合统计图表,回答下列问题:(1)求本次参与调查的学生共有多少人,并请补全条形统计图;(2)求出扇形统计图中B部分扇形所对应的圆心角的度数;(3)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从A等级中的睿睿和凯凯中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则睿睿去;否则凯凯去.请用树状图或列表法说明这个游戏规则是否公平.18.某次台风来袭时,一棵笔直大树树干AB(树干AB垂直于水平地面)被刮倾斜后折断倒在地上,树的顶部恰好接触到地面D处,测得∠CDA=37°,∠ACD=60°,AD=5米,求这棵大树AB的高度.(结果精确到0.1米)(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,√3≈1.73)19.如图,双曲线y=4x 与直线y=14x交于A、B两点,点P(a,b)在双曲线y=4x上,且0<a<4.(1)设PB交x轴于点E,若a=2,求点E的坐标;(2)连接PA、PB,得到△ABP,若4a=b,求△ABP的面积.20.AB为⊙O的直径,点C、D为⊙O上的两个点,AD交BC于点F,点E在AB上,DE交BC于点G,且∠DGF=∠CAB.(1)如图1.求证:DE⊥AB.(2)如图2.若AD平分∠CAB.求证:BC=2DE.(3)如图3.在(2)的条件下,连接OF,若∠AFO=45°,AC=8,求OF的长.21.已知m−n−1=0,则2m2−4mn+2n2−1的值是______.22.已知关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根x1,x2.若1x1+1x2=−1,则k的值为______.23.如图,在平面直角坐标系中,函数y=kx与y=−3x的图象交于A,B两点,过A作y轴的垂线,交函数y=5x(x>0)的图象于点C,连接BC,则△ABC的面积为______.24.为了庆祝“六一儿童节”,育才初一年级同学在班会课进行了趣味活动,小舟同学在模板上画出一个菱形ABCD,将它以点O为中心按顺时针方向分别旋转90°,180°,270°后得到如图所示的图形,其中∠ABC=120°,AB=4√3cm,然后小舟将此图形制作成一个靶子,那么当我们投飞镖时命中阴影部分的概率为______.25.如图1,含30°和45°角的两块三角板ABC和DEF叠合在一起,边BC与EF重合,BC=EF=24cm,点P为边BC(EF)的中点,边FD与AB相交于点H,此时线段BH的长为______;现将三角板ABC绕点P按逆时针方向旋转角度α(如图2),设边AB与EF相交于点Q,则当α从0°到90°的变化过程中,点Q移动的路径长为______.(结果保留根号)26.“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行,某自行车店在销售某型号自行车时,标价1500元.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.(1)求该型号自行车的进价是多少元?(2)若该型号自行车的进价不变,按标价出售,该店平均每月可售出60辆;若每辆自行车每降价50元,每月可多售出10辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?27.如图,已知锐角∠AOB,且tan∠AOB=2,点P为∠AOB内部一点,矩形PQMN的边MN在射线OB上(点Q在点P左侧),MQ=4,MN=a,过点P作直线PD⊥OA 于点D,交射线OB于点E.(1)如图1,当矩形PQMN的顶点Q落在射线OA上时,若a=4,求DP的值;(2)如图2,当矩形PQMN的顶点Q落在∠AOB内部时,连接OP交QM于点R,若sin∠DPO=4,a=3,求PR:RO的值;5(3)连接DM、DQ,当△DMQ与△DPQ相似时,直接写出所有符合条件的a的值.28.如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于点A、B(点A在点B左侧),交y轴正半轴于点C,点B坐标为(1,0),点C坐标(0,3√3),对称轴为直线x=−1,连接AC、BC.(1)求抛物线的解析式;S△ACB,如果存在,求出点P的坐(2)在抛物线上,是否存在一点P,使得S△ACP=34标,如果不存在,请说明理由;(3)如图2,将抛物线位于直线AC上方的图象沿AC翻折,翻折后的图形与y轴交于点D,求出点D的坐标.答案和解析1.【答案】A【解析】解:A、−|−3|=−3,是负数,符合题意;B、−(−3)=3是正数,不符合题意;C、(−3)2=9是正数,不符合题意;D、(−3)0=1是正数,不符合题意.故选:A.根据有理数的乘法法则、相反数、绝对值的性质判断即可.本题主要考查了有理数的乘方,零指数幂,相反数,绝对值的性质,难度适中.2.【答案】A【解析】解:从上面看,得到的视图是:,故选:A.根据俯视图是从上面看到的图形,从上面看有两层,上层有4个正方形,下层有一个正方形且位于左二的位置.本题考查了三视图的知识,关键是找准俯视图所看的方向.3.【答案】D【解析】解:数据580000000000用科学记数法可表示为5.8×1011.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:A、既是轴对称图形,又是中心对称图形,故本选项符合题意;B、是轴对称图形,不是中心对称图形,故本选项不合题意;C、不是轴对称图形,是中心对称图形,故本选项不合题意;D、不是轴对称图形,也不是中心对称图形,故本选项不合题意.故选:A.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.【答案】D【解析】解:A、2x2,3x3不是同类项不能合并,故A错误;B、x2⋅x3=x5,故B错误;C、(2x2)3=8x6,故C错误;D、x3÷x2=x3−2=x,故D正确.故选:D.根据合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂相乘,底数不变指数相加;积的乘方法则,把每一个因式分别乘方,再把所得的幂相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.本题考查合并同类项、同底数幂的乘法、积的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.6.【答案】A【解析】解:∵开始时P点的坐标为(−5,4),∴将“笑脸”图标向右平移4个单位,P点的坐标为(−1,4),∴将“笑脸”图标向下平移2单位,P点的坐标为(−1,2),故选:A.根据坐标与图形变化−平移的特征即可求解.本题考查了坐标与图形变化−平移以及坐标位置的确定.7.【答案】B【解析】解:∵AB//CD,∴∠FGB+∠GFD=180°,∴∠GFD=180°−∠FGB=26°,∵FG平分∠EFD,∴∠EFD=2∠GFD=52°,∵AB//CD,∴∠AEF=∠EFD=52°.故选:B.先根据平行线的性质,得到∠GFD的度数,再根据角平分线的定义求出∠EFD的度数,再由平行线的性质即可得出结论.本题考查的是平行线的性质,用到的知识点为;两直线平行,内错角相等;两直线平行,同旁内角互补.8.【答案】B【解析】解:由表可知,1.75出现次数最多,所以众数为1.75;由于一共调查了17人,所以中位数为排序后的第9人,即:170.故选:B.中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.本题考查了确定一组数据的中位数和众数的能力,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.9.【答案】B【解析】【分析】本题考查了根的判别式,牢记“当Δ≥0时,方程有实数根”是解题的关键,属于基础题.根据方程的系数结合根的判别式Δ≥0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【解答】解:∵关于x的一元二次方程x2−2x+m=0有实数根,∴Δ=(−2)2−4m≥0,解得:m≤1.故选:B.10.【答案】C【解析】【分析】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.根据二次函数的图象与性质即可求出答案.【解答】解:①由图象可知:a>0,c<0,∴ac<0,故①错误;<1,②由于对称轴可知:−b2a∴2a+b>0,故②正确;③由于抛物线与x轴有两个交点,∴△=b2−4ac>0,故③正确;④由图象可知:x=1时,y=a+b+c<0,故④正确;⑤当x>−b时,y随着x的增大而增大,故⑤错误;2a故选:C.11.【答案】m(3x+y)(3x−y)【解析】解:9mx2−my2=m(x2−y2)=m(3x+y)(3x−y).故答案为:m(3x+y)(3x−y).此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.12.【答案】64°【解析】解:由圆周角的定律可知:∠D =∠ABC , ∵AB 是直径, ∵E 点是CD 的中点, ∴∠CEB =90°,∴∠ABC =90°−∠C =90°−26°=64°, ∴∠D =64°, 故答案为:64°根据圆周角的定理及垂径定理即可求解.本题考查了圆周角的定理,解本题的关键是确定∠CEB =90°.13.【答案】19cm【解析】解:由尺规作图可知,MN 是线段AC 的垂直平分线, ∴DA =DC ,AC =2AE =6, ∵△ABD 的周长为13,∴AB +AD +BD =AB +DC +BD =AB +BC =13, 则△ABC 的周长=AB +BC +AC =13+6=19(cm), 故答案为:19cm .根据尺规作图得到MN 是线段AC 的垂直平分线,根据线段垂直平分线的性质得到DA =DC ,AC =2AE =6,根据三角形的周长公式计算即可.本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.14.【答案】√22【解析】解:∵已知点P(x 0,y 0)到直线y =kx +b 的距离可表示为d =00√1+k 2,∴点(2,−1)到直线y =x −4之间的距离为:|2−4+1|÷√2=√22,故答案为:√22.根据距离表达式即可求解.本题考查了一次函数图象上点的坐标特征以及二次根式的性质与化简.15.【答案】解:(1)|√3−2|−√83+sin60°+(12)−1=(2−√3)−2+√32+2=2−√3−2+√32+2 =2−√32; (2){5x +2>3(x −1)①12x −1≤7−32x② 由①得5x +2>3x −3, 2x >−5, x >−2.5,由②得12x +32x ≤7+1, 2x ≤8, x ≤4.故不等式组的解集为−2.5<x ≤4,故不等式组的所有非负整数解是:0,1,2,3,4,故不等式组的所有非负整数解的和是0+1+2+3+4=10.【解析】(1)先算绝对值,三次根式,特殊角的三角函数值和负整数指数幂,再算加减法即可求解;(2)分别求出每一个不等式的解集,即可确定不等式组的解集,继而可得知不等式组的非负整数解,从而求解.此题考查的是解一元一次不等式组,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.同时考查了实数的运算.16.【答案】解:原式=x 2−2x x+1⋅(x+1)2x−2=x(x −2)x +1⋅(x +1)2x −2=x 2+x , ∵x =cos45°, ∴x =√22, ∴把x =√22代入原式=(√22)2+√22=√2+12.【解析】先对分子分母进行因式分解,然后化简求值.本题考查分式的化简求值,关键是对多项式进行因式分解,然后化简求值.17.【答案】解:(1)20÷5%=400(人),不了解的人数为:400−20−60−180=140,补全条形图:(2)扇形统计图中B部分扇形所对应的圆心角是:60400×360°=54°.(3)游戏规则不公平,列表如下:睿睿和凯凯12341/34523/56345/74567/∵共有12种等可能的结果,摸出的两个球上的数字和为奇数的有8种情况,为偶数的有4种情况,∵一共有12种可能的结果,其中摸出两个球上的数字和为奇数的有8种,为偶教有4种∴P(睿睿去)=812=23,P(凯凯去)=412=13∴游戏不公平.【解析】(1)由C有180人,占45%,即可求得总人数;(2)由图可得扇形统计图中B部分扇形所对应的圆心角;(3)首先根据题意列出表格,然后由表格即可求得所有等可能的结果与摸出的两个球上的数字和为奇数的有8种情况,为偶数的有4种情况,然后利用概率公式求解即可求得答案.此题考查了列表法或树状图法求概率以及条形、扇形统计图.注意概率=所求情况数与总情况数之比.18.【答案】解:过点A作AE⊥CD于点E,则∠AEC=∠AED=90°.∵在Rt △AED 中,∠ADC =37°, ∴cos37°=DEAD =DE 5=0.8,∴DE =4, ∵sin37°=AE AD =AE 5=0.6,∴AE =3. 在Rt △AEC 中,∵∠CAE =90°−∠ACE =90°−60°=30°, ∴CE =√33AE =√3,∴AC =2CE =2√3,∴AB =AC +CE +ED =2√3+√3+4=3√3+4(米). 答:这棵大树AB 原来的高度是(3√3+4)米.【解析】过点A 作AE ⊥CD 于点E ,解Rt △AED ,求出DE 及AE 的长度,再解Rt △AEC ,得出CE 及AC 的长,进而可得出结论.本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.19.【答案】解:(1)解方程组{y =4xy =14x,解得{x =4y =1或{x =−4y =−1, ∴A(4,1),B(−4,−1),当x =2时,y =4x =2,则P(2,2), 设直线PB 的解析式为y =mx +n ,把P(2,2),B(−4,−1)代入得{2=2m +n −1=−4m +n ,解得{k =12b =1,∴直线PB 的解析式为y =12x +1, 当y =0时,12x +1=0,解得x =−2,∴点E 的坐标为(−2,0);(2)∵点P(a,b)在双曲线y =4x 上, ∴ab =4, 而b =4a ,∴a ⋅4a =4,解得a =±1, ∵0<a <4. ∴a =1, ∴P(1,4),连接OP ,如图,由(1)得此时E 点坐标为(−3,0),S △POB =S △OBE +S △OEP =12×3×1+12×3×4=152,∵点A 与点B 关于原点对称, ∴OA =OB , ∴S △OAP =S △OBP =152,∴S △BAP =2S △OBP =15.【解析】(1)解方程组{y =4xy =14x 得A(4,1),B(−4,−1),再利用反比例函数解析式确定P(1,4),则可根据待定系数法求出直线PB 的解析式,从而计算出函数值为0对应的函数值得到点E 的坐标;(2)利用反比例函数图象上点的坐标特征得到ab =4,加上b =4a ,则可求出a 、b 得到P(1,4),连接OP ,由(1)得此时E 点坐标为(−3,0),接着利用三角形面积公式计算出S △POB =152,由于点A 与点B 关于原点对称,所以OA =OB ,所以S △BAP =2S △OBP .本题考查了反比例函数与一次函数的交点问题,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.20.【答案】(1)证明:如图1,∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°,∵∠DGF=∠CAB,∠DGF=∠BGE,∴∠BGE=∠CAB,∴∠BGE+∠CBA=90°,∴∠GEB=90°,∴DE⊥AB;(2)证明:如图2,连接OD交BC于H,连接BD,∵AD平分∠CAB,∴CD⏜=BD⏜,∴OD⊥BC,BH=CH,∵DE⊥AB,OD=OB,∴S△OBD=12OD×BH=12OB×DE,∴BH=DE,∴BC=2DE.(3)解:如图3,作FR⊥AB于R,OS⊥AD于S,∵AD平分∠CAB,∴∠CAD=∠BAD,设∠CAD=x,∴∠FBO=90°−2x,∵∠AFO=45°,∴∠FOB=45°+x,∴∠OFB=180°−(90°−2x)−(45°+x)=45°+x,∴∠FOB=∠OFB,∴BF=BO=OA,∵∠FRB=∠ACB=90°,∠FBR=∠ABC,∴△BFR∽△BAC,∴BFAB =FRAC,∵AC=8,∴12=FR8,∴FR=4,∴CF=FR=4,∴AF=√42+82=4√5,设SO=t,∵∠AFO=45°,∴FS=OS=t,∵tan∠CAF=tan∠OAS=CFAC =OSAS,∴AS=2t,∴AF=3t=4√5,∴t=4√53,∴OF=√2t=4√103.【解析】(1)因为AB为⊙O的直径,所以∠ACB=90°,即∠CAB+∠CBA=90°,证∠BGE=∠CAB,可得∠BGE+∠CBA=90°,可得DE⊥AB;(2)连接OD交BC于H,连接BD,由AD平分∠CAB,得CD⏜=BD⏜,所以OD⊥BC,BH=CH,用面积法可证BH=DE,可得BC=2DE;(3)作FR⊥AB于R,OS⊥AD于S,证明∠FOB=∠OFB,可得BF=BO=OA,由△BFR∽△BAC,可得FR=4,AF=4√5,tan∠OAS=tan∠CAF=12,设SO=t,AS=2t,SF=SO=t,则AF=3t=4√5,可得t的值,从而得结论.本题考查圆的基本性质,相似三角形的判定和性质,锐角三角函数的定义,等腰三角形的判定.解题的关键是灵活运用圆中的基本性质.21.【答案】1【解析】解:∵2m2−4mn+2n2−1=2(m−n)2−1,∵m−n−1=0,∴m−n=1,∴2m2−4mn+2n2−1=2×12−1=1,故答案为:1.根据已知条件,将代数式化简即可求解.本题考查了因式分解的具体应用,解本题的关键是把所求代数式化简,然后把已知条件代入即可得出答案.22.【答案】3【解析】解:∵关于x的一元二次方程x2+(2k+3)x+k2=0的两根为x1,x2,∴x1+x2=−(2k+3),x1x2=k2,∴1x1+1x2=x1+x2x1x2=−2k+3k2=−1,解得:k1=−1,k2=3.∵关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根,∴△=(2k+3)2−4k2>0,解得:k>−34,∴k1=−1舍去.故答案为:3.利用根与系数的关系结合1x1+1x2=−1可得出关于k的方程,解之可得出k的值,由方程的系数结合根的判别式△>0可得出关于k的不等式,解之即可得出k的取值范围,进而可确定k的值,此题得解.本题考查了根的判别式以及根与系数的关系,利用根与系数的关系结合1x1+1x2=−1,求出k值是解题的关键.23.【答案】8【解析】解:∵在平面直角坐标系中,函数y=kx与y=−3x的图象交于A,B两点,∴A点的纵坐标为:√−3k,横坐标为:1k×√−3k,∴B点的纵坐标为:−√−3k,横坐标为:−1k×√−3k,∴C点的纵坐标为:√−3k,横坐标为−3k,∴△ABC的面积为:12×(√−3k−1k×√−3k)×2√−3k=8,故答案为:8.根据已知条件,求出C,A两点的横坐标,B,C两点的纵坐标,运用三角形的面积公式可以得出答案.本题考查了反比例函数与一次函数的交点问题,只要求出C,A两点的横坐标,B,C 两点的纵坐标,运用三角形的面积公式可以得出答案.24.【答案】2−√3【解析】解:连接AC、AO、OC,如下图所示,∵在菱形ABCD中,BC=AB=4√3,∠ABC=120°,∴AC=12,∴AO=CO=6√2,∴S△AOC=12×6√2×6√2=18×2=36,S△ACD=12×12×2√3=12√3,∴S阴=S△ADC−S△ACD=36−12√3,S四边形ABCD=S△AOC+S△ACD=36+12√3,∴P=4S阴4S四边形ABCO=36−12√336+12√3=3−√33+√3=9−6√3+36=2−√3.根据菱形的性质和几何概率的定义即可求解.本题考查了菱形的基本性质和几何概率的定义,算出阴影部分的面积占整个图形的面积的比即为所求.25.【答案】24(√3−1)cm4√3cm【解析】解:如图1中,过点H作HM⊥BC于M.设HM=a,则CM=HM=a.在Rt△ABC中,∠ABC=30°,BC=24cm,在Rt△BHM中,BH=2HM=2a,BM=√3a,∵BM+FM=BC,∴√3a+a=24,∴a=12√3−12,∴BH=2a=24√3−24.当a从0°到90°的变化过程中,Q点从E运动到Q(如图2−2中),∵EF=24cm,∴BP=12cm,∵∠B=30°,当0°≤α≤60°时,Q点从E点开始向F方向运动,当α=60°时,QE的移动到最大距离(如图2−1中),此时BA⊥EF,在Rt△BPQ中,∠B=30°,BP=12cm,∴QP=6cm,∴QE=6cm;当60°<α≤90°时,Q点开始离开Q向E点方向运动,当α=90°时,Q点停止运动;在Rt△BPQ中,QP=4√3cm,∴EQ=(12−4√3)cm,∴Q点返回运动的路径长为6−(12−4√3)=(4√3−6)cm,∴Q点移动的路径为6+4√3−6=4√3cm,故答案为24(√3−1)cm,4√3cm.如图1中,过点H作HM⊥BC于M.设HM=a,则CM=HM=a.构建方程求出a即可解决问题.根据旋转角度画出图形,在α变化的过程中,Q点从E点运动到BD与EF垂直时,AB与EF的交点处;在Rt△BPQ中,求出QP=4√3cm,即可求EQ=(12−4√3)cm 本题考查点的运动轨迹;能够通过三角形的旋转,结合图形,在0°和90°是确定Q点的运动轨迹是线段,60°后Q点开始向E做返回运动是解题的关键.26.【答案】解:(1)设进价为x元,则由题意得:(1500×0.9−x)×8=(1500−100−x)×7,解得:x=1000,∴改型号自行车进价1000元;(2)设自行车降价x元,获利为y元,则:y=(1500−1000−x)⋅(60+x50×10)=(500−x)(15x+60)=−15(x−500)(x+300),∴对称轴:x=100,∵a=−15<0,∴当x=100时,y max=−15×(100−500)(100+300)=32000,答:降价100元时每月利润最大,最大利润为32000元.【解析】(1)设进价为x元,由题意得:(1500×0.9−x)×8=(1500−100−x)×7,即可求解;(2)设自行车降价x元,获利为y元,则y=(1500−1000−x)⋅(60+x50×10)=(500−x)(15x+60)=−15(x−500)(x+300),进而求解.本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=−b2a时取得.27.【答案】解:(1)如图1中,∵四边形QMNP 是矩形,∴∠PQM =∠NMQ =90°,PQ//OB ,∴∠OMQ =90°,∠PQA =∠AOB ,∴∴tan∠PQA =tan∠AOB =2∵PD ⊥OA ,∴∠QDP =90°∴在Rt △QOP 中,tan∠PQD =DP DQ =2, 设QD =x ,DP =2x ,∵DQ 2+DP 2=QP 2,又∵a =QP =4,∴x 2+(2x)2=42,∴x 1=4√55,x 2=−4√55(舍), ∴DP =2x =8√55. (2)如图2中,在Rt △DOP 中,sin∠OPD =OD OP =45,设OD =4m ,OP =5m ,∴DP =3m ,在Rt △ODE 中,tan∠OED =OD DE =12,∴PE=8m,∴PE=5m,∴OP=PE,∵PN⊥OE,∴ON=NE,在Rt△PNE中,tan∠PEN=PNNE =12,∴NE=2PN=8,∴ON=NE=8,∵MN=QP=3,∴OM=5∵QP//OM,∴△QPR∽△MQR,∴PRRO =PQOM=35.(3)分三种情况解析:①如图1,当点Q在射线OA上,∠DQM>90°,∠QDP=90°,∴不存在.②如图3−1中,当点Q在∠AOB内部,当点Q在DM左侧,不存在.点Q在DM右侧,∠DQP=∠DQM>90°,若△DQM∽△DQP,又∵DQ=DQ,∴△DQM≌△DQP(AAS),∴a=QP=QM=4.若△DQM∽△PQD,延长PQ交OA于点G,DH⊥PG于点A,∴∠DQM=∠DQP=135°,∴∠DQH=45°,∵DH⊥PG,∴∠DHQ=90°,∴∠DQH=∠HDQ=45°,∴DH=HQ,在Rt△OHD中,tan∠DPH=DHPH =12,∴PH=2DH,∴DH=HQ=PQ=a,∴QD=a√2,∵△DQM∽△PQD,∴QD2=QP⋅QM,∴(a√2)2=a⋅4,a1=2,a2=0(舍),∴a=2.③如图3−2,当点Q在∠AOB外,设QP交OA于点G,∠QDP=∠DQM>90°,若△DQM∽△QDP,又∵DQ=DQ,∴△DQM≌△QDP(AAS),∴DP=QM=4.∵tan∠DGP=tan∠DMN=2,∴点M、O重合,∴QG=2,GP=2√5,∴a=QP=2+2√5.若△DQM∽△PDQ,则∠MDQ=∠QPD,∠DQM=∠QDP,∴90°+∠DQP=90°+∠QDM,∴∠DQP=∠DPQ,∴DQ=DP,∴QD=QM=4,可得a=16√55综上,a的值为4或2或2+2√5或16√55.【解析】(1)设QD=x,DP=2x,根据DQ2+DP2=QP2,构建方程解决问题即可.(2)在Rt△DOP中,sin∠OPD=ODOP =45,设OD=4m,OP=5m,想办法求出PQ,OM,利用相似三角形的性质求解即可.(3)分三种情况解析:①如图1,当点Q在射线OA上,∠DQM>90°,∠QDP=90°,不存在.②如图3−1中,当点Q在∠AOB内部,③如图3−2,当点Q在∠AOB外,分别求解即可.本题属于相似形综合题,考查了矩形的性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数解决问题,属于中考压轴题.28.【答案】解:(1)∵对称轴为直线x=−1,B(1,0),∴A(−3,0).设抛物线解析式为:y=a(x+3)(x−1),∵过点C(0,3√3),∴3×(−1)a=3√3,a=−√3,∴抛物线解析式为y=−√3x2−2√3x+3√3.(2)如图1中,∵AO :AB =3:4,∴S △AOC =34S △ACB , 过点O 作l 1//AC 交抛物线于点P , ∴S △ACP =34S △ACB . ∵A(−3,0),C(0,3√3), ∴直线l AC :y =√3x +3√3,∴l 1:y =√3x ,联立{y =√3x y =−√3x 2−2√3x +3√3, ∴√3x =−√3x 2−2√3x +3√3,∴x 2+3x −3=0,解得:x 1=−3+√212,x 2=−3−√212, ∴P 1(−3+√212,−3√3+3√72),P 2(−3−√212,−3√3−3√72), 将直线l 1向左平移6个单位得到直线l 2,∴l 2:y =√3(x +b)=√3x +6√3,此时l 2上所有点与AC 连接构成的三角形面积为34S △ACB , 联立{y =√3x +6√3y =−√3x 2−2√3x +3√3, ∴x 2+3x +3=0,∴△<0,∴此种情形不存在.综上,点P 的坐标为(−3+√212,−3√3+3√72),(−3−√212,−3√3−3√72).(3)如图2中,过点D作CA的对称点D′交AC于点E,设D(0,m).∴D′在抛物线上,AC垂直平分DD′,∴CD+3√3−m.∵cos∠1=COAC =3√36=√32,∴在Rt△CED中,CE=CO⋅cos∠1=√32(3√3−m)=92−√32m,过点E作EF⊥CD于点F,∴EF=12CE=94−√34m,∴x E=√34m−94,点E在AC上,∴y E=√34m+34√3,∴E(√34m−94,34m+34√3).∵E为DD′中点,∴x D′=2x E−x D=√32m−42,y D′=2y E−y D=12m+32√3,∴D′(√32m−92,12m+32√3),∵D′在抛物线上,∴−√3(√32m−92)2−2√3(√32m−92)+3√3=12m+32√3.∴3√3m2−40m+39√3=0,∴(m−3√3)(3√3m−13)=0,解得:m1=3√3(舍),m2=13√39,∴D(0,13√39).【解析】(1)由抛物线的对称性可求点A坐标,设抛物线解析式为:y=a(x+3)(x−1),将点C坐标代入可求解;S△ACB,过点O作l1//AC交抛物线于点P,求出直(2)先求AC的解析式,证明S△AOC=34线l1的解析式,构建方程组解决问题即可.(3)如图2中,过点D作CA的对称点D′交AC于点E,设D(0,m).想办法用m表示点D′的坐标,利用待定系数法构建方程求解即可.本题属于二次函数综合题,考查了二次函数的性质,待定系数法,一次函数的性质,翻折变换等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.第21页,共31页。