浙江省义乌市宾王中学2018-2019学年七年级上学期期中考试数学试题
2018-2019学年七年级(上)期中数学试卷(含解析)

2018-2019学年七年级(上)期中数学试卷一、填空题(本大题共有12小题,每小题2分,共24分)1.(2分)﹣3的相反数是.2.(2分)跳绳比赛中以跳160个为标准,多跳或少跳的个数分别用正数与负数表示,如多跳了20个记作“+20”,那么“﹣8”表示.3.(2分)单项式﹣的次数是.4.(2分)某市某楼盘房屋销售均价为每平方米10500元,该数用科学记数法表示为.5.(2分)用代数式表示“比a的3倍大5的数”.6.(2分)如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上表示“0cm”、“8cm”的点分别对应数轴上的﹣2和x,那么x的值为.7.(2分)若﹣3x m y2与5x3y n是同类项,则n﹣m=.8.(2分)绝对值不大于3的所有负整数的和是.9.(2分)已知x2﹣2y+2=0,则代数式2x2﹣4y﹣1的值是.10.(2分)如果|a﹣1|+(b+2)2=0,则(a+b)2018的值是.11.(2分)有理数a,b在数轴上的位置如图所示,则|a+b|﹣2|a﹣b|的结果为.12.(2分)在我国的民俗中常将十二生肖用于记年,顺序排列为子鼠、丑牛、寅虎、卯兔、辰龙、已蛇、午马、未羊、申猴、酉鸡、戌狗、亥猪,今年(2018年)是“戌狗”年,2050年是“”年.二、选择题(本大题共有5小题,每小题3分,共15分,在每小题所给出的四个选项中,恰有一项符合题目要求)13.(3分)下列一组数:﹣8,2.7,,,﹣0.,0,2,0.080080008…(相邻两个8之间依次增加一个0)其中无理数有()个A.0 B.1 C.2 D.314.(3分)下列式子中,符合代数式的书写格式的是()A.(a﹣b)×7 B.3a÷5b C.1ab D.15.(3分)下列各式计算正确的是()A.6a﹣5a=1 B.a+a2=3a3C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b16.(3分)多项式x2﹣3kxy+6xy﹣8化简后不含xy项,则k等于()A.2 B.﹣2 C.0 D.317.(3分)小学时候大家喜欢玩的幻方游戏,老师稍加创新改成了“幻圆”游戏,现在将﹣1、2、﹣3、4、﹣5、6、﹣7、8分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则图中a+b的值为()A.﹣6或﹣3 B.﹣8或1 C.﹣1或﹣4 D.1或﹣1三、解答题(本大题共有10小题,共计81分.解答时应写出必要的文字说明、证明过程或演算步骤.)18.(24分)(1)计算:﹣3﹣(﹣4)+7;(2)计算:﹣81÷×÷(﹣16);(3)计算:(﹣﹣)×(﹣24);(4)计算:﹣14﹣(﹣2)2+6×(﹣);(5)化简:3x2+5x﹣5x2+3x;(6)化简:6(m2﹣n)﹣3(n+2m2).19.(6分)画出数轴(取0.5cm为一个单位长度),用数轴上的点表示下列各数,并用“<”将它们从小到大排列.﹣2,+3.5,﹣1,1,0按照从小到大的顺序排列为.20.(6分)现定义某种新运算:对于任意两个有理数a、b,有a*b=a2﹣2b+1,例如:2*3=22﹣2×3+1=﹣1.(1)计算:3*(﹣2)的值;(2)试化简:x*(x2+1).21.(6分)老师在黑板上写了一个正确的演算过程,随后用手捂住了多项式,形式如下:﹣(a2+4ab+4b2)=a2﹣4b2(1)求所捂住的多项式;(2)当a=﹣1,b=3时求所捂住的多项式的值.22.(6分)我们知道:点A、B在数轴上分别表示有理数a、b,如图A、B两点之间的距离表示为AB,记作AB=|a﹣b|.回答下列问题:(1)数轴上表示2和5两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)已知|a﹣3|=7,则有理数a=;(3)若数轴上表示数b的点位于﹣4与3的两点之间,则|b﹣3|+|b+4|=.23.(6分)某班10名男同学参加100米达标测验,成绩小于或等于15秒的达标,这10名男同学成绩记录如下(其中超过15秒记为“+”,不足15秒记为“﹣”)(1)有名男同学成绩达标,跑得最快的同学序号是号;跑得最快的同学比跑得最慢的同学快了秒;(2)这10名男同学的平均成绩是多少?24.(7分)操作与思考:一张边长为a的正方形桌面,因为实际需要,需将正方形边长增加b,从而得到一个更大的正方形,木工师傅设计了如图所示的方案:(1)方案中大正方形的边长都是,所以面积为;(2)小明还发现:方案中大正方形的面积还可以用四块小四边形的面积和来表示;(3)你有什么发现,请用数学式子表达;(4)利用(3)的结论计算20.182+2×20.18×19.82+19.822的值.25.(6分)我们把形如(n是正整数,n≥2)的分数叫做单位分数,如、、…,任何一个单位分数都可以拆成两个不同的单位分数之和,如=+、=+、=+…观察上述式子的规律,回答下面的问题:(1)把写成两个单位分数之和:=;(2)把(n是正整数,n≥2)写成两个单位分数之和:=;(3)计算:+++…+.26.(7分)阅读理解:我们把分一条线段为两条相等线段的点称为线段的中点.如图1所示,则称点M为线段AB的中点.问题解决:(1)如图2所示,点A、B、C、D、E在数轴上的对应的数分别为﹣2、﹣1、0、1、2,则图2中,线段AC的中点是点,点C是线段和线段的中点,线段AB的中点对应的数是,线段BE的中点对应的数是;(2)如图3,点E、F对应的数分别是e、f,则线段EF的中点对应的数为(用含e、f的代数式表示).27.(7分)小明根据市自来水公司的居民用水收费标准,制定了水费计算数值转换机的示意图.(用水量单位:m3,水费单位:元)(1)根据转换机程序计算下列各户月应缴纳水费(2)当x>15时,用含x的代数式表示水费;(3)小丽家10月份水费是70元,小丽家10月份用水m3.2018-2019学年七年级(上)期中数学试卷参考答案与试题解析一、填空题(本大题共有12小题,每小题2分,共24分)1.【解答】解:﹣(﹣3)=3,故﹣3的相反数是3.故答案为:3.2.【解答】解:跳绳比赛中以跳160个为标准,多跳或少跳的个数分别用正数与负数表示,如多跳了20个记作“+20”,那么“﹣8”表示少跳了8个,故答案为:少跳了8个.3.【解答】解:该单项式的次数为:4,故答案为:4.4.【解答】解:10500元,该数用科学记数法表示为1.05×104.故答案为:1.05×104.5.【解答】解:比a的3倍大5的数”用代数式表示为:3a+5,故答案为:3a+5.6.【解答】解:由题意知,x的值为﹣2+(8﹣0)=6,故答案为:6.7.【解答】解:∵﹣3x m y2与5x3y n是同类项,∴m=3,n=2,则n﹣m=2﹣3=﹣1.故答案为:﹣1.8.【解答】解:绝对值不大于3的负整数有﹣1,﹣2,﹣3,则它们的和为﹣1+(﹣2)+(﹣3)=﹣6.故答案为﹣6.9.【解答】解:∵x2﹣2y+2=0,∴x2﹣2y=﹣2.∴2x2﹣4y=﹣4.∴原式=﹣4﹣1=﹣5.故答案为:﹣510.【解答】解:由题意得,a﹣1=0,b+2=0,解得,a=1,b=﹣2,则(a+b)2018=(﹣1)2018=1,故答案为:1.11.【解答】解:根据题意得:b<0<a,则a+b<0,a﹣b>0,则|a+b|﹣2|a﹣b|=﹣a﹣b﹣2a+2b=﹣3a+b.故答案为﹣3a+b.12.【解答】解:(2050﹣2018)÷12=2…8,∴2050年是“午马”年,故答案为:午马.二、选择题(本大题共有5小题,每小题3分,共15分,在每小题所给出的四个选项中,恰有一项符合题目要求)13.【解答】解:、0.080080008…(相邻两个8之间依次增加一个0)是无理数,故选:C.14.【解答】解:选项A正确的书写格式是7(a﹣b),选项B正确的书写格式是,选项C正确的书写格式是ab,选项D的书写格式是正确的.故选:D.15.【解答】解:A、6a﹣5a=a,故本选项错误;B、a与a2不是同类项,不能合并成一项,故本选项错误;C、﹣(a﹣b)=﹣a+b,故本选项正确;D、2(a+b)=2a+2b,故本选项错误;故选:C.16.【解答】解:∵多项式x2﹣3kxy+6xy﹣8化简后不含xy项,∴﹣3k+6=0,解得:k=2.故选:A.17.【解答】解:设小圈上的数为c,大圈上的数为d,﹣1+2﹣3+4﹣5+6﹣7+8=4,∵横、竖以及内外两圈上的4个数字之和都相等,∴两个圈的和是2,横、竖的和也是2,则﹣7+6+b+8=2,得b=﹣5,6+4+b+c=2,得c=﹣3,a+c+4+d=2,a+d=1,∵当a=﹣1时,d=2,则a+b=﹣1﹣5=﹣6,当a=2时,d=﹣1,则a+b=2﹣5=﹣3,故选:A.三、解答题(本大题共有10小题,共计81分.解答时应写出必要的文字说明、证明过程或演算步骤.)18.【解答】解:(1)﹣3﹣(﹣4)+7=﹣3+4+7=8;(2)﹣81÷×÷(﹣16)=﹣81×××(﹣)=1;(3)(﹣﹣)×(﹣24)=﹣9+4+18=13;(4)﹣14﹣(﹣2)2+6×(﹣)=﹣1﹣4﹣2=﹣7;(5)3x2+5x﹣5x2+3x=﹣2x2+8x;(6)6(m2﹣n)﹣3(n+2m2)=6m2﹣6n﹣3n﹣6m2=﹣9n.19.【解答】解:如图所示:按照从小到大的顺序排列为﹣2<﹣1<0<1<3.5.故答案为:﹣2<﹣1<0<1<3.5.20.【解答】解:(1)根据题中的新定义得:原式=9+4+1=14;(2)根据题意得:原式=x2﹣2(x2+1)+1=﹣x2﹣1.21.【解答】解:(1)原式=(a2﹣4b2)+(a2+4ab+4b2)=2a2+4ab(2)当a=﹣1,b=3时,原式=2﹣12=﹣1022.【解答】解:(1)数轴上表示2和5两点之间的距离是:|5﹣2|=3,数轴上表示1和﹣3的两点之间的距离是:|﹣3﹣2|=5.故答案是:3;5;(2)依题意得:a﹣3=7,或a﹣3=﹣7,解得a=10或a=﹣4,故答案是:10或﹣4;(3)若数轴上表示数b的点位于﹣4与3的两点之间,则|b﹣3|+|b+4|=3﹣b+b+4=7.故答案是:7.23.【解答】解:(1)有7名男同学成绩达标,跑得最快的同学序号是6号;跑得最快的同学比跑得最慢的同学快了(15+1.2)﹣(15﹣1.4)=2.6秒.故答案为7,6,2.6;(2)(+1.2﹣0.6﹣0.8+1+0﹣1.4﹣0.5﹣0.4﹣0.3+0.8)÷10=﹣0.1,15﹣0.1=14.9(秒).答:这10名男同学的平均成绩是14.9秒.24.【解答】解:(1)方案中大正方形的边长都是(a+b),所以面积为(a+b)2,故答案为:(a+b),(a+b)2;(2)方案中大正方形的面积还可以用四块小四边形的面积和来表示:a2+ab+ab+b2=a2+2ab+b2,故答案为:(a2+2ab+b2);(3)根据大正方形的面积不变可知(a+b)2=a2+2ab+b2,故答案为:(a+b)2=a2+2ab+b2.(4)20.182+2×20.18×19.82+19.822=(20.18+19.82)2=402=1600.25.【解答】解:(1)根据题意知,=+,故答案为:+.(2)根据题意知,=+,故答案为:+.(3)原式=﹣+﹣+﹣+…+﹣=﹣=.26.【解答】解:(1)线段AC的中点是点B,点C是线段BD和线段AE的中点,线段AB 的中点对应的数是﹣,线段BE的中点对应的数是;故答案为:B,BD,AE,﹣,;(2)∵点E、F对应的数分别是e、f,∴线段EF的中点对应的数为,故答案为:.27.【解答】解:(1)张大爷水费:6×3=18元;王阿姨水费:15×3=45元;小明家水费:(17﹣15)×5+15×3=55元.故答案为:18,4,55.(2)观察示意图得:当x>15时,月应缴纳水费(元)用x的代数式表示为15×3+5(x﹣15)=5x﹣30;故答案为:5x﹣30;(3)(70﹣15×3)÷5+15=25÷5+15=5+15=20(m3).答:小丽家该月用水20m3.故答案为:20;。
2019年七年级上期中数学试卷含答案解析

2018-2019学年七年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.﹣3的相反数是()A.3 B.﹣3 C.D.2.下列各组是同类项的是()A.a3与a2B.与2a2C.2xy与2y D.3与a3.下列运算正确的是()A.3a+2b=5ab B.3a2b﹣3ba2=0 C.3x2+2x3=5x5D.5y2﹣4y2=14.若有理数a的值在﹣1与0之间,则a的值可以是()A.﹣2 B.1 C.D.5.下列式子中,不能成立的是()A.﹣(﹣2)=2 B.﹣|﹣2|=﹣2 C.23=6 D.(﹣2)2=46.一个多项式加上多项式2x﹣1后得3x﹣2,则这个多项式为()A.x﹣1 B.x+1 C.x﹣3 D.x+37.已知|x|=3,|y|=2,且x•y<0,则x+y的值等于()A.5或﹣5 B.1或﹣1 C.5或1 D.﹣5或﹣18.某商品进价a元,商店将价格提高30%作零售价销售,在销售旺季过后,商店以8折的价格开展促销活动,这时一件商品的售价为()A.a元 B.1.04a元 C.0.8a元D.0.92a元9.已知a、b两数在数轴上对应的点如图所示,下列结论正确的是()A.ab>0 B.|a|>|b|C.a﹣b>0 D.a+b>010.当x=3时,代数式px3+qx+1的值为2,则当x=﹣3时,px3+qx+1的值是()A.2 B.1 C.0 D.﹣1二、填空题(本大题有10小题,其中第11小题7分,其余每小题7分,共34分)(1)﹣3+2=;(2)﹣2﹣4=;(3)﹣6÷(﹣3)=;(4)=;(5)(﹣1)2﹣3=;(6)﹣4÷×2=;(7)=.12.﹣2的绝对值是.13.根治水土流失刻不容缓,目前全国水土流失面积已达36700000米2,用科学记数法表示为_米2.14.单项式﹣2x2y的次数是.15.已知|a+3|+(b﹣1)2=0,则3a+b=.16.已知代数式x+2y的值是3,则代数式1﹣2x﹣4y的值是.17.a,b互为相反数,c,d互为倒数,则(a+b)3﹣3(cd)4=.18.定义新运算符号“⊕”如下:a⊕b=a﹣b﹣1,则2⊕(﹣3)=.19.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.20.让我们轻松一下,做一个数字游戏:第一步:取一个自然数n1=5,计算n12+1得a1;第二步:算出a1的各位数字之和得n2,计算n22+1得a2;第三步:算出a2的各位数字之和得n3,再计算n32+1得a3;…依此类推,则a2013=.三、解答题(本大题有9小题,共86分)(1)3+(﹣11)﹣(﹣9)(2)(﹣7)×5﹣(﹣36)÷4(3)(1﹣+)×(﹣24)(4)﹣14+×[2×(﹣6)﹣(﹣4)2].22.化简:(1)﹣3xy﹣2y2+5xy﹣4y2(2)2(5a2﹣2a)﹣4(﹣3a+2a2)23.先化简,再求值:x2﹣3(2x2﹣4y)+2(x2﹣y)其中x=﹣2,y=.24.在数轴上表示下列各数,并用“<”连接起来.﹣4,﹣|﹣2.5|,﹣(﹣2),0,﹣12.25.某一出租车一天下午以鼓楼为出发地在东西方向营运,向东走为正,向西走为负,行车里程(单位:千米)依先后次序记录如下:+9,﹣3,﹣5,+4,﹣10,+6,﹣3,﹣6,﹣4,+10(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?(2)若出租车每千米的耗油量为0.08升,这天下午出租车共耗油量多少升?26.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):(1)生产量最多的一天比生产量最少的一天多生产多少辆?(2)本周总的生产量是多少辆?27.定义:若a+b=2,则称a与b是关于1的平衡数.(1)3与是关于1的平衡数,5﹣x与是关于1的平衡数.(用含x的代数式表示)(2)若a=2x2﹣3(x2+x)+4,b=2x﹣[3x﹣(4x+x2)﹣2],判断a与b是否是关于1 的平衡数,并说明理由.28.小明乘公共汽车到东方明珠玩,小明上车时,发现车上已有(6a﹣2b)人,车到中途时,有一半人下车,但又上来若干人,这时公共汽车上共有(10a﹣6b)人,则中途上车多少人?当a=5,b=3时,中途上车的人数.29.从2012年4月1日起厦门市实行新的自来水收费阶梯水价,收费标准如下表所示:备注:1.每月居民用水缴费包括实际用水的水费和污水处理费两部分.2.以上表中的价格均不包括1元/吨的污水处理费(1)某用户12月份用水量为20吨,则该用户12月份应缴水费是多少?(2)若某用户的月用水量为m吨,请用含m的式子表示该用户月所缴水费.2018-2019学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.﹣3的相反数是()A.3 B.﹣3 C.D.【考点】14:相反数.【分析】由相反数的定义容易得出结果.【解答】解:﹣3的相反数是3,故选:A.2.下列各组是同类项的是()A.a3与a2B.与2a2C.2xy与2y D.3与a【考点】34:同类项.【分析】根据同类项定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项进行分析即可.【解答】解:A、a3与a2不是同类项,故此选项错误;B、a2与2a2是同类项,故此选项正确;C、2xy与2y不是同类项,故此选项错误;D、3与a不是同类项,故此选项错误;故选:B.3.下列运算正确的是()A.3a+2b=5ab B.3a2b﹣3ba2=0 C.3x2+2x3=5x5D.5y2﹣4y2=1【考点】35:合并同类项.【分析】根据合并同类项的法则把系数相加即可.【解答】解:A、不是同类项不能合并,故A错误;B、系数相加字母及指数不变,故B正确;C、不是同类项不能合并,故C错误;D、系数相加字母及指数不变,故D错误;故选:B.4.若有理数a的值在﹣1与0之间,则a的值可以是()A.﹣2 B.1 C.D.【考点】18:有理数大小比较.【分析】将﹣1、0及选项中的有理数在数轴上表示出来,然后根据数轴来解答问题.【解答】解:由上图所示:介于﹣1和0之间的有理数只有.故选D.5.下列式子中,不能成立的是()A.﹣(﹣2)=2 B.﹣|﹣2|=﹣2 C.23=6 D.(﹣2)2=4【考点】1G:有理数的混合运算.【分析】根据相反数、绝对值的定义及乘方的运算法则分别计算各个选项,从而得出结果.【解答】解:A、﹣(﹣2)=2,选项错误;B、﹣|﹣2|=﹣2,选项错误;C、23=8≠6,选项正确;D、(﹣2)2=4,选项错误.故选C6.一个多项式加上多项式2x﹣1后得3x﹣2,则这个多项式为()A.x﹣1 B.x+1 C.x﹣3 D.x+3【考点】44:整式的加减.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:根据题意得:(3x﹣2)﹣(2x﹣1)=3x﹣2﹣2x+1=x﹣1,故选A7.已知|x|=3,|y|=2,且x•y<0,则x+y的值等于()A.5或﹣5 B.1或﹣1 C.5或1 D.﹣5或﹣1【考点】15:绝对值;19:有理数的加法.【分析】先根据绝对值的性质,求出x、y的值,然后根据x•y<0,进一步确定x、y的值,再代值求解即可.【解答】解:∵|x|=3,|y|=2,x•y<0,∴x=3时,y=﹣2,则x+y=3﹣2=1;x=﹣3时,y=2,则x+y=﹣3+2=﹣1.故选B.8.某商品进价a元,商店将价格提高30%作零售价销售,在销售旺季过后,商店以8折的价格开展促销活动,这时一件商品的售价为()A.a元 B.1.04a元 C.0.8a元D.0.92a元【考点】32:列代数式.【分析】此题的等量关系:进价×(1+提高率)×打折数=售价,代入计算即可.【解答】解:根据题意商品的售价是:a(1+30%)×80%=1.04a元.故选:B.9.已知a、b两数在数轴上对应的点如图所示,下列结论正确的是()A.ab>0 B.|a|>|b|C.a﹣b>0 D.a+b>0【考点】13:数轴;15:绝对值.【分析】由题意可知a<﹣1,1>b>0,故a、b异号,且|a|>|b|.根据有理数加减法得a+b的值应取a的符号“﹣”,故a+b<0;由b>0得﹣b<0,而a<0,所以a﹣b=a+(﹣b)<0;根据有理数的乘除法则可知a•b<0.【解答】解:依题意得:a<﹣1,1>b>0∴a、b异号,且|a|>|b|.∴a+b<0;a﹣b=﹣|a+b|<0;a•b<0.故选B.10.当x=3时,代数式px3+qx+1的值为2,则当x=﹣3时,px3+qx+1的值是()A.2 B.1 C.0 D.﹣1【考点】33:代数式求值.【分析】把x=3代入代数式得27p+3q=1,再把x=﹣3代入,可得到含有27p+3q 的式子,直接解答即可.【解答】解:当x=3时,代数式px3+qx+1=27p+3q+1=2,即27p+3q=1,所以当x=﹣3时,代数式px3+qx+1=﹣27p﹣3q+1=﹣(27p+3q)+1=﹣1+1=0.故选C.二、填空题(本大题有10小题,其中第11小题7分,其余每小题7分,共34分)11.计算:(1)﹣3+2=﹣1;(2)﹣2﹣4=﹣6;(3)﹣6÷(﹣3)=2;(4)=;(5)(﹣1)2﹣3=﹣2;(6)﹣4÷×2=﹣16;(7)=6.【考点】1G:有理数的混合运算.【分析】(1)原式利用加法法则计算即可得到结果;(2)原式利用减法法则计算即可得到结果;(3)原式利用除法法则计算即可得到结果;(4)原式利用异号两数相加的法则计算即可得到结果;(5)原式先计算乘方运算,再计算减法运算即可得到结果;(6)原式从左到右依次计算即可得到结果;(7)原式先计算乘方运算,再计算乘法运算即可得到结果.【解答】解:(1)原式=﹣1;(2)原式=﹣6;(3)原式=2;(4)原式=;(5)原式=1﹣3=﹣2;(6)原式=﹣4×2×2=﹣16;(7)原式=﹣9×(﹣)=6,故答案为:(1)﹣1;(2)﹣6;(3)2;(4);(5)﹣2;(6)﹣16;(7)612.﹣2的绝对值是2.【考点】15:绝对值.【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2,故答案为2.13.根治水土流失刻不容缓,目前全国水土流失面积已达36700000米2,用科学记数法表示为 3.67×107_米2.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:36700000用科学记数法表示为3.67×107,故答案为:3.67×107.14.单项式﹣2x2y的次数是3.【考点】42:单项式.【分析】直接利用单项式次数的定义得出答案.【解答】解:﹣2x2y的次数为:2+1=3.故答案为:3.15.已知|a+3|+(b﹣1)2=0,则3a+b=﹣8.【考点】1F:非负数的性质:偶次方;16:非负数的性质:绝对值.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则3a+b=﹣9+1=﹣8.故答案是:﹣8.16.已知代数式x+2y的值是3,则代数式1﹣2x﹣4y的值是﹣5.【考点】33:代数式求值.【分析】直接将代数式变形进而化简求值答案.【解答】解:∵代数式x+2y的值是3,∴代数式1﹣2x﹣4y=1﹣2(x+2y)=1﹣2×3=﹣5.故答案为:﹣5.17.a,b互为相反数,c,d互为倒数,则(a+b)3﹣3(cd)4=﹣3.【考点】33:代数式求值;14:相反数;17:倒数.【分析】根据相反数,倒数的定义求出a+b与cd的值,代入原式计算即可得到结果.【解答】解:根据题意得:a+b=0,cd=1,则原式=0﹣3=﹣3.故答案为:﹣3.18.定义新运算符号“⊕”如下:a⊕b=a﹣b﹣1,则2⊕(﹣3)=4.【考点】1G:有理数的混合运算.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:原式=2﹣(﹣3)﹣1=2+3﹣1=4,故答案为:419.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是n2+2n.【考点】L1:多边形.【分析】第1个图形是2×3﹣3,第2个图形是3×4﹣4,第3个图形是4×5﹣5,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)﹣(n+2)=n2+2n.【解答】解:第一个是1×3,第二个是2×4,第三个是3×5,…第n个是nx(n+2)=n2+2n故答案为:n2+2n.20.让我们轻松一下,做一个数字游戏:第一步:取一个自然数n1=5,计算n12+1得a1;第二步:算出a1的各位数字之和得n2,计算n22+1得a2;第三步:算出a2的各位数字之和得n3,再计算n32+1得a3;…依此类推,则a2013=122.【考点】37:规律型:数字的变化类.【分析】计算出前几个数便不难发现,每三个数为一个循环组依次循环,用2013除以3正好能够整除可知a2013与a3的值相同.【解答】解:根据题意,n1=5,a1=n12+1=52+1=26,n2=2+6=8,a2=n22+1=82+1=65,n3=6+5=11,a3=n32+1=112+1=122,n4=2+2+1=5,a4=n42+1=52+1=26,…,依此类推,每三个数为一个循环组依次循环,∵2013÷3=671,∴a2013是第671组的最后一个数,与a3相同,为122.故答案为:122.三、解答题(本大题有9小题,共86分)21.计算:(1)3+(﹣11)﹣(﹣9)(2)(﹣7)×5﹣(﹣36)÷4(3)(1﹣+)×(﹣24)(4)﹣14+×[2×(﹣6)﹣(﹣4)2].【考点】1G:有理数的混合运算.【分析】(1)先化简,再算加减法;(2)先算乘除,后算减法;(3)根据乘法分配律简便计算;(4)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)3+(﹣11)﹣(﹣9)=3﹣11+9=12﹣11=1;(2)(﹣7)×5﹣(﹣36)÷4=﹣35+9=﹣26;(3)(1﹣+)×(﹣24)=﹣24+×24﹣×24=﹣24+4﹣18=﹣38;(4)﹣14+×[2×(﹣6)﹣(﹣4)2]=﹣1+×[﹣12﹣16]=﹣1+×[﹣28]=﹣1﹣7=﹣8.22.化简:(1)﹣3xy﹣2y2+5xy﹣4y2(2)2(5a2﹣2a)﹣4(﹣3a+2a2)【考点】44:整式的加减.【分析】根据整式的运算法则即可求出答案.【解答】解:(1)原式=2xy﹣6y2(2)原式=10a2﹣4a+12a﹣8a2=2a2﹣8a23.先化简,再求值:x2﹣3(2x2﹣4y)+2(x2﹣y)其中x=﹣2,y=.【考点】45:整式的加减—化简求值.【分析】首先去括号,然后合并同类项,化简后,再把x、y的值代入计算即可.【解答】解:x2﹣3(2x2﹣4y)+2(x2﹣y),=x2﹣6x2+12y+2x2﹣2y,=﹣3x2+10y,当x=﹣2,y=时,原式=﹣3×(﹣2)2+10×=﹣3×4+2=﹣10.24.在数轴上表示下列各数,并用“<”连接起来.﹣4,﹣|﹣2.5|,﹣(﹣2),0,﹣12.【考点】18:有理数大小比较;13:数轴;15:绝对值;1E:有理数的乘方.【分析】首先在数轴上确定表示各数的点的位置,然后再根据在数轴上表示的有理数,右边的数总比左边的数大用“<“号排列即可.【解答】解:如图:,﹣4<﹣|﹣2.5|<﹣12<0<﹣(﹣2).25.某一出租车一天下午以鼓楼为出发地在东西方向营运,向东走为正,向西走为负,行车里程(单位:千米)依先后次序记录如下:+9,﹣3,﹣5,+4,﹣10,+6,﹣3,﹣6,﹣4,+10(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?(2)若出租车每千米的耗油量为0.08升,这天下午出租车共耗油量多少升?【考点】11:正数和负数.【分析】(1)求出各数据之和,判断即可;(2)求出各数据绝对值之和,乘以0.08即可得到结果.【解答】解:(1)根据题意得:+9﹣3﹣5+4﹣10+6﹣3﹣6﹣4+10=﹣2千米,出租车离鼓楼出发点2千米,在鼓楼的西方;(2)根据题意得:|+9|+|﹣3|+|﹣5|+|+4|+|﹣10|+|+6|+|﹣3|+|﹣6|+|﹣4|+|+10|=60(千米),60×0.08=4.8(升),这天下午出租车共耗油量4.8升.26.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):(1)生产量最多的一天比生产量最少的一天多生产多少辆?(2)本周总的生产量是多少辆?【考点】11:正数和负数.【分析】(1)由表格找出生产量最多与最少的,相减即可得到结果;(2)根据题意列出算式,计算即可得到结果.【解答】解:(1)7﹣(﹣10)=17(辆);(2)100×7+(﹣1+3﹣2+4+7﹣5﹣10)=696(辆),答:(1)生产量最多的一天比生产量最少的一天多生产17辆;(2)本周总生产量是696辆.27.定义:若a+b=2,则称a与b是关于1的平衡数.(1)3与﹣1是关于1的平衡数,5﹣x与x﹣3是关于1的平衡数.(用含x的代数式表示)(2)若a=2x2﹣3(x2+x)+4,b=2x﹣[3x﹣(4x+x2)﹣2],判断a与b是否是关于1 的平衡数,并说明理由.【考点】44:整式的加减.【分析】(1)由平衡数的定义可求得答案;(2)计算a+b是否等于1即可.【解答】解:(1)设3的关于1的平衡数为a,则3+a=2,解得a=﹣1,∴3与﹣1是关于1的平衡数,设5﹣x的关于1的平衡数为b,则5﹣x+b=2,解得b=2﹣(5﹣x)=x﹣3,∴5﹣x与x﹣3是关于1的平衡数,故答案为:﹣1;x﹣3;(2)a与b不是关于1的平衡数,理由如下:∵a=2x2﹣3(x2+x)+4,b=2x﹣[3x﹣(4x+x2)﹣2],∴a+b=2x2﹣3(x2+x)+4+2x﹣[3x﹣(4x+x2)﹣2]=2x2﹣3x2﹣3x+4+2x﹣3x+4x+x2+2=6≠2,∴a与b不是关于1的平衡数.28.小明乘公共汽车到东方明珠玩,小明上车时,发现车上已有(6a﹣2b)人,车到中途时,有一半人下车,但又上来若干人,这时公共汽车上共有(10a﹣6b)人,则中途上车多少人?当a=5,b=3时,中途上车的人数.【考点】44:整式的加减.【分析】根据题意列出式子即可.【解答】解:设中途上来了A人,由题意可知:(6a﹣2b)﹣(6a﹣2b)+A=10a﹣6b∴A=(10a﹣6b)﹣(6a﹣2b)=10a﹣6b﹣3a+b=7a﹣5b=35﹣15=2029.从2012年4月1日起厦门市实行新的自来水收费阶梯水价,收费标准如下表所示:备注:1.每月居民用水缴费包括实际用水的水费和污水处理费两部分.2.以上表中的价格均不包括1元/吨的污水处理费(1)某用户12月份用水量为20吨,则该用户12月份应缴水费是多少?(2)若某用户的月用水量为m吨,请用含m的式子表示该用户月所缴水费.【考点】32:列代数式;1G:有理数的混合运算.【分析】(1)先求出用15吨水的水费,再得出用超过15吨不超过25吨的部分水的水费,再加上污水处理费即可;(2)因为m大小没有明确,所以分①m≤15吨,②15<m≤25吨,③m>25吨,三种情况,根据图表的收费标准,列式进行计算即可得解.【解答】解:(1)该用户12月份应缴水费是15×2.2+5×3.3+20=69.5(元)(2))①m≤15吨时,所缴水费为2.2m元,②15<m≤25吨时,所缴水费为2.2×15+(m﹣15)×3.3=(3.3m﹣16.5)元,③m>25吨时,所缴水费为2.2×15+3.3×(25﹣15)+(m﹣25)×4.4=(4.4m ﹣110)元.。
2018--2019学年七年级数学上期中试 题含答案

2018-2019学年七年级(上)期中数学试卷说明:1.本卷共有六个大题,23个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.一、选择题(每小题3分,共18分,每小题只有一个正确选项.) 1.-12017的相反数的倒数是( )A .1B .-1C .2017D .-2017 2.下面计算正确的是( )A .2233x x -=B . 235325a a a +=C .33x x +=D . 10.2504ab ab -+=3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为( ) A .44×108 B .4.4×109 C .4.4×108 D .4.4×1010 4.有理数a 、b 、c 在数轴上的对应点如图,下列结论中,正确的是( )A .a >c >bB .a >b >cC .a <c <bD .a <b <c5.已知整式252x x-的值为6,则整式2256x x -+的值为( )A .9B .12C .18D .246.某同学做了一道数学题:“已知两个多项式为A 和B ,B=3x ﹣2y ,求A ﹣B 的值.”他误将“A ﹣B ”看成了“A+B ”,结果求出的答案是x ﹣y ,那么原来的A ﹣B 的值应该是( ) A .﹣5x+3y B . 4x ﹣3y C .﹣2x+y D .2x ﹣y 二、填空题(每小题3分,共18分)7. 数轴上的A 点与表示数2的B 点距离是5个单位长度,则A 点表示的数为8.a 是一个三位数,b 是一个两位数,如果把b 放在a 的左边,那么构成的五位数可表示为9.已知单项式31n m axy++与单项式22112m n x y +-是同类项(a ≠0),那么mn=10.观察下列算式发现规律:71=7,72=49,73=343,74=2401,75=16807,76=117649,……,用你所发现的规律写出:72017的个位数字是 11.已知22017(1)0x y -++=,则x y = 12.下列语句:①没有绝对值为﹣3的数;②﹣a 一定是一个负数;③倒数等于它本身的数是1;④单项式42610x ⨯的系数是6;⑤ 32x xy y -+是二次三项式其中正确的有三、(本大题共五个小题,每小题6分,共30分)13.计算.(1)()()36 1.55 3.2514.454⎛⎫---+++- ⎪⎝⎭ (2)48)245834132(⨯+--bac14.化简:222(32)4(21)x xy x xy ----15.已知│a │=2,│b │=5,且ab<0,求a +b 的值16.已知有理数a ,b ,c 在数轴上的对应点如图所示,化简:a b b c c a-+---.17.已知多项式22(26)(251)x ax y bx x y +-+--+- (1)若多项式的值与字母x 的取值无关,求a 、b 的值;(2)在(1)的条件下,先化简多项式22222()(2)a ab b a ab b -+-++,再求它的值.四、(本大题共三个小题,每小题8分,共24分)18.魔术师为大家表演魔术.他请观众想一个数,然后将这个数按以下步骤操作:魔术师立刻说出观众想的那个数.(1)如果小明想的数是-2,那么他告诉魔术师的结果应该是 ;(2)如果小聪想了一个数并告诉魔术师结果为96,那么魔术师立刻说出小聪想的那个数是;(3)观众又进行了几次尝试,魔术师都能立刻说出他们想的那个数,请你说出其中的奥妙.19.先化简,再求值:)(3)(3)22(22222222y y x x y x y x +++--,其中1-=x ,2=y20.已知 1232+-=a a A ,2352+-=a a B ,求B A 32-五、(本大题共两个小题,每小题9分,共18分)21.今年“十一”黄金周期间,宜春明月山风景区在7天假期中每天接待旅游的人数变化如下表(正数表示比前一天增加的人数,负数表示比前一天天减少的人数) (单位:万人):(1)若9月30日游客为2万,则10月2日游客的人数为多少?(2)请判断7天内游客人数最多的是哪天?最少的是哪天?它们相差多少万人? (3)求这一次黄金周期间该风景区接待游客总人数.(假设每天游客都不重复)22.已知含字母x ,y 的多项式是:()()()22223223241x y xy x y xy x ⎡⎤++--+---⎣⎦(1)化简此多项式;(2)小红取x ,y 互为倒数的一对数值代入化简的多项式中,恰好计算得多项式的值等于0,那么小红所取的字母y 的值等于多少?(3)聪明的小刚从化简的多项式中发现,只要字母y 取一个固定的数,无论字母x 取何数,代数式的值恒为一个不变的数,请你通过计算求出小刚所取的字母y 的值 六、(本大题共一个小题,共12分)23.操作探究:小聪在一张长条形的纸面上画了一条数轴(如图所示),操作一:(1)折叠纸面,使1表示的点与 1表示的点重合,则 3表示的点与______表示的点重合;操作二:(2)折叠纸面,使 2表示的点与6表示的点重合,请你回答以下问题:① -5表示的点与数_____表示的点重合;②若数轴上A、B两点之间距离为20,其中A在B的左侧,且A、B两点经折叠后重合,求A、B两点表示的数各是多少?③已知在数轴上点M表示的数是m,点M到第②题中的A、B两点的距离之和为30,求m的值.七年级数学试题答案温馨提示:1.本试卷共有五个大题,23个小题; 2.全卷满分120分,考试时间120分钟。
2018-2019学年七年级(上)期中数学试卷含答案

2018-2019学年七年级(上)期中数学试卷(四)一、选择题:(本题共12小题,每小题3分,共36分.注意:在每小题给出的四个选项中,只有一个是符合题目要求的.)1.下面形状的四张纸板,按图中线经过折叠可以围成一个直三棱柱的是()A.B.C.D.2.若(k﹣1)x|k|+20=0是一元一次方程,则k的值是()A.1 B.﹣1 C.0 D.±13.解方程﹣=1,去分母正确的是()A.2(2x+1)﹣3(5x﹣3)=1 B.2x+1﹣5x﹣3=6C.2(2x+1)﹣3(5x﹣3)=6 D.2x+1﹣3(5x﹣3)=6 4.已知a﹣7b=﹣2,则4﹣2a+14b的值是()A.0 B.2 C.4 D.85.下列说法中正确的是()A.最小的整数是0 B.有理数分为正数和负数C.如果两个数的绝对值相等,那么这两个数相等D.互为相反数的两个数的绝对值相等6.如图是由若干个小正方体所搭成的几何体及从上面看这个几何体所看到的图形,那么从左边看这个几何体时,所看到的几何图形是()A .B .C .D .7.若关于x 的方程2m+x=1和方程3x ﹣1=2x+1的解互为相反数,则m 的值为( )A .﹣B .C .0D .﹣28.甲、乙两超市为了促销一种定价相同的商品,甲超市连续两次降价10%,乙超市一次性降价20%,在哪家超市购买此种商品更合算( )A .甲B .乙C .同样D .与商品的价格有关 9.李华骑赛车从家里去乐山新村广场练习,去时每小时行24千米,回来时每小时16千米,则往返一次的平均速度为( )千米/时.A .20B .19.8C .19.6D .19.2 10.单项式﹣3πxy 2z 3的系数和次数分别是( )A .﹣π,5B .﹣1,6C .﹣3π,6D .﹣3,711.长城总长约为6 700 000米,用科学记数法表示正确的是( )A .6.7×108米B .6.7×107米C .6.7×106米D .6.7×105米 12.如图所示,图①中的多边形(边数为12)是由等边三角形“扩展”而来的,图②中的多边形是由正方形“扩展”而来的,…,依此类推,则由正n边形“扩展”而来的多边形的边数为()A.n(n﹣1)B.n(n+1)C.(n+1)(n﹣1)D.n2+2 二、填空题(每小题3分,共18分)13.一个n边形,从一个顶点出发的对角线有条,这些对角线将n边形分成了个三角形.14.已知(a﹣3)2+|b+6|=0,则方程ax+b=0的解为.15.若a3=a,则a= .16.|3﹣π|= .17.小明与小刚规定了一种新运算*:若a、b是有理数,则a*b=3a ﹣2b.小明计算出2*5=﹣4,请你帮小刚计算2*(﹣5)= .18.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为米..三、解答题(本大题共66分.注意:解答应写出必要的文字说明,解答过程或解答步骤.)19.计算:(1)[1﹣(1﹣0.5)]×[2﹣(﹣3)2];(2)﹣14﹣(1﹣0.5)×[10﹣(﹣2)2]﹣(﹣1)3.20.化简:(1)3x2﹣3(x2﹣2x+1)+4;(2)3(m﹣5n+4mn)﹣2(2m﹣4n+6mn)21.解方程:(1)3(x﹣1)﹣2(x+1)=﹣6(3)=1+(4)﹣=3.22.化简、求值:已知A=4x2﹣4xy﹣y2,B=﹣x2+xy+7y2,①求﹣A﹣3B,②若A=﹣1,B=时,求6x2﹣6xy﹣15y2的值.23.城区某中学为形成体育特色,落实学生每天1小时的锻炼时间,通过调查研究,决定在七、八、九年级分别开展跳绳、羽毛球、毽球的健身运动.国家规定初中每班的标准人数为a人,七年级共有八个班,各班人数情况如下表,八年级学生人数是七年级学生人数的2倍少400人,九年级学生人数的2倍刚好是七、八年级学生人数的总和.(注:701班表示七年级一班)(1)用含a的代数式表示该中学七年级学生总数;(2)学校决定按每人一根跳绳、一个毽球,两人一副羽毛球拍的标准,购买相应的体育器材以满足学生锻炼需要,其中跳绳每根5元,毽球每个3元,羽毛球拍每副18元.请你计算当a=50时,学校为落实1小时体育锻炼时间需购买器材的费用是多少?24.数a、b、c在数轴上对应的位置如图所示,化简|a+c|﹣|c+b|+|a ﹣b|.25.小张和父亲预定搭家门口的公共汽车赶往火车站,去家乡看望爷爷.在行驶了一半路程时,小张向司机询问到达火车站的时间,司机估计继续乘公共汽车到火车站时火车将正好开出.根据司机的建议,小张和父亲随即下车改乘出租车,车速提高了一倍,结果赶在火车开出前15分钟到达火车站.已知公共汽车的平均速度是30千米/小时,问小张家到火车站有多远?26.某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.如甲用户某月份用煤气80每立方米,那么这个月甲用户应交煤气费用为60×0.8+(80﹣60)×1.2=72元.(1)设甲用户某月用煤气x立方米,用含x的代数式表示甲用户该月的煤气费.若x≤60,则费用表示为;若x>60,则费用表示为.(2)若甲用户10月份的煤气费是84元,求甲用户10月份用去煤气多少立方米?参考答案与试题解析一、1.【考点】展开图折叠成几何体.【分析】根据三棱柱的特点作答.【解答】解:A、围成三棱柱时,两个三角形重合为同一底面,而另一底面没有,故不能围成三棱柱;B、D的两底面不是三角形,故也不能围成三棱柱;只有C经过折叠可以围成一个直三棱柱.故选C.2.【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:根据题意得:,解得:k=﹣1.故选B.3.【考点】解一元一次方程.【分析】方程两边乘以6,去分母得到结果,即可作出判断.【解答】解:去分母得:2(2x+1)﹣3(5x﹣3)=6,故选C.4.【考点】代数式求值.【分析】原式后两项提取﹣2变形后,把a﹣7b=﹣2代入计算即可求出值.【解答】解:∵a﹣7b=﹣2,∴原式=4﹣2(a﹣7b)=4+4=8,故选D.5.【考点】正数和负数;相反数;绝对值.【分析】根据有理数及正数、负数、相反数、绝对值等知识对每个选项分析判断.【解答】解:A、因为整数包括正整数和负整数,0大于负数,所以最小的整数是0错误;B、因为0既不是正数也不是负数,但是有理数,所以有理数分为正数和负数错误;C、因为:如+1和﹣1的绝对值相等,但+1不等于﹣1,所以如果两个数的绝对值相等,那么这两个数相等错误;D、由相反数的意义和数轴,互为相反数的两个数的绝对值相等,如|+1|=|﹣1|=1,所以正确;故选:D.6.【考点】简单组合体的三视图.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在三视图中.【解答】解:从左面看会看到左侧有3个正方形,右面有1个正方形.故选B.7.【考点】一元一次方程的解.【分析】首先求得方程3x﹣1=2x+1的解,然后根据两个方程的解互为相反数求得2m+x=1的解,然后根据方程的解的定义代入求解即可.【解答】解:解方程3x﹣1=2x+1得:x=2,∵关于x的方程2m+x=1和方程3x﹣1=2x+1的解互为相反数,∴关于x的方程2m+x=1的解为x=﹣2,∴2m﹣2=1,解得:m=,故选B.8.【考点】有理数的混合运算.【分析】此题可设原价为x元,分别计算出两超市降价后的价钱,再比较即可.【解答】解:设原价为x元,则甲超市价格为x×(1﹣10%)×(1﹣10%)=0.81x乙超市为x×(1﹣20%)=0.8x,0.81x>0.8x,所以在乙超市购买合算.故选B.9.【考点】一元一次方程的应用.【分析】把从家里去乐山新村广场的总路程看作单位“1”,先求出李华从家里去乐山新村广场所用的时间,再求出李华从乐山新村广场到家里所用的时间,最后用往返的总路程除以往返的总时间就是平均速度.【解答】解:(1+1)÷(1÷24+1÷16),=2÷(+),=2÷,=2×,=19.2(千米),答:往返一次的平均速度是每小时19.2千米.故选:D.10.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义,单项式﹣3πxy2z3的系数和次数分别是﹣3π,6.故选C.11.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将6 700 000用科学记数法表示为:6.7×106.故选:C.12.【考点】规律型:图形的变化类.【分析】由题意可知:等边三角形“扩展”而来的多边形的边数为12=3×(3+1),正方形“扩展”而来的多边形的边数为20=4×(4+1),正五边形“扩展”而来的多边形的边数为30=5×(5+1),正六边形“扩展”而来的多边形的边数为42=6×(6+1),…所以正n边形“扩展”而来的多边形的边数为n(n+1),据此解答即可.【解答】解:∵等边三角形“扩展”而来的多边形的边数为:12=3×(3+1),正方形“扩展”而来的多边形的边数为:20=4×(4+1),正五边形“扩展”而来的多边形的边数为:30=5×(5+1),正六边形“扩展”而来的多边形的边数为:42=6×(6+1),…∴正n边形“扩展”而来的多边形的边数为:n(n+1).故选:B.二、13.【考点】多边形的对角线.【分析】多边形上任何不相邻的两个顶点之间的连线就是对角线,n边形有n个顶点,和它不相邻的顶点有n﹣3个,因而从n边形(n>3)的一个顶点出发的对角线有n﹣3条,把n边形分成n﹣2个三角形.【解答】解:从n边形(n>3)的一个顶点出发的对角线有n﹣3条,可以把n边形划分为n﹣2个三角形,故答案为:n﹣3,n﹣2.14.【考点】解一元一次方程;非负数的性质:绝对值;非负数的性质:偶次方.【分析】利用非负数的性质求出a与b的值,代入方程计算即可求出解.【解答】解:∵(a﹣3)2+|b+6|=0,∴a﹣3=0,b+6=0,解得:a=3,b=﹣6,代入方程得:3x﹣6=0,解得:x=2,故答案为:x=215.考点】有理数的乘方.【分析】根据有理数乘方的法则进行计算即可.【解答】解:∵a3=a,∴a=0或±1.故答案为:0或±1.16.【考点】实数的性质.【分析】由于一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,由此即可求解.【解答】解:∵π>3,∴3﹣π<0,∴|3﹣π|=π﹣3.17.【考点】有理数的混合运算.【分析】根据题中的新定义a*b=3a﹣2b,将a=2,b=﹣5代入计算,即可求出2*(﹣5)的值.【解答】解:根据题中的新定义得:2*(﹣5)=3×2﹣2×(﹣5)=6+10=16.故答案为:16.18.【考点】有理数的乘方.【分析】根据题意知,易求出前几次裁剪后剩下的纸片的面积,第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,根据规律,总结出一般式,由此可以求出.【解答】解:∵第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,∴第n次剩下的面积为,∴,故答案为:.三、19.计算:【考点】有理数的混合运算.【分析】(1)根据有理数的乘法和减法可以解答本题;(2)根据幂的乘方、有理数的乘法和减法可以解答本题.【解答】解:(1)[1﹣(1﹣0.5)]×[2﹣(﹣3)2]=[1﹣0.5]×[2﹣9]=0.5×(﹣7)=﹣3.5;(2)﹣14﹣(1﹣0.5)×[10﹣(﹣2)2]﹣(﹣1)3=﹣1﹣0.5×[10﹣4]﹣(﹣1)=﹣1﹣0.5×6+1=﹣1﹣3+1=﹣3.20.【考点】整式的加减.【分析】(1)先去括号再合并同类项即可;(2)先去括号再合并同类项即可.【解答】解:(1)原式=3x2﹣3x2+6x﹣3+4=6x+1;(2)原式=3m﹣15n+12mn﹣4m+8n﹣12mn=﹣m﹣7n.21.【考点】解一元一次方程.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:3x﹣3﹣2x﹣2=﹣6,移项合并得:x=﹣1;(2)去分母得:3x﹣3=12+4x+4,移项合并得:﹣x=19,解得:x=﹣19;(3)方程整理得:5x﹣10﹣2x﹣2=3,移项合并得:3x=15,解得:x=5.22.【考点】整式的加减—化简求值.【分析】①将A与B的表达式代入﹣A﹣3B后,化简即可求出答案.②将6x2﹣6xy﹣15y2表示为A与B即可求出答案.【解答】解:①﹣A﹣3B=﹣(4x2﹣4xy﹣y2)﹣3(﹣x2+xy+7y2)=﹣4x2+4xy+y2+3x2﹣3xy﹣21y2=﹣x2+xy+y2﹣20y2②当A=﹣1,B=时,6x2﹣6xy﹣15y2=(4x2﹣4xy﹣y2)﹣2(﹣x2+xy+7y2)=A﹣2B=﹣1﹣1=﹣223.【考点】列代数式;代数式求值.【分析】(1)a为每班的标准人数,根据表用a表示出每个班的人数,再相加即可得出答案;(2)根据已知条件得出八年级以及九年级的总人数,再计算出购买体育器材的费用.【解答】解:(1)七年级总人数=a+3+a+2+a﹣3+a+4+a+a﹣2+a﹣5+a﹣1=8a﹣2;(2)七年级总人数=8×50﹣2=398(人),买跳绳的费用=398×5=1990(元),八年级总人数=398×2﹣400=396(人),买羽毛球拍的费用=396÷2×18=3564(元),九年级总人数=÷2=397(人),买毽球的费用=397×3=1191(元),购买体育器材的费用=1990+3564+1191=6745(元).24【考点】整式的加减;数轴;绝对值.【分析】根据数轴先取绝对值再合并同类项即可.【解答】解:由数轴得,c<b<0<a,且|c|>|a|>|b|,|a+c|﹣|c+b|+|a﹣b|=﹣a﹣c+c+b+a﹣b=0.25.【考点】一元一次方程的应用.【分析】由题目可知:公共汽车速度为:30千米/时,出租车的速度应为60千米/时.可设小张家距火车站距离为x,公共汽车行驶后x的路程用时间应为=x小时,15分钟为小时,剩下的x的路程,出租车需要时间为:=x,则由题意,可根据时间差来列方程求解.【解答】解:由题目分析,根据时间差可列一元一次方程: x﹣x=,即: x=,解得:x=30千米.答:小张家到火车站有30km.26.【考点】一元一次方程的应用.【分析】(1)若x≤60,则费用按每立方米0.8元收费;若x>60,则费用=60立方米的费用(按每立方米0.8元收费)+超过60立方米的费用(按每立方米1.2元收费).(2)设甲用户10月份用去煤气x立方米,根据60立方米的费用(按每立方米0.8元收费)+超过60立方米的费用(按每立方米1.2元收费)=84,列方程求解.【解答】解:(1)若x≤60,则费用表示为:0.8x;若x>60,则费用表示为:60×0.8+(x﹣60)×1.2=1.2x﹣24.(2)设甲用户10月份用去煤气x立方米,由60×0.8=48<84,得到x>60,根据题意得:60×0.8+(x﹣60)×1.2=84,解得:x=90.答:甲用户10月份用去煤气90立方米.。
浙教版2018-2019学年第一学期七年级期中检测数学试题卷

2018学年第一学期期中检测试题卷七年级数学温馨提示:1.试题卷共4页,满分100分,考试时间90分钟;2.答案必须写在答卷纸相应的位置上;3.考试时不得使用计算器.一、选择题(每小题3分,共10小题,共30分) 1. -2的倒数是( )A .B .C .-2D .22. 下列说法,其中不正确的个数为( )①正数和负数统称为有理数; ②一个有理数不是整数就是分数; ③有最小的负数,没有最大的正数; ④符号相反的两个数互为相反数. A .1个 B .2个 C .3个 D .4个 3. 下列计算正确的是( ) A .B .C .D .-22=44. 当x=1时,代数式 的值是8,则当x=-1时,这个代数式的值是( ) A .-8 B .-4 C .4 D .85. 单项式322ab 的次数是( )A .5B . 4 C. 3 D .26.等式 成立的条件是( ) A .B .C .D .x ,y 为任意有理数7.已知关于x 的方程 的解是x=m ,则m 的值是( )A .﹣2B . 2C .D .8. 某种商品进价为 a 元/件,在销售旺季,商品售价较进价高30%;销售旺季过后,商品又以7折(即原售价的70%)的价格开展促销活动,这时一件该商品的售价为( ) A . a 元 B . 0.7a 元 C . 0.91a 元 D . 1.03a 元9. “●,■,▲ ”分别表示三种不同的物体,如图所示,前两架天平保持平衡.如果要使第三架也平衡,那么“?”处应放“■”的个数为( )A .5B .4C .3D .210.如下表,从左到右在每个小格子中填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.若前m 个格子中所填整数之和是1684,则m 的值可以是( )A.1015B.1010C.1012D.1018二、填空题(每小题2分,共8题,共16分)11. 若与互为相反数,则的值为12. 比较两数的大小:(填“<”“>”或“=”)13. 如图,在数轴上,点A表示的数为-1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为.14. 已知关于的方程4x-3m=2的解是x=m,则m的值是15.已知x-1的平方根为±2,3x+y-1的平方根为±4,则的算术平方根为..16. 已知,则a2+6b+2c= ..17. 设a,b,c,d为实数,现规定一种新的运算,则满足等式的 x 的值为.18. 如右图:甲乙两个动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动.甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则他们第2016次在边上相遇.三、解答题(共8题,第19、20、21、22、23、24题6分,第25题8分,第26题10分,共54分)19. 把下列各数填在相应的大括号内:4 ,-π,,,,,0整数:{…}负分数:{…}无理数:{…}20. 计算:(1)16-(-18)+(-9)-15 (2)(3)-32+(-2)2×(-5)-|-6|21. (1)化简:;(2)列式化简:整式3a2b-ab2的2倍与ab2+5a2b的差.22. 先化简,后求值:,其中23.某食品厂从生产的袋装食品中抽出样品20袋, 检测每袋的质量是否符合标准, 超过或不足的部分分别用正、负数来表示,记录如下表:(1)这批样品的平均质量比标准质量多还是少?用你学过的方法合理解释;(2)若标准质量为450克,则抽样检测的总质量是多少?24.阅读材料:对于任意两个数a、b的大小比较,有下面的方法:当a−b>0时,一定有a>b;当a−b=0时,一定有a=b;当a−b<0时,一定有a<b.反过来也成立.因此,我们把这种比较两个数大小的方法叫做“求差法”.问题解决:(1)图1长方形的周长M= ▲;图2长方形的周长N= ▲;用“求差法”比较M、N的大小(b>c).(2)如图3,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个长方形,试比较两个小正方形面积之和A与两个长方形面积之和B的大小.25. 为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的收费标准如下表:七年级数学参考答案一、选择题(每小题3分,共10小题,共30分)二、填空题(每小题2分,共8题,共16分)三、解答题(共8题,第19、20、21、22、23、24题6分,第25题8分,第26题10分,共54分)19. 整数{4,0}负分数{}无理数{-π,}20.解:(1)原式=16+18﹣9﹣15=10;(2)原式;(3)原式=﹣9+4×(﹣5)﹣6=﹣9﹣20﹣6=﹣35.21.(1)(2)22. -623.(1)比标准质量多;(2)902424. (1)图1长方形的周长M= 2a+4b+2c ;图2长方形的周长N=2a+2b+4cM-N= 2a+4b+2c-(2a+2b+4c)=2b-2c>0∴M>N(2)A-B=(a2+b2)-2ab=(a-b)2 >0∴A>B25.26.(1)不是,是;(2)√,×;(3)-3;(4)1011。
宾王中学七年级(数学)期中试题201811

宾王中学2018年上学期七年级(数学)期中试题一、选择题.(30分) 1.2-的相反数是( )A. 2B. 2-C. 21-D.21 2.我国对“一带一路”沿线国家不断加大投资,目前已为有关国家创造了近11亿美元税收,其中11亿用科学记数法表示应为A.B.C.D.3.下列各数:π,,5,3.121212…,中无理数的个数为( )A .1个B .2个C .3个D .4个4.如图,在数轴上点A 最可能表示的数的绝对值是( )A .﹣2.5B .2.5C .﹣3.5D .3.55.在式子xx y x a y x 1,31,3,,0,2+--+ 中,单项式共有( ) A .5 个 B .4 个 C .3 个 D .2 个 6. 16 的算术平方根是( ) A 、4 B 、±4C 、2D 、±27.若a 2=9,=﹣2,则a +b=( )A .﹣5B .﹣11C .﹣5或﹣11D .±5或±118.有下列说法:①任何无理数都是无限小数; ②有理数与数轴上的点一一对应; ③在1和3之间的无理数有且只有2,3,5,7这4个; ④2π是分数,它是有理数. ⑤近似数7.30所表示的准确数a 的范围是:7.295≤a <7.305. 其中正确的个数是( )A 、1B 、2C 、3D 、49.定义一种对正整数n 的“F”运算:①当n 为奇数时,F (n )=3n +1;②当n 为偶数时,F (n )=(其中k 是使F (n )为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2018次“F”运算的结果是()A.1 B.4 C.2018 D.4201810.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为正方形的长度构造一组正方形(如下图),再分别依次从左到右取2 个,3 个,4 个,5 个正方形拼成如下长方形并记为①,②,③,④,相应长方形的周长如下表所示:若按此规律继续作长方形,则序号为⑧的长方形周长是( )A.288 B.178 C.28 D.110二、填空题(共6题,共18 分)11.﹣0.25的倒数数是12、单项式232xyπ-的系数是___ _,次数是___ .13.数轴上点A表示-2,点B也在数轴上,且AB长为5,则点B表示的数是14.已知实数a,b,c,d,e,f,且a,b互为倒数,c,d互为相反数,e的绝对值为,f 的算术平方根是8,求ab++e2+的值是.15.一张长方形的纸对折,如图所示可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折2次后,可以得3条折痕,那么对折5次可以得到条折痕16.实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm 高度处连通(即管子底端离容器底5cm ).现三个容器中,只有甲中有水,水位高1cm ,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm ,则开始注入 分钟的水量后,甲与乙的水位高度之差是0.5cm . 三、解答题 17.(12 分)计算: (1)﹣20+(﹣14)﹣(﹣18)﹣13 (2)﹣22×5﹣(﹣2)3÷4.(3)﹣32+(5﹣×23)+(﹣1)2018. (4)(﹣1)2018_﹣+|﹣2|18.(6 分)用简便方法计算: (1)(97 +65-1211)×(-36) (2) -200.25 ⨯ (-16)19(4分).某儿童服装店以每件32元的价格购进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同.若以47元为标准,将超出的钱数记为正数,不足的钱数记为负数,20、(6分)为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.54元收费,如果超过140度,超过部分按每度0.60元收费。
2018-2019学年浙教版七年级上期中考试数学试卷(实验班)(含答案)

B2018-2019学年浙教版七年级上期中考试数学试卷(实验班)(含答案)一、选择题(共10小题,每小题3分,满分30分)1.“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是( ▲ )A .两点确定一条直线B .两点之间直线最短C .两点之间线段最短D .直线比曲线短2.尽管受到国际金融危机的影响,但我市经济依然保持了平稳增长。
据统计,截止到今年4月底,我市金融机构存款余额约为2018亿元,用科学计数法应记为( ▲ ) A .101.19310⨯元 B. 111.19310⨯元 C .121.19310⨯元 D. 131.19310⨯元 ▲ )A .4B .±4C .2D .±24. 已知35ab x,x ,==则32a b x -=( ▲ )A.2B.910 C.35 D.27255.钟表上2时25分时,时针与分针所成的角是 ( ▲ )A. 77.5 °B. 77 °5′C. 75°D. 76°6. 若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,则k 的值为 ( ▲ )A.43-B.43C.34D.34- 110132011755331=⨯+⋯+⨯+⨯+⨯xx x x 的解是 =x ( ▲ )A .20132012 B.20122013 C.10062013 D.20138.如图,将三个三角板直角顶点重叠在一起,公共的直角顶点为点B , 若∠ABE=45°,∠GBH=30°,那么∠FBC 的度数为( ▲ )A .12°B .15°C .25°D .30°9.如图,甲、乙两动点分别从正方形ABCD 的顶点A 、C 同时沿正方形的边开 始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2018次相遇在边( ▲ )A .AB 上 B .BC 上 C .CD 上 D .DA 上 10. 如图,直线AB∥CD,∠EFA=30°,∠FGH=90°,∠HMN=30°,∠CNP= 50°,则∠GHM 的大小是( ▲ )A .30°B .40°(第19题)EBC DOC .50°D .60°二、填空题(共8小题,每小题3分,满分24分)11. 若523m x y +与3n x y 的和是单项式,则m n = ▲ .12. 在21,π,311,25,0.201820187…(两个5之间依次多一个7),227-这六个数中,属于无理数的个数有 ▲ 个.13.已知x A 2=-1,B 是多项式,在计算A B +时,小马虎同学把A B +看成了B-A ,结果得x x 212+,则A B += ▲.14.如图所示,数轴上表示2C 、B ,点C 是AB 的中点,则点A 表示的数是____ ▲______.15.将数20180▲___________.16.如图,把一张长方形的纸按图那样折叠后,B 、D 两点落在B ′、D ′点处,若得∠AOB ′=850, 则∠CGO 的度数为 ▲ °.17.已知α、β都是钝角,甲、乙、丙、丁四人计算)(61βα+的结果依次为26°、50°、72°、90°,其中有正确的结果,那么计算正确的人是 ▲ .18.某超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元但不超过300元一律九折;(3)一次性购物超过300元一律八折。
2018-2019学年七年级(上)期中数学试卷(及答案)

2018-2019学年七年级(上)期中数学试卷(及答案)一、选择题((本部分10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的有()A.24.70千克B.25.32千克C.25.51千克D.24.86千克2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109 3.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是()A.长方体B.圆柱体C.球体 D.三棱柱4.﹣23的意义是()A.3个﹣2相乘B.3个﹣2相加C.﹣2乘以3 D.3个2相乘的积的相反数5.下列说法中正确的有()①最小的整数是0;②有理数中没有最大的数;③如果两个数的绝对值相等,那么这两个数相等;④互为相反数的两个数的绝对值相等.A .0个B .1个C .2个D .3个6.将如图Rt △ABC 绕直角边AC 旋转一周,所得几何体的左视图是( )A .B .C .D .7.下列计算:(1)78﹣23÷70=70÷70=1;(2)12﹣7×(﹣4)+8÷(﹣2)=12+28﹣4=36;(3)12÷(2×3)=12÷2×3=6×3=18;(4)32×3.14+3×(﹣9.42)=3×9.42+3×(﹣9.42)=0. 其中错误的有( )A .1个B .2个C .3个D .4个8.图表示从上面看一个由相同小立方块搭成的几何体得到的平面图形,小正方形中的数字表示该位置上小立方块的个数,则该从正面看该几何体得到的平面图形为( )A .B .C .D .9.有若干个数,第一个数记为a 1,第二个数记为a 2,…,第n 个数记为a n .若a 1=,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”.通过探究可以发现这些数有一定的排列规律,等于()利用这个规律可得a2016A.﹣B. C.2 D.310.如图,已知一个正方体的六个面上分别写着6个连续整数,且相对面上两个数的和相等.图中所能看到的数是1,3和4,则这6个整数的和是()A.15 B.9或15 C.15或21 D.9,15或21二、填空题(本部分7个小题,每小题3分,共21分.把最后答案直接填在题中的横线上)11.计算(﹣3)﹣(﹣7)= .12.如图所示的三个几何体的截面分别是:(1);(2);(3).13.把边长为lcm的正方体表面展开要剪开条棱,展开成的平面图形周长为cm.14.如图所示的是一个正方体的表面展开图,则与“奋”字所代表的面相对的面上的汉字是.15.设a<0,b>0,且|a|<|b|,用“<”把a,﹣a,b,﹣b连接起来:.16.在图中剪去一个正方形,使剩余的部分恰好能折成一个正方体,问应剪去几号小正方形?所有可能的情况是.17.《庄子.天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图.由图易得: = .三、解答题(本部分8个大题,共69分.解答时应写出必要的文字说明、证明过程或演算步骤)18.(6分)写出符合下列条件的数:(1)最小的正整数:;(2)绝对值最小的有理数:;(3)绝对值大于3且小于6的所有负整数:;(4)在数轴上,与表示﹣1的点距离为5的所有数:;(5)倒数等于本身的数:;(6)绝对值等于它的相反数的数:.19.(7分)画一条数轴,在数轴上表示出3.5和它的相反数,﹣2和它的倒数,最小的自然数.然后用“>”把这些数连接起来.20.(16分)计算:(1)(﹣)+(﹣);(2)15×﹣(﹣15)×+15×;(3)﹣+÷(﹣2)×(﹣);(4)﹣14﹣×[2﹣(﹣3)2].21.(6分)根据实验测定,高度每增加100米,气温大约下降0.6℃.小张是一名登山运动员,他在攀登山峰的途中发回信息,说他所在位置是﹣16℃,如果当时地面温度是8℃,那么小张所在位置离地面的高度是多少米?22.(8分)已知如图为一几何体的三种形状图:(1)这个几何体的名称为;(2)任意画出它的一种表面展开图;(3)若从正面看到的是长方形,其长为10cm;从上面看到的是等边三角形,其边长为4cm,求这个几何体的侧面积.23.(4分)已知|x|=3,y2=25,且x>y,求出x,y的值.24.(4分)已知|2m﹣6|+(﹣1)2=0,求m﹣2n的值.25.(8分)在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救物资,中午从A地出发,晚上到达B地.规定向东为正,当天的航行记录如下(单位:km):﹣16,﹣7,12,﹣9,6,10,﹣11,9.(1)B在A地的哪侧?相距多远?(2)若冲锋舟每千米耗油0.46L,则这一天共耗油多少升?26.(10分)将一个正方体的表面全涂上颜色.(1)如果把正方体的棱2等分,然后沿等分线把正方体切开,能够得到8个小正方体,设其中3面被涂上颜色的有a个,则a= ;(2)如果把正方体的棱三等分,然后沿等分线把正方体切开,能够得到27个小正方体.设这些小正方体中有3个面涂有颜色的有a个,各个面都没有涂色的有b个,则a+b= ;(3)如果把正方体的棱4等分,然后沿等分线把正方体切开,能够得到64个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b= ;(4)如果把正方体的棱n等分,然后沿等分线把正方体切开,能够得到个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b= .参考答案与试题解析一、1.【考点】正数和负数.【分析】根据有理数的加法法则可求25+0.25;根据有理数的加法法则可求25﹣0.25,进而可得合格面粉的质量范围,进而可得答案.【解答】解:∵25+0.25=25.25;25﹣0.25=24.75,∴合格的面粉质量在24.75和2.25之间,故选:D.【点评】本题考查正数和负数,解题的关键是明确正负数在题目中的实际意义.2.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:194亿=19400000000,用科学记数法表示为:1.94×1010.故选:A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【考点】简单几何体的三视图.【分析】几何体可分为柱体,锥体,球体三类,按分类比较即可.【解答】解:长方体、圆柱体、三棱体为柱体,它们的主视图都是矩形;球的三种视图都是圆形.故选:C.【点评】本题考查几何体的分类和三视图的概念.4.【考点】有理数的乘方.【分析】根据有理数的乘方,即可解答.【解答】解:﹣23的意义是3个2相乘的积的相反数,故选:D.【点评】本题考查了有理数的乘方,解决本题的关键是熟记有理数的乘方.5.【考点】有理数.【分析】根据整数的定义,有理数的定义,绝对值的性质,相反数的性质,可得答案.【解答】解:①没有最小的整数,故①错误;②有理数中没有最大的数,故②正确;③如果两个数的绝对值相等,那么这两个数相等或互为相反数,故③错误;④互为相反数的两个数的绝对值相等,故④正确;故选:C.【点评】本题考查了有理数,没有最大的有理数,没有最小的有理数.6.【考点】点、线、面、体;简单几何体的三视图.【分析】应先得到旋转后得到的几何体,找到从左面看所得到的图形即可.【解答】解:Rt△ABC绕直角边AC旋转一周,所得几何体是圆锥,圆锥的左视图是等腰三角形,故选D.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.7.【考点】有理数的混合运算.【分析】原式各项计算得到结果,即可作出判断.【解答】解:(1)原式=78﹣=77,错误;(2)原式=12+28﹣4=36,正确;(3)原式=12÷6=2,错误;(4)原式=3×9.42+3×(﹣9.42)=0,正确,则错误的有2个,故选B【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.8.【考点】由三视图判断几何体;简单组合体的三视图.【分析】找到从正面看所得到的图形即可.【解答】解:俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右的列数分别是4,3,2.故选C.【点评】本题灵活考查了三种视图之间的关系以及视图和实物之间的关系,同时还考查了对图形的想象力,难度适中.9.【考点】规律型:数字的变化类.【分析】根据每个数都等于“1与它前面那个数的差的倒数”可知这列数的周期为3,由2016÷3=672可知a2016=a3.【解答】解:当a1=时,==3,a3===﹣,a4===,∴这列数的周期为3,∵2016÷3=672,∴a2016=a3=﹣,故选:A.【点评】本题主要考查数字的变化规律,根据每个数都等于“1与它前面那个数的差的倒数”可知这列数的周期为3是解题的关键.10.【考点】认识立体图形;有理数的加法.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:根据题意分析可得:六个面上分别写着六个连续的整数,故六个整数可能为1、2、3、4、5、6或0、1、2、3、4、5;且每个相对面上的两个数之和相等,故只可能为0、1、2、3、4、5其和为15.故选A.【点评】此题考查了空间图形,主要培养学生的观察能力和空间想象能力.二、11.计算(﹣3)﹣(﹣7)= 4 .【考点】有理数的减法.【分析】根据有理数减法法则计算,减去一个数等于加上这个数的相反数.【解答】解:(﹣3)﹣(﹣7)=(﹣3)+7=7﹣3=4.【点评】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.12.如图所示的三个几何体的截面分别是:(1)圆;(2)长方形;(3)三角形.【考点】截一个几何体.【分析】当截面的角度和方向不同时,圆柱体的截面不相同.【解答】解:当截面平行于圆柱底面截取圆柱时得到截面图形是圆,截面截取经过四个顶点的截面时可以截得长方形,当截面垂直圆锥的底面时,截面图形是三角形.故答案为:圆,长方形,三角形.【点评】此题主要考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.13.把边长为lcm的正方体表面展开要剪开7 条棱,展开成的平面图形周长为14 cm.【考点】几何体的展开图.【分析】根据正方体的棱的条数以及展开后平面之间应有棱连着,可得出正方体表面展开要剪开的棱的条数;剪开1条棱,增加两个正方形的边长,依此即可求解.【解答】解:∵正方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,∴要剪12﹣5=7条棱,1×(7×2)=1×14=14(cm).答:把边长为lcm的正方体表面展开要剪开7条棱,展开成的平面图形周长为14cm.故答案为:7,14.【点评】此题主要考查了正方体的展开图的性质,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键.14.如图所示的是一个正方体的表面展开图,则与“奋”字所代表的面相对的面上的汉字是活.【考点】专题:正方体相对两个面上的文字.【分析】利用正方体及其表面展开图的特点求解即可.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“生”与面“是”相对,面“活”与面“奋”相对,面“就”与面“斗”相对.故答案为:活.【点评】本题考查了正方体相对两个面上的文字,解答本题的关键在于注意正方体的空间图形,从相对面入手,分析及解答问题.15.设a<0,b>0,且|a|<|b|,用“<”把a,﹣a,b,﹣b连接起来:﹣b<a<﹣a<b .【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:∵a<0,b>0,∴﹣a>0,﹣b<0,∵|a|<|b|,∴﹣a<b,∴﹣b<a<﹣a<b.故答案为:﹣b<a<﹣a<b.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.16.在图中剪去一个正方形,使剩余的部分恰好能折成一个正方体,问应剪去几号小正方形?所有可能的情况是剪去1号、2号或3号小正方形.【考点】展开图折叠成几何体.【分析】根据正方体展开图中没有田字形解答.【解答】解:∵剩余的部分恰好能折成一个正方体,∴展开图中没有田字形,∴应剪去1号、2号或3号小正方形.故答案为:剪去1号、2号或3号小正方形.【点评】本题考查了展开图折叠成几何体,熟记正方体展开图的11中形式是解题的关键,只要有“田”字格的展开图都不是正方体的表面展开图.17.《庄子.天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图.由图易得: = 1﹣.【考点】规律型:图形的变化类.【分析】由图可知第一次剩下,截取1﹣;第二次剩下,共截取1﹣;…由此得出第n次剩下,共截取1﹣,得出答案即可.【解答】解:=1﹣故答案为:1﹣.【点评】此题考查图形的变化规律,找出与数据之间的联系,得出规律解决问题.三、18.写出符合下列条件的数:(1)最小的正整数: 1 ;(2)绝对值最小的有理数:0 ;(3)绝对值大于3且小于6的所有负整数:﹣4,﹣5 ;(4)在数轴上,与表示﹣1的点距离为5的所有数:4,﹣6 ;(5)倒数等于本身的数:±1 ;(6)绝对值等于它的相反数的数:0或负数.【考点】倒数;数轴;相反数;绝对值.【分析】根据正整数、绝对值、负整数、倒数、相反数的定义结合数轴进行解答.【解答】解:如图.(1)最小的正整数:1;(2)绝对值最小的有理数:0;(3)绝对值大于3且小于6的所有负整数:﹣4,﹣5;(4)在数轴上,与表示﹣1的点距离为5的所有数:4,﹣6;(5)倒数等于本身的数:±1;(6)绝对值等于它的相反数的数:0或负数.故答案为:1;0;﹣4,﹣5;4,﹣6;±1;0或负数.【点评】本题考查了正整数、绝对值、负整数、倒数、相反数的定义,利用数形结合是解题的关键.19.【考点】有理数大小比较;数轴;相反数;倒数.【分析】首先根据在数轴上表示数的方法,在数轴上表示出3.5和它的相反数,﹣2和它的倒数,最小的自然数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由大到小用“>”号连接起来即可.【解答】解:,3.5>0>﹣0.5>﹣2>﹣3.5.【点评】(1)此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(2)此题还考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.20.【考点】有理数的混合运算.【分析】(1)应用加法交换律和加法结合律,求出算式的值是多少即可.(2)应用乘法分配律,求出算式的值是多少即可.(3)(4)根据有理数的混合运算的运算方法,求出每个算式的值各是多少即可.【解答】解:(1)(﹣)+(﹣)=(+)﹣(+)=1﹣=﹣(2)15×﹣(﹣15)×+15×=15×(++)=15×=22(3)﹣+÷(﹣2)×(﹣)=﹣+(﹣)×(﹣)=﹣+1=﹣1(4)﹣14﹣×[2﹣(﹣3)2]=﹣1﹣×[2﹣9]=﹣1﹣×[﹣7]=﹣1+=【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.21.【考点】有理数的混合运算.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:[8﹣(﹣16)]÷0.6=24÷0.6=40(米),则小张所在位置离地面的高度是40米.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.【考点】由三视图判断几何体;几何体的展开图;等边三角形的性质.【分析】(1)由三视图可知,该几何体为三棱柱;(2)画出三棱柱的展开图即可;(3)根据三棱柱侧面积计算公式计算可得.【解答】解:(1)由三视图可知,该几何体为三棱柱,故答案为:三棱柱;(2)展开图如下:(3)这个几何体的侧面积为3×10×4=120cm2.【点评】本题主要考查由三视图确定几何体和求几何体的面积等相关知识,考查学生的空间想象能力.注意:棱柱的侧面都是长方形,上下底面是几边形就是几棱柱.23.【考点】有理数的乘方;绝对值.【分析】根据绝对值的定义、有理数的乘方先求出x、y,再根据条件确定x、y.【解答】解:∵|x|=3,∴x=±3∵y2=25,∴y=±5,∵x>y,∴x=3,y=﹣5或x=﹣3,y=﹣5.【点评】本题考查有理数的乘方、绝对值的化简等知识,关键是掌握有理数的乘方法则、绝对值的性质,属于基础题,中考常考题型.24.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质求出m、n的值,计算即可.【解答】解:由题意得,2m﹣6=0,﹣1=0,解得,m=3,n=2,则m﹣2n=﹣1.【点评】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.25.【考点】正数和负数.【分析】(1)把所有航行记录相加,再根据正数和负数的意义进行判断即可;(2)用所有航行记录的绝对值的和乘0.46,即可得这一天共耗油的量.【解答】解(1)﹣16+(﹣7)+12+(﹣9)+6+10+(﹣11)+9=﹣16﹣7+12﹣9+6+10﹣11+9=﹣6(km),∴|﹣6|=6km,答:B地在A地的西边,相距6km;(2)0.46×(|﹣16|+|﹣7|+12+|﹣9|+6+10+|﹣11|+9)=0.46×(16+7+12+9+6+10+11+9)=0.46×80=36.8(升).答:这天共消耗了36.8升油.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.26.【考点】认识立体图形.【分析】根据正方体的性质可发现顶点处的小方块三面涂色,除顶点外位于棱上的小方块两面涂色,涂色位于表面中心的一面涂色,处于正中心的没涂色.依此可得到(1)棱二等分时的所得小正方体表面涂色情况;(2)棱三等分时的所得小正方体表面涂色情况;(3)棱四等分时的所得小正方体表面涂色情况.(4)根据已知图形中没有涂色的小正方形个数得出变化规律进而得出答案.【解答】解:(1)三面被涂色的有8个,故a=8;(2)三面被涂色的有8个,各面都没有涂色的1个,a+b=8+1=9;(3)两面被涂成红色有24个,各面都没有涂色的8个,b+c=24+8=32;(4)由以上可发现规律:能够得到n3个小正方体,两面涂色c=12(n﹣2)个,各面均不涂色(n﹣2)3个,b+c=12(n﹣2)+(n﹣2)3.故答案为:8,9,32,n3,12(n﹣2)+(n﹣2)3.【点评】本题主要考查了正方体的组合与分割.要熟悉正方体的性质,在分割时有必要可动手操作.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分
钟的水量后,甲与乙的水位高度之差是 0.5cm. 三、解答题 17.(12 分)计算:
(1)﹣20+(﹣14)﹣(﹣18)﹣13
(2)﹣22×5﹣(﹣2)3÷4.
(3)﹣32+(5﹣ ×23)+(﹣1)2018. (4)(﹣1)2018_ ﹣
+| ﹣2|
18.(6 分)用简便方法计算:
(1)( 7 + 5 - 11 )×(-36) 9 6 12
⑤近似数 7.30 所表示的准确数 a 的范围是:7.295≤a<7.305.
其中正确的个数是(
)
A、1
B、2
C、3
D、4
9.定义一种对正整数 n 的“F”运算:①当 n 为奇数时,F(n)=3n+1;②当 n 为偶数时,F(n)
= (其中 k 是使 F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取 n=24,则:
.
3
13.数轴上点A表示-2,点B也在数轴上,且AB长为 5 ,则点B表示的数是
14.已知实数a,b,c,d,e,f,且a,b互为倒数,c,d互为相反数,e的绝对值为 ,f的算
术平方根是8,求 ab+ +e2+ 的值是
.
15.一张长方形的纸对折,如图所示可得到一条折痕(图中虚线),继续对折,对折时每次折 痕与上次的折痕保持平行,连续对折 2 次后,可以得 3 条折痕,那么对折 5 次可以得到条折 痕
A.1 个
B.2 个
C.3 个
4.如图,在数轴上点A最可能表示的数的绝对值是( )
D.4 个
A.﹣2.5
B.2.5
C.﹣3.5
5.在式子 x y,0,a,3x 2 y, x 1 , 1 中,单项式共有( 3x
A.5 个 B.4 个
C.3 个
D.2 个
6. 16 的算术平方根是( )
A、4
16.实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为 1: 2:1,用两个相同的管子在容器的 5cm 高度处连通(即管子底端离容器底 5cm).现三个容器 中,只有甲中有水,水位高 1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注
2
水 1 分钟,乙的水位上升 cm,则开始注入
数轴乙上的动点 N 从点 D 出发,以点 M 速度的 4 倍向点 E 运动,当 N 到达点 E 后,再立即以
同样的速度返回,当点 M 到达点 C 时,M、N 两点运动停止,设点 N 在数轴乙上表示数 n .
①当点 N 从点 D 出发,向点 E 运动时,用含有的代数式表示 n =
;当点 N
到达点 E 后返回时,用含有的代数式表示 n =
﹣2
该服装店在售完这 30 件连衣裙后,赚了多少钱?
20、(6 分)为节约能源,某单位按以下规定收取每月电费:用电不超过 140 度,按每度 0.54 元 收费,如果超过 140 度,超过部分按每度 0.60 元收费。 (1)若某住户四月份的用电量是 x 度,求这个用户四月份应交多少电费? (2)若该住户五月份的用电量是 200 度,则他五月份应交多少电费?
个,5 个正方形拼成如下长方形并记为①,②,③,④,相应长方形的周长如下 表所
示:
若按此规律继续作长方形,则序号为⑧的长方形周长是( )
A.288 B.178
C.28
二、填空题(共6 题,共18 分)
11. ﹣0.25 的倒数数是
D.110
12、单项式 2xy 2 的系数是___
_,次数是___
3
23.(6 分)某班准备买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售同样品 牌的乒乓球和乒乓球拍,乒乓球拍每副 68 元,乒乓球每盒 12 元.经商谈后,甲商店每买一 副乒乓球拍赠一盒乒乓球,乙商店全部按定价的 9 折优惠.这个班级需要球拍 5 副,乒乓球 x 盒(x≥5). (1)分别求甲、乙两家商店购买这些商品所需的费用(用含 x 的代数式表示). (2)当 x=40 时,购买所需商品去哪家商店合算?请通过计算.说明理由
B、±4
7.若 a2=9, =﹣2,则 a+b=( )
C、2
D.3.5 )
D、±2
A.﹣5
B.﹣11
8.有下列说法: ①任何无理数都是无限小数;
C.﹣5 或﹣11
D.±5 或±11
②有理数与数轴上的点一一对应;
③在 1 和 3 之间的无理数有且只有 2 , 3 , 5 , 7 这 4 个;
④ 是分数,它是有理数. 2
义乌市宾王中学 2018-2019 学年上学期期中考试七年级数学试卷
一、选择题.(30 分)
1. 2 的相反数是( )
A. 2
B. 2
C. 1
D. 1
2
2
2.我国对“一带一路”沿线国家不断加大投资,目前已为有关国家创造了近11亿美元税收,
其中11亿用科学记数法表示应为
A.
B.
C.
D.
3.下列各数:π, ,5,3.121212…, 中无理数的个数为( )
21、(4 分)已知实数 a+b 的平方根是±4,实数 a 的立方根是﹣2,求﹣ a+b 的平方根.
22.(6 分)阅读材料:求 1+2+22+23+24+…+22014 的值. 解:设 S=1+2+22+23+24+…+22014 ①, 将等式两边同时乘以 2 得:2S=2+22+23+24+…+22014+22015 ②, 再将②-①得:S=22015-1,即 1+2+22+23+24+…+22014=22015-1. 请你仿照此法计算下列各题: (1)1+3+32+33+34+…+32015 ;(2)5-52+53-54+…+511 ;
(2) 200.25 16
19(4 分).某儿童服装店以每件 32 元的价格购进 30 件连衣裙,针对不同的顾客,30 件连衣裙 的售价不完全相同.若以 47 元为标准,将超出的钱数记为正数,不足的钱数记为负数,记录 结果如下表所示:
售出件数(件)
7
6
3
5
4
5
售价(元)
+3
+2
+1
0
﹣1
24(8 分)已知数轴甲上有 A、B、C 三点,分别表示 30 、 20 、0,动点 M 从点 A 出发,
以每秒 1 个单位的速度向终点 C 移动,设点.M.移.动.的.时.间.为.秒.,点 M 在数轴甲上表示的数为
m.
(1)用含有的代数式表示 m =
.
(2)另有一个数轴乙,数轴乙上有 D、E 两点,分别表示 60 、0. 当点 M 运动到点 B 时,
.
②求当点 N 从开始运动到运动停止时, m n 的值(用含的代数式表示)
③求当为何值时, m n .
宾王中学 2018 年上学期七年级(数学)期中答题卷
一、选择题
1
2
3
4
5
6
7
8
9
10
4
1
若 n=13,则第 2018 次“F”运算的结果是( )
Байду номын сангаасA.1
B.4
C.2018
D.42018
10.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,
8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中 的各
个数作为正方形的长度构造一组正方形(如下图),再分别依次从左到右取 2 个,3 个,4