宽带匹配网络

合集下载

高频电子技术6.ppt

高频电子技术6.ppt

高频功放:将高频信号进行功率放大的电路,实质是在输入 高频信号的控制下,将电源的直流功率转变成高频功率。
主要功用: 放大高频信号, 以高效率输出大功率,并且尽量保 证非线性失真小。
分类:低频功放:甲类(3600导通,效率50%) 乙类(1800导通,效率78.5%) 甲乙类(大于 1800导通,效率75%)
欠压状态。电压利用率低但可变, 临界状态。 A点在临界饱和线上;
临界状态时的负载电阻 记为:ROPT。
过压状态 A点在饱和区;
Rp 斜率gd 谐振放大器的工作状态由欠压 过压 逐步过渡。
临界
U,I Ic1m Ic0
o 欠压
U cm
P,
临界 过压 Rp
o
ROPT
欠压
Pd P0
Pc 临界 过压 Rp ROPT
6.1 高频功率放大概述
因为工作频率很高,相对频带却很窄,因此一般 都采用选频网络作为负载回路,工作状态选用丙 类、丁类。对于需要在很宽的范围内变换工作频 率的情况,还可采用宽带高频功率放大电路,它 不采用选频网络作负载,而是以频率响应很宽的 传输线变压器作负载。由于受功放管的限制,单 个功率放大电路输出功率是有限的,在大功率无 线电信号发射装置中,采用功率合成技术来增大 输出功率。
结论: 随着负载的增大,电路的工作状态经历了从欠压状
态到临界状态又到过压状态的变化 ; 临界状态:效率与输出功率最佳,是谐振放大器的
最佳工作状态; 欠压状态:效率低,恒流源; 过压状态:效率高,损耗小,恒压源。
图6-12 谐振功率放大电路的测试电路
例6.1 某高频谐振功率放大电路工作于临界状态,输出 功率为15W,且UCC=24V,导通角θ=70°,ξ=0.91。试 问:

天线宽带匹配网络的设计与计算方法

天线宽带匹配网络的设计与计算方法

1999 年12 月第26 卷第6 期西安电子科技大学学报JO U RNAL O F X I D I A N UN I V ERS I TYD e c. 1999Vo l.26No. 6天线宽带匹配网络的设计与计算方法孙保华, 周良明, 肖辉(西安电子科技大学天线与电磁散射研究所陕西西安710071)摘要: 讨论了宽带匹配CA D技术中常用的两种方法——直接优化法和实频数据法, 并设计了计算软件, 着重研究它们在天线宽带匹配中的应用. 提出了综合使用两种方法的思想, 结合实际天线进行了宽带匹配网络的设计和计算, 并与实验测试结果进行比较, 得到满意的匹配结果.关键词: 天线; 宽带匹配网络; 直接优化法; 实频数据法中图分类号: TN 82218文献标识码: A 文章编号: 100122400 (1999) 0620793205On the de s ign of broa dban d m a tch i n g n e twork s f or an tenna sS U N B a o2h u a , Z H OU L ia n g2m in g , X IA O H u i(Re se a rc h I n s t.o f A n t e nna a nd Ele c t r om a g n e t i c Sc a t t e ring , Xid ia n U n iv. , Xi′a n710071, C h i na )A b strac t: Tw o m e t ho d s fo r th e b ro a dband m a tch ing ne t w o rk CA D, D irec t O p t i m iza2t i o n M e t ho d and R ea l F requency M e t ho d, a re d iscu ssed, w ith em p h a sis o n th e i r app lica2t i o n s to th e an tenna b ro a dband m a tch ing p ro b lem s. So f t w a re s a re de s igned and a newtech n ique w h ich u se s bo th th e tw o m e t ho d s sequen t l y a re p re s en ted. T h e n ,by u sing th em ea su red inp u t i m p edance da ta o f an an tenna g iven in th is p ap e r, th e de sign o f a b ro ad2band m a tch ing ne tw o rk is accom p lish ed. A com p a r iso n o f th e th eo re t ica l and m ea su redre s u lt s ind ica te s th a t th e m a tch ing re s u lt s a re sa t i sfac t o ry.Key W ord s: a n tenna; b ro a dband m a tch ing ne t w o rk; d irec t op t i m iza t i o n m e t ho d; rea lf r equency m e t ho d随着通讯技术的不断发展, 在短波和超短波波段, 自适应快速跳频、选频等先进技术已被广泛采用. 在这种情况下, 利用“天调器”进行调谐匹配的窄带天线往往不能满足要求, 因此迫切需要性能优良的宽带天线.获得天线宽带特性有多种方法, 如采用宽带振子、天线电阻性加载等技术. 在天线尺寸限制的情况下, 采用天线宽带匹配网络就是实现天线宽带特性的一种有效方法. 必须指出: 任何一种获得天线宽带特性的方法, 都要以某种代价来换取, 或者是牺牲增益, 或者是采用较大的天线体积尺寸.始于60 年代的宽带匹配网络CA D技术[ 1~3 ] 应用于天线设计已引起人们的重视[ 4~6 ]. 其中直接优化法和实频数据法可以根据给定或实测的负载阻抗离散值进行网络优化设计, 这对天线宽带匹配网络设计和计算尤为适用, 因为天线的阻抗往往难以解析表示, 但可以实测得到.1基本概念天线宽带匹配网络一般指的是在较宽的频带内, 能够实现信号源到天线转换功率最大的一种耦合收稿日期: 1998212209基金项目:“八五”国防预研项目( 19121513)作者简介: 孙保华( 19692) , 男, 西安电子科技大学博士生.1￶2.794西安电子科技大学学报第26 卷网络. 对于这样的网络, 必须具有如下特点: (1) 输出端与负载端有良好的匹配; (2) 输入端的反射尽可能小; (3) 网络本身无耗或低耗. 图1 所示即为包含宽带匹配网络的模型. 图中r g 为信号源内阻, Z a 为天线输入阻抗, N 表示天线宽带匹配网络, 它一般是由电容、电感和理想阻抗变r g换器组成的无耗互易二端口网络~研究天线宽带匹配网络, 通常使用的能够表征匹配的参Ug量主要有转换功率增益和电压驻波比.Z cZ 111�宽带·匹配网络Z aNZ q2 转换功率增益定义为负载得到的平均功率和信号源能够给出的最大平均功率之比[ 7 ] , 公式表示为图1 天线系统模型G =P , (1)P av式中P 为负载得到的平均功率, P av 为信号源能够给出的最大平均功率, 即信号源资用功率.工程中通常使用的信号源阻抗和馈线特性阻抗为50 8. 图1 所示的天线系统, 在端口1 有R = , (2)式中# =50.图1 所示天线系统中, 考虑到宽带匹配网络是一个无耗互易二端口网络, G 和R 存在如下关系:R =1 + (1 - G ). (3)1 - (1 - G ) 1￶22直接优化法和实频数据法211直接优化法实用当中, 宽带匹配网络的元件个数一般不超过6 个[ 5 ]. 对6 个元件以内的L C 网络可分为T 型和0 型两种结构形式, 对每一个支节约定如下:(1) 短路不作为并联支路.(2) 开路不作为串联支路.(3) L C 串联不作为并联支路.(4) L C 并联不作为串联支路.这样, 6 个元件以内的网络形式总共有78 种.参看图1, 在端口1, 有R (Ξi )= , (4)其中# (Ξi )= , i = 1, 2, ⋯,M . (5)Ξi 为选定的带内M 个频率点, Z 11 (Ξi )为馈电端口看去的阻抗值.由式(4)、(5) 可看出, R (Ξi ) 和 # (Ξi )的变化规律是一致的, 即为了使得带内R 最小, 可以通过优化带内 # 最小得以实现. 而使用后者较为方便, 故目标函数选为ME (p 1 , p 2 , p 3 ) = ∑W (Ξi )￶ # (Ξi ) 2 = 最小, (6)i= 1其中p 1 , p 2 , p 3 分别代表T 型或0 型网络各个支节上的电容、电感元件值; W (Ξi )为加权函数, 可以使用指数加权、平均加权等多种形式, 1. 指数加权函数为W (Ξi ) =[R (Ξi ) ]e R (Ξi ) ≥v ,(7) v 和e 为指定的两个常数. 这里使用加权函数的目的是: 不同问题选择合适的加权函数, 可以改善优化计q q qq ( ∞ 第 6 期 孙保华等: 天线宽带匹配网络的设计与计算方法795算的收敛速度和优化结果.由于目标函数 E (p 1 , p 2 , p 3 ) 是可导函数, 优化计算可以采用多 �种方法. 计算表明, 采用B F G S 优化算法, 收敛速度快, 且稳定性也较 好.T ￶01∶K在直接优化法设计的网络中, 引入一个给定变换比的阻抗变换 Z a器, 如图 2 所示. 图 2 中的 1∶K 表示阻抗变换器的变换比. 这样, 依据以上原理编程, 通过一个程序即可完成 78 种网络的直接优化 宽带 ·· · 匹配网络设计.212 实频数据法参看图 1, 从端口 2 看去的阻抗函数记为 Z q (s ) , 称为策动点阻 抗函数. 在复平面内有图2 T 型和0 型网引入阻抗变换器Z q (s ) s = j Ξ= Z q ( j Ξ) = R q (Ξ) + j X (Ξ) .(8)若 Z q (s ) 为最小虚部函数, R q (Ξ) 和 X q (Ξ) 满足[ 6 ]R q (Ξ) = R q (∞) - 1∞X q (Κ)d Κ ,X q (Ξ) = 1Π∫- ∞ Κ- Ξ R q (Κ) d Κ ,(9)Π∫- ∞ Κ- Ξ 上式称为 H ilbe r t 变换对. 利用此式, 求解 Z q (s ) 只需要找到 R q (Ξ) 和 X q (Ξ) 中的一个即可.在端口 2, G 可以表示为G =4 ￶ R q (Ξ) ￶ R a (Ξ).(10)[R q (Ξ) + R a (Ξ) ]2 + [X q (Ξ) + X a (Ξ) ]2实频数据法 (R FM ) 的基本思想是: 利用优化算法, 寻找待求的 R q (Ξ) , 使得带内G 最大最平坦; 再由 找到的 R q (Ξ) 求解 Z q (s ) , 最后根据 Z q (s ) 综合出网络元件值. 为此优化计算中目标函数选取为ME =∑ (G- G (Ξi ) ) 2 = 最小 ,(11)i = 1式中的 G 0 称为参考 G , 为 0~ 1 之间的常 数. 计算过程中, 不同的问题选择不同的 G 0 可以得到最佳的优化结果.R FM 具体实现步骤如下:(1) 用折线 R δ (Ξ) 逼近待求的 R q(Ξ). 尽 管式 ( 9) 给出了 R q (Ξ) 和 X q (Ξ) 的 相 互 变 换 关 系, 但 由 于 积 分 限 由- ∞ 到+ ∞, 利用式 (9) 对任意的 R q (Ξ) 和 X q (Ξ)进行相互换算很困难. 为此, 用折射 R δ(Ξ) 逼近待求的连续策动点电阻函数 R q (Ξ). 如 图 3 所示, 设 Ξ1 , Ξ2 , ⋯, ΞN 为频率轴上的N 个间断点, 简称断点频率.NR δ(Ξ) = R 0 + ∑ a k (Ξ) ￶ r k , (12)k = 1 图 3 折线 R δ (Ξ) 和待求 R q(Ξ)式中 R 0 = R δ(0) , r 1 , r 2 , ⋯, r n 为断点之间 R δ Ξ) 的代数差值. 利用插值公式求系数 a k (Ξ) , 有1 , Ξ ≥ Ξk ,Ξ - Ξk - 1a k (Ξ) =Ξk - Ξk - 1,Ξk - 1 < Ξ ≤ Ξk , (13)q利用式(9) 计算Xδ(Ξ), 得0, Ξ< Ξk - 1 .q q q =Ra796 西安电子科技大学学报 第 26 卷系数 b k (Ξ) 为b k (Ξ) =1 Π (Ξk - Ξk - 1 )NX δ (Ξ) =∑ bk(Ξ) ￶ r k ,(14)k = 1[ (Ξ + Ξk ) ln (Ξ + Ξk ) + (Ξ - Ξk ) ln (Ξ - Ξk ) - (Ξ + Ξk + 1 ) ln (Ξ + Ξk + 1 ) + (Ξ - Ξk + 1 ) ln (Ξ - Ξk + 1 ) ] .(15)将 R δ (Ξ) , X δ (Ξ) 及天线阻抗 Z a ( j Ξ) = R a (Ξ) + j X a(Ξ) 代入式 (10) 得 q q N4R a (Ξ) R 0 +∑ a k(Ξ) ￶ rkk = 1G NN2. (16)2R a (Ξ) + R 0 +∑ a k(Ξ) ￶ rkk = 1+ X a (Ξ) +∑ bk(Ξ) ￶ r kk = 1频带内取M 个频率点 (Ξi , i = 1, 2, ⋯,M ) , 并使这些频率点对应于给定的或实测的阻抗数据频率,称作抽样频率. 利用最小二乘法, 以式 (11) 为目标函数进行优化计算, 得到对应于最佳G 的 R δ (Ξ). (2) 有理函数 R ϖ (Ξ) 拟合折线 R δ (Ξ). q q折线表示的 R δ (Ξ) 往往不能用有限元件组成的网络实现, 为此还需要寻找这样的一个 R ϖ (Ξ) , 满足 q q(a ) Rϖ (Ξ) 能够用有限元件组成的网络实现; (b) R ϖ (Ξ) 拟合 R δ Ξ , 从而保证该网络 G 接近步骤 1 中 R δ Ξ 所能达到的最佳 G .q q ( ) R ϖ ( ) q ( ) q (Ξ) 可以采用有理函数形式, 即RϖA Ξ2 k. (17)q(Ξ) =1 + B 1 Ξ2 + ⋯ + B N Ξ2N该函数对应于工程上采用的 T 型网络结构. 设计结果发现: k = 0, 得到的网络为低通形式; 0 < k < N ,得到的网络为带通形式; k = N , 得到的网络为高通形式.(3) 计算 Z q (s ) 并综合网络.由 R ϖ (Ξ) 求解 Z q (s ) 可以采用盖维茨方法[ 6 ]; Z q(s ) 综合网络采用分式连除法. 以低通网络为例, 有 Z q (Ξ) =1 .(18)j Ξ C 1 +1j Ξ L 1 +1 ω +1R直接优化法和实频数据法相比较, 直接优化法原理简单、方法直观. 但针对预设的网络拓扑优化设 计, 如果网络拓扑选择不当, 可能导致最优解被排除在可行域之外. 笔者介绍的直接优化法, 可以枚举78 种工程常用的网络结构, 在一定程度上弥补了这一缺陷. 实频数据法中, 待设网络用其策动点阻抗函数表示, 从根本上克服了直接优化法的缺陷. 但由计算过程不难看出, 实频数据法的计算比较复杂, 且设 计得到的网络包含任意的比阻抗变换器, 往往会给实用带来一定的麻烦. 为此, 在实际设计时, 可以综合 使用两种方法, 即① 利用实频数据法设计宽带匹配网络, 该匹配网络包含一组抗变换器, 变换比为 1∶K 0.② 选定阻抗变换器, 其变换比为 1∶K , 且 1∶K 与 1∶K 0 较为接近, 同时工程实用中易于制作, 再 利用直接优化法进行二次设计, 网络形式与实频数据法相同.�L 3 设计与计算L 2Z一套筒天线, 在 f = 9~ 27 M H z 频带内 R ≤ 3, 具有良好的 宽带特性. 且在f = 3~ 9 M H z 频带范围内其驻波值很高, 实测时一般 R ≥ 10. 其电阻值很小、电抗很大, 为了覆盖整个短波频段, 就要求在f = 3~9 M H z范围进行匹配. 在这种情况下, 只有采用宽带匹配网络. 附加网络 C 1T ·L 1图4 网络结构第6 期孙保华等: 天线宽带匹配网络的设计与计算方法797由套筒天线在f = 3~30 M H z 阻抗实测值, 可以看出天线阻抗在f = 3~9 M H z具有小电阻、大容抗的特性. 根据测得阻抗直接设计宽带匹配网络难以达到R ≤310 的要求, 为此需采用一附加网络以利于匹配(见图4). 利用实频数据法设计宽带匹配网络, 网络结构如图4 所示, 元件值如表1. 可以看到, 该网络中使用了1173∶1 的阻抗变换器. 考虑到该阻抗变换器制作较为困难, 而75￶50 8 阻抗变换器已被广泛使用, 两者差别不大, 故选定K = 115∶1. 利用直接优化法设计宽带匹配网直接优但已满足设计图5R 曲线按直接优化法设计结果制作网络, 接入天线的底部,测试其驻波, 结果如图6 所示, 图中“·”表示计算值. 实测值和计算值相比较, 其变化规律一致性很好, 其数值也较为接近. 实测值低一些, 这是因为网络计算时, 假设元件为无耗, 而实际L , C 都是有耗的, 存在附加电阻造成的.4结论直接优化法和实频数据法作为宽带匹配网络CA D技术的两种常用方法, 因其具有不需要负载解析模型, 而直接根据给定或实测阻抗数据优化设计网络的特色, 应用于天线宽带匹配网络设计当中显得尤为方便和实用.另外综合使用两种方法, 取长补短, 能够改善设计结果.图6测试R 曲线同时必须指出: 宽带匹配网络的设计和计算与负载阻抗有密切关系, 并不是任意的天线阻抗都可以实现宽带匹配, 此时必须对天线采用适当的电阻加载或是设计一个附加网络, 使天线阻抗在频带内的变化相对均衡一些, 这样才能得到满意的匹配效果.参考文献:[ 1 ] B and l e r J W .O p t i m iza t i o n M e t ho d fo r Com p u te r A id D e s ign [J ]. IE E E T ran s o n M T T , 1969, 17 (8) : 30~39. [ 2 ] C a r l in H J. A N e w A pp ro a ch to Ga in B andw id t h P ro b le m [J ]. IE E E T ran s o n C ircu it and Sy s t, 1979, 24 (4) : 170~175.[ 3 ] C a r l in H J , Kom a ik J J. A N e w M e t ho d o f B ro a dband E q ua liza t i o n A pp lied to M ic r ow ave A m p lif i e r s[ J]. IE E E T ran s o n M T T , 1979, 27 (8) : 93~99.[ 4 ] R am ah i O M .T h e D e s ign o f a M a tch ing N e t w o rk fo r an H F A n tenna U sing R ea l F requency M e t ho d[ J]. IE E E T ran s o n A P , 1989, 37 (4) : 506~509.[ 5 ] L i S T. T h e D e s ign o f I m p e dance M a t ch ing N e t w o rk s fo r B ro a dband A n tenna [R ]. A D2A 187, 1987.[ 6 ] 黄香馥 1 宽带匹配网络[M ]1 西安: 西北电讯工程学院出版社, 19871120~158.[ 7 ] 陈惠开 1 宽带匹配网络的设计与原理[M ]1 北京: 人民邮电出版社, 1989141~98.(编辑: 郭华)。

30~512 MHz两级宽带功率放大器极间匹配设计

30~512 MHz两级宽带功率放大器极间匹配设计

第6期2021年3月No.6March,20210 引言功率放大器作为现代电子微波系统的最末端,在迅猛发展的移动通信事业中越发凸显了其必不可少、不可替代的重要性。

功率放大器发展至今,广泛应用在各类通信领域,诸如手机、雷达、电台、干扰机等无线通信系统。

当前随着软件无线电技术的广泛运用,系统对功率放大器的带宽和输出功率提出了越来越高的要求,使得超宽带、大功率、高效率、高线性度的功率放大器应用前景极为广阔[1]。

本文以实际项目中用于电台的功率放大器设计为实例,集中讨论了宽带功放极间匹配设计过程。

主要设计指标要求为:(1)工作频段(Freq )为30~512 MHz ;(2)输出功率(Pout )≥80 W ;(3)效率(η)≥35%;(4)双音频率间隔200 kHz 时,三阶互调失真 (IMD3)≤-28 dBc 。

针对这些指标要求,采用两级功放管级联,设计了输入、级间和输出匹配网络,制作了宽带功放,具备高输出功率、高线性度、高效率以及小型化等特点。

1 电路设计一般情况下,针对多级功率放大器的设计方法是使每一级功率管输入、输出都匹配到50Ω,中间再加上一个π型网络,衰减部分射频信号以防止自激,最后级联组成多级放大器。

这样输入、输出分别需要同轴巴伦来完成宽带匹配。

这样的优势是每一级自成一体,方便调试,维修等也方便;同样的,其劣势也很明显,这样极大地限制了电路布局空间的小型化,同时级联时容易自激(一般选择添加π型电阻网络,衰减射频信号来解决自激),这样降低了放大器的输出功率和效率。

本两级宽带功率放大器设计在传统的宽带匹配电路基础上,保留驱动级功率管的输入匹配电路和末级功率管输出匹配电路,在驱动级功率管的输出处和末级功率管的输入处设计两级功放极间匹配所需要的阻抗变换。

通过使用同轴巴伦所用同轴电缆的阻抗和铁氧体磁芯,结合集总元件使这种极间匹配努力在全频带内实现最佳匹配。

横向扩散金属氧化物半导体场效应管(LDMOS )作为一种性价比很高的器件,自20世纪80年代应用以来一直在通信系统的固态功放中起着主导作用。

射频模拟电路答案

射频模拟电路答案

射频模拟电路答案【篇一:02如何快速入门电子技术】>作者:刘昆山众所周知,学习讲究方法,方法对了,事半功倍,越学越有味。

方法不对,耗时耗力,困难重重,且可能随时让你产生放弃的念头。

万事开头难,同样,学电子技术的关键在于入门,故电子初学者首先要解决的就是如何快速入门的问题。

针对此,本人在这里做一个简单的阐述。

学习电子技术必须注重“理论+实践”的方法。

如果只学理论知识而不动手操作,则收效甚微;如果只进行实践操作而不学习理论知识,效果也不明显。

因此,学好电子技术必须做到理论、实践同时学,即既进行理论知识的学习又进行实践动手能力的充分锻炼。

一、如何快速学理论知识很多电子初学者最头痛的一件事,就是学理论知识,有些朋友索性就避开理论不学。

可要知道,不学理论而只动手操作,就像“无源之水”、“无本之木”,是很难真正掌握电子技术。

要学好电子技术,必须学好电子基础理论知识。

看书是最基本的学习方法,但是看书往往费时费脑,且不容易入门。

请身边的朋友帮忙指点下,朋友不一定会倾其全心,即使想倾其全心,也不一定能倾其全力,因为他不一定有时间。

下面推荐四部视频教程,这里面涵盖了电子专业必修的电子基础理论知识:1、电路分析基础(电子科大)钟洪声主讲的视频教程;2、模拟电子电路设计(电子科大)曲建主讲的视频教程;3、数字电子基础(电子科大)金燕华主讲的视频教程;4、射频模拟电路全集(电子科大)杨玉梅主讲的视频教程。

有了这四部视频教程,任何人都可以自学入门电子技术,打下坚实的理论基础,为以后成为电子工程师提供基础理论知识和实践操作能力。

二、如何快速掌握实践动手能力我们都知道,光有理论不会实践、不会动手,学了等于白学。

那如何提高实践动手能力呢?很多电子爱好者为此非常困惑,下面我来为大家解决这个问题。

我们主张电子技术初学者最好用万能板焊接电子制作产品,因为这种电子制作的方法,不仅能练习焊接技术,同时还能提高识别电路图和分析原理图的能力,为日后维修、设计电子产品打下坚实的基础。

宽带匹配网络理论及应用研究

宽带匹配网络理论及应用研究

宽带匹配网络理论及应用研究宽带匹配网络理论及应用研究摘要:宽带匹配网络是一种重要的射频(Radio Frequency, RF)和微波(Microwave)电路元件,它在无线通信、雷达、射频模拟电路等领域有着广泛的应用。

本文通过对宽带匹配网络的原理、结构及其在相关应用中的研究进展进行综述,旨在为宽带匹配网络的设计与应用提供一定的参考。

关键词:宽带匹配网络;射频电路;无线通信;微波电路;雷达一、引言在无线通信系统中,信号的传输需要经过由天线、滤波器等组成的射频前端电路。

而射频前端电路的一个核心部分就是宽带匹配网络。

宽带匹配网络可以使射频前端电路与其他电路之间的阻抗进行匹配,从而实现能量传递和信号转换。

因此,宽带匹配网络的性能和设计对于整个射频电路的工作效果至关重要。

二、宽带匹配网络的原理宽带匹配网络的设计是为了实现在宽频带范围内的阻抗匹配,其原理主要基于阻抗变换理论。

在传输线理论中,电磁波在线路中传输时,会遇到特定的阻抗,而当阻抗不匹配时,会产生反射波。

通过在匹配网络中引入阻抗变换元件,可以实现信号的阻抗匹配,减小反射波的发生。

三、宽带匹配网络的结构宽带匹配网络的结构可以分为两种类型:串联结构和并联结构。

串联结构中,利用串联的传输线和变压器等元件来实现阻抗的匹配。

而在并联结构中,通过并联的电容、电感和变压器等元件来实现阻抗的匹配。

两种结构各有利弊,根据具体的应用场景选择合适的结构。

四、宽带匹配网络的应用研究宽带匹配网络在无线通信、雷达、射频模拟电路等领域都有着广泛的应用。

在无线通信系统中,宽带匹配网络可以实现发射端和接收端之间的阻抗匹配,提高信号质量。

在雷达系统中,宽带匹配网络可以实现微波信号的传输和接收,提高雷达系统的性能。

在射频模拟电路中,宽带匹配网络可以实现频率选择性放大和滤波等功能。

五、宽带匹配网络的挑战和展望宽带匹配网络在应用中还存在一些挑战,如:1. 带宽限制:在设计宽带匹配网络时,需要考虑到信号在整个带宽范围内的匹配情况,这对设计的要求提出了更高的要求。

手把手教你移动宽带路由器设置移动宽带路由器

手把手教你移动宽带路由器设置移动宽带路由器

移动宽带路由器设置移动宽带路由器如何设置,我们下面来看一个移动宽带路由器设置案例:移动宽带(铁通宽带),路由器应是:255.255.0.0(如图)图1移动宽带路由器设置【请保留版权,谢谢!】文章出自我爱方案网。

顺便告知:福建铁通宽带DNS光纤:首先DNS服务器218.207.130.118备选DNS服务器211.138.151.161ADSL:首选DNS服务器222.47.62.142备用DNS服务器222.47.29.93DNS设置的好处,TCP/IP连接速度更快些。

铁通宽带路由器TCP/IP设置如图:图2铁通宽带路由器设置在SOHO和中小型企业用户中,移动宽带路由器应用非常普遍。

对于一些网络新手来说,出现一些说明手册未涉及的故障,有时难以应付。

下面,笔者就一些常见的故障和问题进行分析移动宽带路由器设置,并提供解决方法。

一、移动宽带路由器线路不通,无法建立连接1.用网线将路由器的WAN口与ADSL Modem相连,电话线连ADSL Modem的“Line”口。

ADSL Modem与宽带路由器之间的连接应当使用直通线。

2.检查路由器LAN中的Link灯信号是否显示,路由器至局域网是否正常联机。

路由器的LAN端口既可以直接连接至计算机,也可以连接至交换机。

二、移动宽带路由器设置设置不正确查看手册找到路由器默认管理地址,例如,路由器默认IP地址是192.168.1.1,掩码是255.255.255.0,请将您的计算机接到路由器的局域网端口,可以使用两种方法为计算机设置IP地址。

1.手动设置IP地址。

设置您计算机的IP地址为192.168.1.xxx(xxx范围是2至254),子网掩码为255.255.255.0,默认网关为192.168.1.1。

采用小区宽带接入方式时,应当确保DHCP分配的内部IP地址与小区采用的IP地址在不同的网段。

2.利用路由器内置DHCP服务器自动设置IP地址。

1)将您计算机的TCP/IP协议设置为“自动获得IP地址”、“自动获得DNS服务器地址”。

低Q值匹配网络超宽带低噪声放大器设计

低Q值匹配网络超宽带低噪声放大器设计

低Q值匹配网络超宽带低噪声放大器设计杜海明;仲继生;赵红梅;崔光照【摘要】提出了一种基于低Q值匹配网络的超宽带低噪声放大器( LNA)的设计方法。

该方法将LC滤波电路加入偏置电路中,以降低系统噪声同时调节匹配网络Q 值;通过选择合适的反馈回路,提高LNA的带宽并调节匹配网路Q值;利用匹配电路结构及优化的Q值,解决了放大器频带窄、噪声高、增益低的问题。

测试结果表明,在频段1.5 GHz~2.5 GHz内,其纹波特性低于1 dB,增益达到25 dB。

将实测结果与仿真结果相比较,验证了该设计方法的合理性,与传统LNA设计方法相比,采用低Q值匹配网络的设计方法结构简单、性能优越,具有广泛的应用价值。

%A novel LNA ( Low Noise Amplifier ) is proposed by using low Q value of matching network. The LC filtering circuit is merged in biasing circuit in order to reduce the noise of system and to monitor the Q value of the matching network in the design;By choosing the suitable feedback loop to raise the bandwidth of the LNA and to adjust the Q value of the matching network;By taking advantage of the structure of matching circuit and the optimization of the Q value,a few problems of Amplifier is settled down,such as the narrow bandwidth,the high noise and the low gain. The LNA is measured under the bandwidth of 1. 5 GHz ~2. 5 GHz, the ripple wave characteristic is lower than 1 dB,moreover the gain is 25 dB. The measured result is compared with the simulation result,it can be verified the design is reasonable. And the structure of the design method is simple and the performance is more superior,meanwhile the application is wide.【期刊名称】《电子器件》【年(卷),期】2014(000)004【总页数】5页(P635-639)【关键词】低噪声放大器;匹配网络;低Q值;超宽带【作者】杜海明;仲继生;赵红梅;崔光照【作者单位】郑州轻工业学院电气信息工程学院,郑州450002;郑州轻工业学院电气信息工程学院,郑州450002;郑州轻工业学院电气信息工程学院,郑州450002;郑州轻工业学院电气信息工程学院,郑州450002【正文语种】中文【中图分类】TN722.3自从美国联邦通信委员会(FCC)2002年允许UWB在商业通信领域使用以来,超宽带技术凭借高速率、低成本、抗多径效应,一直是学者和工程师的研究热点。

射频功率放大器宽带匹配如何解决?这篇文章讲得够详细了

射频功率放大器宽带匹配如何解决?这篇文章讲得够详细了

射频功率放大器宽带匹配如何解决?这篇文章讲得够详细了在很多远程通信、雷达或测试系统中,要求发射机功放工作在非常宽的频率范围。

例如,工作于多个倍频程甚至于几十个倍频程。

这就需要对射频功放进行宽带匹配设计,宽带功放具有一些显著的优点,它不需要调谐谐振电路,可实现快速频率捷变或发射宽的多模信号频谱。

宽带匹配是宽带阻抗匹配的简称,是宽带射频功放以及最大功率传输系统的主要电路,宽带匹配的作用是,使射频功率放大管的输入、输出达到最佳的阻抗匹配,实现宽带内的最大功率放大传输。

因此,宽带阻抗匹配网络的设计是宽带射频功放设计的主要任务。

同轴电缆阻抗变换器简称同轴变换器,能实现有效的宽带匹配,可以为射频功率放大管提供宽频带工作的条件。

同轴变换器具有功率容量大、频带宽和屏蔽性能好的特性,可广泛应用于HF/VHF/UHF波段。

1 方案设计同轴变换器及其组合是一种具有高阻抗变换比的宽带阻抗匹配网络,它能将射频功率放大管的较低的输入阻抗或输出阻抗有效匹配到系统的标准阻抗50 Ω。

同轴变换器设计方案多选用1:1变比形式、1:4变比形式及其组合形式。

1.1 同轴变换器原理同轴变换器是由套上铁氧体磁芯的一段同轴电缆或同轴电缆绕在铁氧体磁芯上构成,一般称为“巴伦”。

“巴伦”的结构如图1(a)所示,其等效电路如图1(b)所示。

同轴变换器处于集中参数与分布参数之问。

因此,在低频端,它的等效电路可用传统的低频变压器特性描述,而在较高频率时,它是特性阻抗为Zo的传输线。

同轴变换器的优点在于寄生的匝间电容决定了它的特性阻抗,而在传统的离散的绕匝变压器中,寄生电容对频率性能的贡献是负面作用。

当Rs=RL= Zo时,“巴伦”可以认为是1:1的阻抗变换器。

同轴变换器在设计使用上有两点必须注意:源阻抗、负载阻抗和传输线阻抗的匹配关系;输入端和输出端应在规定的连接及接地方式下应用。

在大多数情况下,电缆长度不能超过最小波长的八分之一。

为了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Rs Ls Rs N C
−R
zl (s ) = Rs + Ls s +
R RCs − 1
R RCs + 1
− zl ( − s ) = − Rs + Ls s +
(a)
Ls Rs N C
−R
R RCs − 1 R − zl ( − s ) = Ls s + RCs + 1 zl (s ) = Ls s +
⎡ S11 S=⎢ ⎢ S 21 ⎢ ⎣ S31
Then,
S12 S 22 S32
S13 ⎤ ⎡ S11 = S 23 ⎥ ⎥ ⎢S ⎣ 21 S33 ⎥ ⎦
S12 ⎤ S22 ⎥ ⎦
⎡S Sa = ⎢ 11 ⎣ S 21 =
Hale Waihona Puke S12 ⎤ ⎡ S13 ⎤ + ⎢ ⎥ (1 − ρ S33 ) −1 ρ [ S31 ⎥ S 22 ⎦ ⎣ S23 ⎦ S12 S33 − S13 S32 ⎤ S 22 S33 − S 23 S32 ⎥ ⎦
Chapter 4
Design of Broadband Matching Network: The Active Load
4.1 Special class of active impedances
1) The special class of active impedances considered here is the class of impedances zl (s ) that are active over a frequency band of interest and such that the function defined by the relation
S11 = S11a + S12 a (U k − S11b S22 a ) −1 S11b S21a S12 = S12 a (U k − S11b S22 a ) −1 S12b S21 = S 21b (U k − S22 a S11b ) −1 S21a S22 = S22b + S 21b (U k − S22 a S11b ) −1 S22 a S12b
z3 (s ) = − zl ( − s )
2) is a strictly passive impedance function. Any active impedance which is formed by a lossless two-port network terminated at the output port by a negative resistor with resistance − RΩ belongs to the special class.
1) General configuration of the negative-resistance amplifiers Our task is to obtain the transducer power-gain from port 1 to port 2 in terms of scattering parameters of network.
zl (s ) − z3 (s ) −1 z (s ) + zl ( − s ) −1 h∗ (s ) = h(s ) l h∗ (s ) = ∞ zl (s ) + z3 ( − s ) 0
64
is the reflection coefficient of N b normalizing to z3 ( − s ) . For three-port N ,
1 1 −R +R Y22 ( − s ) Y22 (s ) z3 (s ) = − zl ( − s ) = −[Z11 ( − s ) ] = Z11 (s ) Z 22 ( − s ) − R Z 22 (s ) + R
z3 (s)
Lossless two-port
R
62
− zl ( − s ) is the driving-point impedance of the same two-port terminated at the output
Here, N b is a one-port network, S12b = S 21b = S 22b = 0 . Then, the scattering matrix of
N a is Sa = S11 + S12 (1 − Sb S 22 ) −1 Sb S21
where
Sb = ρ = h(s )
H
−1
⎡ S11 S12 S13 ⎤ ⎡ S11 S21 S31 ⎤ ⎡S22 S33 − S23S32 S13S32 − S12 S33 S12 S23 − S13S22 ⎤ ⎢S S S ⎥ = ⎢S S S ⎥ = 1 ⎢ S S − S S ⎥ ⎢ 21 22 23 ⎥ ⎢ 12 22 32 ⎥ | S | ⎢ 23 31 21 33 S11S33 − S13S31 S13S21 − S11S23 ⎥ ⎥ ⎢ ⎢ S21S32 − S22 S31 S12 S31 − S11S32 S11S22 − S12 S21 ⎥ ⎣S31 S32 S33 ⎥ ⎦ ⎢ ⎣ ⎦ ⎣S13 S23 S33 ⎦
|S12 a ( jω )| = |S 21a ( jω )| = |S 22 a ( jω )| =
|S12 ( jω )S33 ( jω ) − S13 ( jω )S32 ( jω )| |S 21 ( jω )| S 21 ( jω ) = = |S33 ( jω )| |S33 ( jω )| S33 ( jω ) |S 21 ( jω )S33 ( jω ) − S23 ( jω )S31 ( jω )| |S12 ( jω )| S12 ( jω ) = = |S33 ( jω )| |S33 ( jω )| S33 ( jω ) |S 22 ( jω )S33 ( jω ) − S23 ( jω )S32 ( jω )| |S11 ( jω )| S11 ( jω ) = = |S33 ( jω )| |S33 ( jω )| S33 ( jω )
63
z1 (s ) Vg + −

Lossless three-port N

zl (s)
z2 (s )

Nb
Two-port N a
A. The scattering matrix of lossless three-port is unitary, that is, S ( jω ) = S ( jω )
Therefore, the scattering parameters of negative-resistance amplifier can be computed if the scattering parameters of lossless three-port N , normalizing to the z1 (s ) , z2 (s ) and
Then, there exist following relations:
H
S 22 ( jω )| S ( jω )| = S11 ( jω )S33 ( jω ) − S13 ( jω )S31 ( jω )
S 21 ( jω )| S ( jω )| = S13 ( jω )S32 ( jω ) − S12 ( jω )S33 ( jω ) S12 ( jω )| S ( jω )| = S 23 ( jω )S31 ( jω ) − S21 ( jω )S33 ( jω ) S11 ( jω )| S ( jω )| = S22 ( jω )S33 ( jω ) − S23 ( jω )S32 ( jω )
2
1 . |S33 ( jω )|2
the optimum amplifier should have a maximum |S12 ( jω )| and a minimum |S33 ( jω )| .
2) The design of nonreciprocal negative resistance amplifier A. Circuit of nonreciprocal negative resistance amplifier The lossless three-port network N consists of three parts: i) ii) Lossless two-port network Nα ; Lossless two-port network N β ;
(b)
C N
−R
− zl ( − s ) =
R RCs + 1
(c)
−R
− zl ( − s ) = R
N
(d)
− R1
C
−R
N
R RCs − 1 R − zl ( − s ) = R1 + RCs + 1 zl (s ) = − R1 +
(e)
4.2 The design of nonreciprocal negative resistance amplifier
zl (s )
Lossless two-port
−R
Proof: A. Since
2 2 Z12 (s ) Z11 (s )Z 22 (s ) − Z12 (s ) − Z11 (s )R zl (s ) = Z11 (s ) − = Z 22 (s ) − R Z 22 (s ) − R
Y22 (s ) =
B. The scattering matrix of two-port N a The two-port N a is formed by lossless three-port N interconnected with one-port active impedance N b . Since scattering matrix is defined with strictly passive reference impedance, we should compute the scattering matrix of two-port N a formed by three-port N and one-port N b using following formulas which are derived in chapter 1 from the interconnection of two multi-port networks in any way.
相关文档
最新文档