人教版五年级数学上册第六单元测试题

合集下载

人教版小学五年级上册数学第六单元试卷(含答案)

人教版小学五年级上册数学第六单元试卷(含答案)

人教版小学五年级上册数学第六单元试卷学校:______姓名:______班级:______考号:______一、填空题(共10小题,每小题2分,满分20分)1.n是一个大于0的自然数,与它相邻的两个自然数的和是( )。

2.鞋的尺码是指鞋底的长度,通常用“码”或“厘米”作单位,它们之间的关系为b=2a−10(b表示码数,a表示厘米数)。

张力买了一双32码的凉鞋,鞋底长( )厘米;爸爸的皮鞋鞋底长26.5厘米,是( )码。

3.六(1)班有a盒粉笔,每盒20根,用去80根后,此时粉笔还剩( )根,也可以说剩下( )盒。

4.学校买来8个足球,每个a元,又买来b个篮球,每个65元。

65b表示( );a+65表示( )。

5.鞋的尺码通常用“码”或“厘米”作单位,它们之间的关系式为b=2a−10(b表示码数,a表示厘米数)。

25厘米的鞋子用“码”作单位是( )码。

6.已知2x+5=9,那么2x=( )。

57.一本书有200页,明明每天看15页,看了a天,还剩( )页没看,当a=5时,还剩( )页没看。

8.一本书有a页,小明每天看10页,看了b天。

这本书还有( )页没看。

9.长颈鹿的身高比羚羊身高的4倍少0.2米,根据信息写出相应的等量关系式()。

,如果小明在地球上称得的体重是x千克,那么他在月10.在月球上称得的体重是在地球上称得体重的16球上称得的体重是( )千克。

二、判断题(共5小题,每小题2分,满分10分)11.x+x=x2。

( )12.c×c=2c。

( )13.x=6是方程3x−6=12的解。

( )14.方程a−1=0的解是a=1。

( )15.方程一定是等式,等式却不一定是方程.()三、选择题(共5小题,每小题2分,满分10分)16.等式和方程之间的关系可以用( )表示。

A. B.C. D.17.下面各式中,得数一定相等的是( )。

A.2a 和a 2B.2(a +1)和2a +2C.a ×0和a +0D.3a 和a ×a ×a 18.一个数与它的17的和是19,如果把这个数设为x ,下面符合题意的方程是( )。

人教版数学五年级上册《第六单元综合测试》含答案

人教版数学五年级上册《第六单元综合测试》含答案

人教版数学五年级上学期第六单元测试一.选择题(共10小题)1.一个梯形的面积是16.32平方米,上底是0.8米,下底是7.2米,高()米.A.4.8米B.5.6米C.4.08米2.一块面积是90平方米的长方形草地,如果长扩大到原来的2倍,宽扩大到原来的3倍,扩大后的草地面积是()平方米.A.540B.450C.270D.1803.有3厘米、7厘米、15厘米的小棒各2根,选其中的3根小棒围成三角形,周长最短的是()厘米.A.13B.17C.25D.334.一堆圆木,堆成梯形状,下层12根,上层7根,共堆有6层,这堆圆木共有()根.A.57B.50C.76D.455.四个小伙伴在计算学校花坛的面积,如图所示,他们的想法各不相同.其中()的思路可以用算式“8×2×2“表示.A.明明B.涵涵C.东东D.红红6.如图,求平行四边形的面积,算式正确的是()A.9×12B.12×15C.7.2×97.一个直角三角形的面积是90cm2,一条直角边长7.2cm,另一条直角边长是()A.25 cm B.12.5 cm C.6.25 cm8.兰兰家一面外墙墙皮脱落,中间有一个长米2米,宽1米的长方形窗户.现要重新粉刷这面墙,每平方米需要用500克涂料.一共需要()千克涂料.A.22.5B.16.2C.15.29.平行四边形面积是3.5m2,如果把它的底和高都扩大到原来的2倍,得到的平行四边形的面积是()m2.A.3.5B.7C.14D.2810.如图,平行四边形底边的中点是A,它的面积是48m2.涂色三角形的面积是()m2.A.4B.8C.12二.填空题(共8小题)11.一个三角形的底是12厘米,高是7.5厘米,与它等底等高的平行四边形面积是平方厘米.12.一个等腰三角形的一条边是6cm,另一条边是4cm,围成这个等腰三角形至少需要厘米长的铁丝.13.一个平行四边形的底是13分米,高是70厘米,面积是平方分米.14.一个正方形草坪边长16米,花园的占地面积相当于30个正方形草坪那么大.花园占地面积是平方米.15.若一个直角梯形的上底和高不变,下底减少3厘米,就变成一个周长是20厘米的正方形,则原来直角梯形的面积是平方厘米.16.学校运动场是一个周长为400米的正方形.运动场面积是公顷,个这样的运动场面积是1平方千米.17.如图中两个黑色正方形周长的和是36厘米.整个图形的面积是.18.如图,有一张梯形彩纸,王阿姨从这张彩纸上剪下一块长方形用来做手工,剩下彩纸的面积是cm2.三.判断题(共5小题)19.图中阴影部分的面积是大平行四边形面积的一半.(判断对错)20.把一个正方形框架拉成一个平行四边形,面积变化了,周长没有变化.(判断对错) 21.两个三角形相比较,高越长面积就越大.(判断对错)22.梯形的面积总是平行四边形的一半.(判断对错)23.边长100米的正方形面积是1公顷(判断对错)四.计算题(共2小题)24.算面积(右边两个算阴影部分面积.单位:厘米)25.计算下面组合图形的面积.(单位cm)五.应用题(共7小题)26.靠前边围成一个花坛,围花坛的篱笆长46米,求这个花坛的面积.27.一个平行四边形,底是5米,高是底的1.2倍,这个平行四边形的面积是多少?28.王大伯从平行四边形菜地中划出一块三角形地种西红柿,其余地方种黄瓜(如图),这块黄瓜地的面积是多少平方米29.如图是一块长方形草地,长是16m,宽是12m,中间有一条人行道,宽是2m.草地(阴影部分)的面积是多少平方米?30.一块三角形的玻璃,它的底是240cm,高是150cm,如果每平方分米的玻璃0.6元,买这块玻璃需要多少元?(提示:注意单位)31.体育馆准备修建游泳池.如果将长增加20米,或者宽增加5米,那么面积都比原来增加400平方米(如图).原来游泳池占地多少平方米?32.粉刷一间教室的一面墙(如图),如果每平方米用涂料0.4千克,出去窗户,粉刷需多少涂料?如果每千克涂料10元,共需多少元?答案与解析一.选择题(共10小题)1.【分析】根据图形的面积公式可得:梯形的高=梯形的面积×2÷上下底之和,据此计算即可解答问题.【解答】解:16.32×2÷(0.8+7.2)=32.64÷8=4.08(米)答:高是4.08米.故选:C.【点评】此题主要考查了梯形的面积公式的灵活应用.2.【分析】根据长方形的面积公式:S=ab,再根据积的变化规律,积扩大的倍数等于因数扩大倍数的乘积,如果长扩大到原来的2倍,宽扩大到原来的3倍,扩大后的草地面积是原来面积的(2×3)倍,据此解答.【解答】解:90×(2×3)=90×6=540(平方米)答:扩大后的草地面积是540平方米.故选:A.【点评】此题主要考查长方形面积公式的灵活运用,积的变化规律的应用.3.【分析】根据“两边之和大于第三边,两边之差小于第三边”,得出组成方案只有3、7、7,3、15、15和7、15、15三种;进而可以得出选用3,7,7的周长最短,进而计算得出结论.【解答】解:选用3,7,7的周长最短;周长为:3+7+7=17(厘米);故选:B.【点评】此题应根据三角形的特性和三角形的周长计算公式进行解答.4.【分析】根据总根数=(上层根数+下层根数)×层数÷2代入数据进行解答.【解答】解:(12+7)×6÷2,=19×6÷2,=57(根).故选:A.【点评】本题主要考查了学生对总根数=(上层根数+下层根数)×层数÷2这一公式的掌握情况.5.【分析】根据图形的特点,可以利用分割法(有三种不同的分割法),也可以利用填补法,根据长方形的面积=长×宽,正方形的面积=边长×边长,把数据分别代入公式解答.【解答】解:A:6×2+10×2=12+20=32B:8×2×2=16×2=32C:6×2+2×2+8×2=12+4+16=32D:10×8﹣8×6=80﹣48=32所以,涵涵的的思路可以用算式“8×2×2“表示.故选:B.【点评】此题考查的目的是理解掌握组合图形面积的计算方法及应用,一般用“分割”法或“填补”法计算.6.【分析】根据平行四边形的面积计算公式,S=ah,注意底和高的对应,由此解答.【解答】解:平行四边形的面积列式为:15×7.2或9×12.故选:A.【点评】此题主要考查平行四边形的面积计算方法,注意底和高的对应.7.【分析】依据三角形的面积公式S=ah,得出h=2S÷a,据此代入数据即可求解.【解答】解:90×2÷7.2=180÷7.2=25(cm)答:另一条直角边长25cm.故选:A.【点评】此题主要考查三角形的面积的计算方法的灵活应用.8.【分析】根据三角形的面积公式:S=ah÷2,长方形的面积公式:S=ab,把数据代入公式求出这面墙的面积(减去窗户的面积),然后用这面墙的面积乘每平方米用涂料的质量即可.【解答】解:500克=0.5千克(9×1.2÷2+9×3﹣2×1)×0.5=(5.4+27﹣2)×0.5=30.4×0.5=15.2(千克)答:一共主要15.2千克涂料.故选:C.【点评】此题主要考查长方形的面积公式、三角形的面积公式的灵活运用,关键是熟记公式.9.【分析】根据平行四边形的面积公式:S=ah,再根据因数与积的变化规律,积扩大的倍数等于因数扩大倍数的乘积,据此可知,如果平行四边形的底和高都扩大到原来的2倍,那么平行四边形的面积就扩大到原来的(2×2)倍,据此解答.【解答】解:3.5×2×2=14(平方米)答:得到的平行四边形的面积是14平方米.故选:C.【点评】此题主要考查平行四边形面积公式的灵活运用,因数与积的变化规律的应用.10.【分析】因为等底等高的三角形的面积相等,所以涂色部分三角形的面积是平行四边形面积的,据此解答即可.【解答】解:48÷4=12(平方米)答:涂色三角形的面积是12平方米.故选:C.【点评】此题考查的目的是理解掌握等底等高的三角形与平行四边形面积之间的关系及应用.二.填空题(共8小题)11.【分析】根据题意可知,平行四边形的底是12厘米,高是7.5厘米,依据平行四边形的面积公式:S=ah,把数据代入公式解答.【解答】解:7.5×12=90(平方厘米)答:与它等底等高的平行四边形面积是90平方厘米.故答案为:90.【点评】此题主要考查平行四边形面积公式的灵活运用.关键是熟记公式.12.【分析】因等腰三角形的两边腰的长度相等,要使围成的这个等腰三角形需要的铁丝最少,就是使它的腰比底边短,所以要使它的腰长是4厘米,然后把三条边的长度相加即可求解.【解答】解:腰长是4厘米4+4+6=14(厘米)答:围成这个等腰三角形至少需要14厘米长的铁丝.故答案为:14.【点评】解决本题关键是明确等腰三角形的特点,以及三角形周长的计算方法.13.【分析】根据平行四边形的面积公式:S=ah,把数据代入公式解答.【解答】解:70厘米=7分米,13×7=91(平方分米)答:它的面积是91平方分米.故答案为:91.【点评】此题需要考查平行四边形面积公式的灵活运用,关键是熟记公式.14.【分析】先根据正方形的面积=边长×边长求出这个草坪的面积,再乘30就是花园的面积.【解答】解:16×16×30=256×30=7680(平方米)答:花园占地面积是7680平方米.故答案为:7680.【点评】此题主要考查了正方形的面积公式以及乘法的意义的计算应用.15.【分析】根据正方形的周长公式:C=4a,那么a=C÷4,据此求出正方形的边长,也就是原来梯形的上底和高,上底加上3厘米加上原来的下底,根据梯形的面积公式:S=(a+b)h÷2,把数据代入公式解答.【解答】解:20÷4=5(厘米)5+3=8(厘米)(5+8)×5÷2=13×5÷2=32.5(平方厘米)答:原来直角梯形的面积是32.5平方厘米.故答案为:32.5.【点评】此题主要考查正方形的周长公式、梯形的面积公式的灵活运用,关键是熟记公式.16.【分析】根据正方形的周长公式:C=4a,那么a=C÷4,据此求出正方形的边长,再根据正方形的面积公式:S=a2,求出这个运动场的面积是多少公顷,然后根据“包含”除法的意义,用除法解答.【解答】解:1平方千米=100公顷400÷4=100(米)100×100÷10000=10000÷10000=1(公顷)100÷1=100(个)答:运动场的面积是1公顷,100个这样的运动场面积是1平方千米.故答案为:1,100.【点评】此题主要考查正方形的周长公式、面积公式的灵活运用,关键是熟记公式,注意:面积单位相邻单位之间的进率及换算.17.【分析】根据题意图形,把大黑色正方形的2个边长分别向上和向右平移到大正方形的边上,同理把小黑色正方形的2个边长分别向左和向下平移到大正方形的边上,如图:,那么大正方形的周长等于两个黑色正方形周长的和,所以大正方形的周长是36厘米,用36÷4=9厘米,求出大正方形的边长,然后再根据正方形的面积公式进行解答.【解答】解:如图:;大正方形的周长等于两个黑色正方形周长的和,即大正方形的周长是36厘米;36÷4=9(厘米)9×9=81(平方厘米)答:整个图形的面积是81平方厘米.故答案为:81平方厘米.【点评】本题关键是通过平移的方法,得出大正方形的周长等于两个黑色正方形周长的和,然后再根据正方形的周长与面积公式进行解答.18.【分析】剩下彩纸的面积=梯形的面积﹣长方形的面积,利用梯形的面积公式S=(a+b)×h÷2和长方形的面积公式S=ab即可求出剩下彩纸的面积.【解答】解:(50+30)×25÷2﹣20×15=1000﹣300=700(平方厘米)答:剩下彩纸的面积是700平方厘米.故答案为:700.【点评】本题属于求组合图形面积的问题,这种类型的题目主要明确组合图形是由哪些基本的图形构成的,然后看是求几种图形的面积和还是求面积差,然后根据面积公式解答即可.三.判断题(共5小题)19.【分析】由题意可知:因为3个阴影三角形的底的和等于平行四边形的底,高等于平行四边形的高,所以3个阴影三角形的面积和等于平行四边形的面积的一半,据此即可进行解答.【解答】解:因为3个阴影三角形的底的和等于平行四边形的底,高等于平行四边形的高,所以3个阴影三角形的面积和等于平行四边形的面积的一半;所以原题说法正确.故答案为:√.【点评】解答此题的主要依据是:三角形的面积是与其等底等高的平行四边形面积的一半.20.【分析】当正方形被拉成平行四边形后,它的长和宽没变,所以周长不变,但是高变小了,所以面积就变小.据此判断.【解答】解:因为正方形被拉成平行四边形后,它的长和宽没变,所以周长不变,但是高变小了,所以面积就变小了;因此,把一个正方形框架拉成一个平行四边形,面积变化了,周长没有变化.这种说法是正确的.故答案为:√.【点评】此题主要考查平行四边形易变形的特征及周长和面积公式的灵活应用.21.【分析】三角形的面积=底×高÷2,因此决定三角形面积大小的因素有两个,那就是它的底和对应底上的高,据此即可解答.【解答】解:根据以上分析知:当三角形的底一定时,高越长,面积越大,如三角形的底也是变化的,高越长,面积不一定越大.故答案为:×.【点评】本题主要考查了根据三角形面积公式解答问题的能力.22.【分析】根据梯形面积公式的推导过程可知,两个完全相同的梯形可以拼成一个平行四边形,拼成的平行四边形的底=梯形上底+下底,拼成平行四边形的高等于梯形的高,因为平行四边形的面积=底×高,所以梯形的面积公式:S=(a+b)h÷2,据此判断.【解答】解:两个完全相同的梯形可以拼成一个平行四边形,拼成的平行四边形的底=梯形上底+下底,拼成平行四边形的高等于梯形的高,因为平行四边形的面积=底×高,所以梯形的面积公式:S=(a+b)h÷2,因此,梯形的面积总是平行四边形的一半.此说法是错误的.故答案为:×.【点评】此题的目的是理解掌握梯形面积公式的推导关系及应用.23.【分析】首先根据正方形的面积公式:s=a2,把数据代入公式求出它的面积是多少平方米,然后换算成用公顷为作单位再与1公顷进行比较即可.【解答】解:100×100=10000(平方米),10000平方米=1公顷,故答案为:√.【点评】此题考查的目的是理解掌握正方形的面积公式及应用,以及面积单位相邻单位之间的进率及换算.四.计算题(共2小题)24.【分析】(1)已知梯形的上底是6厘米,下底是8厘米,高是5厘米,根据梯形的面积=(上底+下底)×高÷2进行求解;(2)阴影部分的面积是梯形的面积减去空白三角形的面积;梯形的上底是4厘米,下底是15厘米,高是5厘米,三角形的底是4厘米,高是5厘米,根据梯形的面积=(上底+下底)×高÷2,以及三角形的面积=底×高÷2进行求解;(3)这个图形是由一个三角形和一个长方形组成的,三角形的底是8厘米,高是4厘米,长方形的长是8厘米,宽是6厘米,根据三角形的面积=底×高÷2,以及长方形的面积=长×宽,分别求出三角形和梯形的面积,再相加;(4)如图,阴影部分是两个正方形的面积和减去下面三角形的面积;正方形的边长分别是5厘米和8厘米;空白三角形的底是5+8=13厘米,高是8厘米,分别根据正方形的面积=边长×边长,以及三角形的面积=底×高÷2进行求解.【解答】解:(1)(6+8)×5÷2=14×5÷2=70÷2=35(平方厘米)(2)(4+15)×5÷2﹣4×5÷2=19×5÷2﹣20÷2=47.5﹣10=37.5(平方厘米)(3)8×4÷2+8×6=16+48=64(平方厘米)(4)5×5+8×8﹣(5+8)×8÷2=25+64﹣52=37(平方厘米)【点评】本题考查了梯形、三角形以及长方形和正方形面积公式的灵活运用,注意找清楚图形是由哪些部分的和或差求出.25.【分析】①根据三角形的面积公式:S=ah÷2,平行四边形的面积公式:S=ah,把数据分别代入公式求出它们的面积和即可.②根据梯形的面积公式:S=(a+b)h÷2,三角形的面积公式:S=ah÷2,把数据分别代入公式求出梯形与三角形的面积差即可.【解答】解:①14×9+14×7÷2=126+49=175(平方厘米)答:它的面积是175平方厘米.②(28+45)×36÷2﹣28×10÷2=73×36÷2﹣280÷2=1314﹣140=1174(平方厘米)答:它的面积是1174平方厘米.【点评】解答求组合图形的面积,关键是观察分析图形是由哪几部分组成的,是各部分的面积和、还是求各部分的面积差,再根据相应的面积公式解答.五.应用题(共7小题)26.【分析】由图意可知:梯形的高是6米,则梯形的上底和下底的和是46﹣8=38(米),于是代入梯形的面积公式即可求出花坛的面积.【解答】解:(46﹣8)×8÷2=38×8÷2=304÷2=152(平方米)答:花坛的面积是152平方米.【点评】此题主要考查梯形的面积的计算方法,关键是得出梯形的上底和下底的和.27.【分析】根据一个平行四边形,底是5米,高是底的1.2倍,用5×1.2计算可以得到高,然后根据平行四边形的面积=底×高,代入数据计算即可得到这个平行四边形的面积.【解答】解:5×(5×1.2)=5×6=30(平方米)答:这个平行四边形的面积是30平方米.【点评】本题主要考查平行四边形的面积,明确平行四边形的面积=底×高是解答本题的关键.28.【分析】根据图示可得:这块黄瓜地的形状是梯形,下底是13﹣6=7米,上底是13米,高是8米,然后根据梯形的面积公式S=(a+b)h÷2解答即可.【解答】解:13﹣6=7(米)(13+7)×8÷2=20×4=80(平方米)答:这块黄瓜地的面积是80平方米.【点评】本题属于求组合图形面积的问题,这种类型的题目主要明确组合图形是由哪些基本的图形构成的,然后看是求几种图形的面积和还是求面积差,然后根据面积公式解答即可.29.【分析】通过平移,两块阴影部分可以组成一个长为(16﹣2)米,宽为(12﹣2)米的长方形,根据长方形面积计算公式“S=ab”即可解答.【解答】解:(16﹣2)×(12﹣2)=14×10=140(m2)答:草地(阴影部分)的面积是140m2.【点评】求组合图形的面积关键是把不规则图形通过整合(或图形变换)变成规则图形,再根据规则图形的面积计算公式解答.30.【分析】根据题意,可利用三角形的面积公式:S=底×高÷2计算出这块三角形玻璃的面积,然后再用玻璃的面积乘每平方分米的价格,列式解答即可得到答案;注意单位.【解答】解:三角形玻璃的面积为:240×150÷2=36000÷2=18000(平方厘米)18000平方厘米=180平方分米180×0.6=108(元)答:买这块玻璃需要108元.【点评】解答此题的关键是根据三角形的面积公式:S=底×高÷2计算出玻璃的面积,然后再用玻璃的面积乘每平方分米的价格即可.31.【分析】根据长方形的面积公式:S=ab,那么a=S÷b,用增加的面积除以增加的长求出原来的长,用增加的面积除以增加宽求出原来的宽,然后把数据代入公式解答.【解答】解:(400÷5)×(400÷20)=80×20=1600(平方米)答:原来游泳池占地1600平方米.【点评】此题主要考查长方形面积公式的灵活运用,关键是熟记公式.32.【分析】根据三角形的面积公式:S=ah÷2,长方形的面积公式:S=ab,把数据分别代入公式,求出三角形与长方形的面积和再减去窗户的面积就是粉刷的面积,用粉刷的面积乘每平方米用涂料的质量求出分数需要多少涂料;然后根据单价×数量=总价,据此列式解答.【解答】解:8×1.8÷2+8×6﹣2×1.2=7.2+48﹣2.4=55.2﹣2.4=52.8(平方米);52.8×0.4=21.12(千克);10×21.12=211.2(元);答:粉刷需21.12千克涂料,共需211.2元.【点评】解答求组合图形的面积,关键是观察分析图形是由哪几部分组成的,是各部分的面积和、还是求各部分的面积差,再根据相应的面积公式解答.。

五年级上册数学试题 第六单元测试卷 人教版附答案

五年级上册数学试题 第六单元测试卷  人教版附答案
=36÷2,
=18(平方厘米);
阴影部分的面积为:60﹣18=42(平方厘米);
答:阴影部分的面积是42平方厘米.
点评:解答此题的关键是明白:长方形ABCD与平行四边形CDEF等底等高,从而容易求平行四边形的面积,进而求出阴影部分的面积.
22.x=8.43;x=0.9;x=10;x=12
【解析】
【分析】
24.一堆钢管,最上层12根,最下层23根,从上到下每层多1根,共堆了12层。这样的两堆钢管一共有多少根?
25.算一算,下面三种菜地的面积各是多少?
26.小华剪了一个面积是60平方厘米的梯形纸板,它的上底与下底的和是15厘米,这个梯形纸板的高是多少厘米?
参考答案
1.126平方厘米63平方厘米
【解析】
解:60×2÷15,
=120÷15,
=8(厘米);
答:这个梯形纸板的高是8厘米.
点评:解答此题的关键是利用已知条件和梯形的面积公式即可求解.
【分析】
【详解】

2.8
【解析】
【分析】
由“三角形的面积=底×高÷2”可得“底=三角形底面积×2÷高”,三角形的面积和高已知,从而可以求出三角形的底。
【详解】
24×2÷6
=48÷6
=8(厘米)
【点睛】
此题主要考查三角形的面积的计算方法的灵活应用。
3.80
【解析】
【分析】
依据在直角三角形中斜边最长,先判断出10厘米高的对应底边是8厘米,进而利用平行四边形的面积公式即可求解.
答:梯形的面积是32平方厘米.
故答案为32.
点评:解答此题的主要依据是:高相等的三角形的面积比等于其对应底的比.
10.C
【解析】

人教版数学五年级上册《第六单元检测》含答案

人教版数学五年级上册《第六单元检测》含答案

人教版数学五年级上学期第六单元测试一.选择题1.(2019秋•广饶县期末)一个三角形的底不变,要使面积扩大2倍,高要扩大()A.2倍B.4倍C.6倍D.8倍2.(2019秋•合肥期末)用一张长方形纸剪同样的三角形(如图),最多能剪成()个这样的三角形.A.12 B.24 C.253.(2019秋•铜官区期末)三角形的底和高都扩大到原来的4倍,它的面积就扩大到原来的()倍.A.2 B.4 C.8 D.164.(2019秋•丰台区期末)观察如图,随着圆的个数增多,阴影的面积()A.没有改变B.可能不变C.越变越大D.越变越小5.(2019秋•平山县期末)一个三角形和一个平行四边形的面积相等,底边也相等.已知平行四边形的高是0.8dm,三角形的高是()dm.A.0.4 B.0.8 C.1.66.(2020春•定陶区校级期中)一个等腰三角形的两条边是10厘米和4厘米,它的周长是()厘米.A.18 B.14 C.24 D.207.(2019秋•丰台区期末)小明在研究平行四边形的面积时,想把一个平行四边形转化成一个长方形.下面的四种剪法中不能拼成长方形的是图()A.B.C.D.8.(2019秋•武川县期末)一个三角形与一个平行四边形的面积相等,底也相等.三角形的高是2分米,平行四边形的高是()分米.A.1 B.2 C.3 D.4二.填空题9.(2019秋•和平区期末)如图组合图形的面积是平方厘米.10.(2019秋•铜官区期末)一个三角形的底是12厘米,高是7.5厘米,与它等底等高的平行四边形面积是平方厘米.11.(2019秋•大田县期末)一个平行四边形的面积是18dm2,底是3.6dm,则对应的高是dm.12.(2019秋•嘉陵区期末)一个三角形的底边是4cm,高是2.5cm,这个三角形的面积是cm2;和它等底等高的平行四边形的面积是cm2.13.(2020春•连云区校级期中)一个长方形长10米,宽6米,如果长减少米或者宽增加米,这个长方形就变成了正方形,这两个正方形相差平方米.14.(2020春•新田县期中)一块长方形绿地长50米,宽25米,块这样的绿地面积约是1公顷.三.判断题15.(2019秋•成华区期末)梯形的面积总是平行四边形的一半.(判断对错)16.(2019秋•交城县期末)一个三角形的面积是56平方厘米,底是8厘米,那么高是7厘米..(判断对错)17.(2019秋•高平市期末)把一个平行四边形拉成一个长方形,它的面积变大了,但是周长不变.(判断对错)18.(2019春•清苑区期末)一个长方形的长增加2米,宽增加3米,面积比原来增加6平方米.(判断对错)19.(2019秋•成华区期末)平行四边形和三角形的面积,都可以运用梯形的面积公式来计算.(判断对错)20.(2019秋•红安县期末)一个三角形的面积是 4.5cm2,它的一条高为 1.5cm,则它对应的底的长度为6cm.(判断对错)四.计算题21.(2019秋•交城县期末)求如图阴影部分的面积.(单位:厘米)22.(2019秋•卫东区期末)计算阴影部分的面积.五.应用题23.(2019秋•丹江口市期末)一块正方形的草地边长400米,它的占地面积是多少平方米?合多少公顷?24.(2019秋•惠城区校级期末)文化广场有一块三角形空地,底是17米,高是20米,要给这块空地铺上草坪,每平方米草坪的价格是120元,准备20000元钱够吗?25.(2019秋•卫东区期末)在一块平行四边形空地中,有一条鹅卵石小路,已知平行四边形的高是20米,底是36米.准备在这块空地上铺设草坪(小路除外),如果1平方米草坪需要1.5元,一共需要多少元?26.(2020春•盐城期中)新庄小学原来有一块长方形草坪,长20米.修建校园时,把草坪的长减少4米,这样草坪的面积就减少了60平方米.现在草坪的面积是多少平方米?(先在图上画一画,再解答)27.(2019秋•广饶县期末)一块平行四边形玻璃,底长150厘米,高比底少50厘米,刘阿姨买这块玻璃用了90元钱.每平方米玻璃的价钱是多少?28.(2019秋•闵行区期末)一个长方形与一个平行四边形交叠在一起,如图所示.(单位:厘米)①阴影部分是一个特殊的四边形,它是形.②求阴影部分的面积.29.(2019秋•平山县期末)一个三角形的底是4cm,如果底减少1cm,那么三角形的面积就减少1.5cm2.原来三角形的面积是多少平方厘米?30.(2019秋•勃利县期末)一块矩形绿地宽8米,面积200平方米,现长不变,宽增加到24米,扩大后的绿地面积是多少?31.(2019秋•昌乐县期末)用四根小棒做成一个长方形,然后拉成一个平行四边形,如图.拉成后平行四边形面积比原来长方形面积增加了还是减少了?增加或减少了多少平方厘米?32.(2019秋•嘉陵区期末)用木条和铁钉钉成一个长8dm、宽6dm的长方形.把它拉成一个平行四边形后,测得平行四边形的的高是3dm(如图).平行四边形的面积比长方形的面积减少了多少平方分米?答案与解析一.选择题1.(2019秋•广饶县期末)一个三角形的底不变,要使面积扩大2倍,高要扩大() A.2倍B.4倍C.6倍D.8倍【解答】解:因为三角形的面积=底×高÷2,若底不变,要使面积扩大2倍,高要扩大2倍.故选:A.2.(2019秋•合肥期末)用一张长方形纸剪同样的三角形(如图),最多能剪成()个这样的三角形.A.12 B.24 C.25【解答】解:25÷2=12(个)…1(厘米)12×2=24(个)答:最多能剪成24个这样的三角形.故选:B.3.(2019秋•铜官区期末)三角形的底和高都扩大到原来的4倍,它的面积就扩大到原来的()倍.A.2 B.4 C.8 D.16【解答】解:原来的三角形面积:三角形的面积=底×高÷2,现在的三角形的面积:三角形的面积=(底×4)×(高×4)÷2,根据积的变化规律,现在的三角形面积就扩大4×4=16倍.故选:D.4.(2019秋•丰台区期末)观察如图,随着圆的个数增多,阴影的面积()A.没有改变B.可能不变C.越变越大D.越变越小【解答】解:(1)S阴影=a2﹣π•=a2﹣πa2(2)S阴影=a2﹣4×π=a2﹣(3)S阴影=a2﹣9π×=a2﹣三个图形的阴影部分的面积相等.故选:A.5.(2019秋•平山县期末)一个三角形和一个平行四边形的面积相等,底边也相等.已知平行四边形的高是0.8dm,三角形的高是()dm.A.0.4 B.0.8 C.1.6【解答】解:假设平行四边形的底是1分米,那么平行四边形的面积是:1×0.8=0.8(平方分米);根据题意可得:三角形的底是1分米,面积是0.8平方分米;三角形的高是:2×0.8÷1=1.6÷1=1.6(分米)答:三角形的高是1.6分米.故选:C.6.(2020春•定陶区校级期中)一个等腰三角形的两条边是10厘米和4厘米,它的周长是()厘米.A.18 B.14 C.24 D.20【解答】解:(1)若4厘米为腰长,10厘米为底边长,由于4+4=8,两边之和不大于第三边,则三角形不存在;(2)若10厘米为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为10+10+4=24(厘米).故选:C.7.(2019秋•丰台区期末)小明在研究平行四边形的面积时,想把一个平行四边形转化成一个长方形.下面的四种剪法中不能拼成长方形的是图()A.B.C.D.【解答】解:根据长方形的特征,长方形的对边平行且相等,选项A:图形中是沿着高剪得,有直角,把剪下的左边图形平移到右边可以得到一个长方形.选项B:图形中不是沿着高剪得,没有直角,把剪下的上面图形平移到下面不能得到一个长方形.选项C,沿平行四边形的一边中点分别剪下了个直角三角形,通过旋转、平移后能够拼成一个长方形.选项D,沿平行四边形的高剪开后,可以平成一个长方形.故选:B.8.(2019秋•武川县期末)一个三角形与一个平行四边形的面积相等,底也相等.三角形的高是2分米,平行四边形的高是()分米.A.1 B.2 C.3 D.4【解答】解:2÷2=1(分米)答:平行四边形的高是1分米.故选:A.二.填空题9.(2019秋•和平区期末)如图组合图形的面积是145平方厘米.【解答】解:13×10+3×10÷2=130+15=145(平方厘米)答:组合图形的面积是145平方厘米.故答案为:145.10.(2019秋•铜官区期末)一个三角形的底是12厘米,高是7.5厘米,与它等底等高的平行四边形面积是90平方厘米.【解答】解:7.5×12=90(平方厘米)答:与它等底等高的平行四边形面积是90平方厘米.故答案为:90.11.(2019秋•大田县期末)一个平行四边形的面积是18dm2,底是3.6dm,则对应的高是5dm.【解答】解:18÷3.6=5(dm)答:则对应的高是5dm.故答案为:5.12.(2019秋•嘉陵区期末)一个三角形的底边是4cm,高是2.5cm,这个三角形的面积是5cm2;和它等底等高的平行四边形的面积是10cm2.【解答】解:4×2.5÷2=10÷2=5(平方厘米)5×2=10(平方厘米)答:这个三角形的面积是5cm2;和它等底等高的平行四边形的面积是10平方厘米.故答案为:5,10.13.(2020春•连云区校级期中)一个长方形长10米,宽6米,如果长减少4米或者宽增加4米,这个长方形就变成了正方形,这两个正方形相差64平方米.【解答】解:10﹣6=4(米)这个长方形的长减少4米,或宽增加4米,都可以得到一个正方形,10×(6+4)﹣(10﹣4)×6=10×10﹣6×6=100﹣36=64(平方米)答:这两个正方形的面积相差64平方米.故答案为:4、4、64.14.(2020春•新田县期中)一块长方形绿地长50米,宽25米,8块这样的绿地面积约是1公顷.【解答】解:50×25=1250(平方米)1公顷=10000平方米10000÷1250=8(块)答:8块这样的绿地面积约是1公顷.故答案为:8.三.判断题15.(2019秋•成华区期末)梯形的面积总是平行四边形的一半.×(判断对错)【解答】解:两个完全相同的梯形可以拼成一个平行四边形,拼成的平行四边形的底=梯形上底+下底,拼成平行四边形的高等于梯形的高,因为平行四边形的面积=底×高,所以梯形的面积公式:S=(a+b)h÷2, 因此,梯形的面积总是平行四边形的一半.此说法是错误的.故答案为:×.16.(2019秋•交城县期末)一个三角形的面积是56平方厘米,底是8厘米,那么高是7厘米.×.(判断对错)【解答】解:56×2÷8,=112÷8,=14(厘米);答:三角形的高是14厘米.故答案为:×.17.(2019秋•高平市期末)把一个平行四边形拉成一个长方形,它的面积变大了,但是周长不变.√(判断对错)【解答】解:因为把平行四边形木框拉成长方形,四个边的长度没变,则其周长不变;但是它的高变长了,所以它的面积就变大了.故答案为:√.18.(2019春•清苑区期末)一个长方形的长增加2米,宽增加3米,面积比原来增加6平方米.×(判断对错)【解答】解:一个长方形的长是8米,宽是5米,增加后长是8+2=10米,宽是5+3=8米,8×5=40(平方米)(8+2)×(5+3)=10×8=80(平方米)80﹣40=40(平方米)40平方米≠6平方米因此,一个长方形的长增加2米,宽增加3米,面积比原来增加6平方米.这种说法是错误的.故答案为:×.19.(2019秋•成华区期末)平行四边形和三角形的面积,都可以运用梯形的面积公式来计算.√(判断对错)【解答】解:梯形的面积=(上底+下底)×高÷2平行四边形的面积=(上底+下底)×高÷2=2×平行四边形的底×高÷2=底×高三角形的面积=(上底+下底)×高÷2=(0+下底)×高÷2=底×高÷2因此,平行四边形和三角形的面积,都可以运用梯形的面积公式来计算.此说法正确.故答案为:√.20.(2019秋•红安县期末)一个三角形的面积是4.5cm2,它的一条高为1.5cm,则它对应的底的长度为6cm.√(判断对错)【解答】解:4.5×2÷1.5=9÷1.5=6(cm)答:它对应的底的长度为6cm.故题干的说法是正确的.故答案为:√.四.计算题21.(2019秋•交城县期末)求如图阴影部分的面积.(单位:厘米)【解答】解:[(20+(12+20+12)]×12÷2﹣20×6=64×12÷2﹣20×6=384﹣120=264(平方厘米)答:阴影部分的面积是264平方厘米.22.(2019秋•卫东区期末)计算阴影部分的面积.【解答】解:(1)(8+14)×(16﹣10)÷2+10×8=22×6÷2+10×8=66+80=146(平方米)答:阴影部分的面积是146平方米.(2)8×4÷2+5×4÷2=16+10=26(平方厘米)答:阴影部分的面积是26平方厘米.五.应用题23.(2019秋•丹江口市期末)一块正方形的草地边长400米,它的占地面积是多少平方米?合多少公顷?【解答】解:400×400=160000(平方米)160000平方米=16公顷答:它的占地面积是160000平方米,合16公顷.24.(2019秋•惠城区校级期末)文化广场有一块三角形空地,底是17米,高是20米,要给这块空地铺上草坪,每平方米草坪的价格是120元,准备20000元钱够吗?【解答】解:17×20÷2×120=170×120=20400(元)因为20400>20000,所以准备20000元钱不够.答:准备20000元钱不够.25.(2019秋•卫东区期末)在一块平行四边形空地中,有一条鹅卵石小路,已知平行四边形的高是20米,底是36米.准备在这块空地上铺设草坪(小路除外),如果1平方米草坪需要1.5元,一共需要多少元?【解答】解:36×20﹣1×20=720﹣20=700(平方米)1.5×700=1050(元)答:一共需要1050元.26.(2020春•盐城期中)新庄小学原来有一块长方形草坪,长20米.修建校园时,把草坪的长减少4米,这样草坪的面积就减少了60平方米.现在草坪的面积是多少平方米?(先在图上画一画,再解答)【解答】解:如图所示:(20﹣4)×(60÷4)=16×15=240(平方厘米)答:现在草坪的面积是240平方米.27.(2019秋•广饶县期末)一块平行四边形玻璃,底长150厘米,高比底少50厘米,刘阿姨买这块玻璃用了90元钱.每平方米玻璃的价钱是多少?【解答】解:150×(150﹣50)=150×100=15000(平方厘米)15000平方厘米=1.5平方米90÷1.5=60(元)答:每平方米玻璃的价钱是60元.28.(2019秋•闵行区期末)一个长方形与一个平行四边形交叠在一起,如图所示.(单位:厘米)①阴影部分是一个特殊的四边形,它是梯形.②求阴影部分的面积.【解答】解:根据题干分析可得,①阴影部分是一个特殊的四边形,它是梯形.②求阴影部分的面积是:(8+20)×10÷2=28×5=140(平方厘米)答:阴影部分的面积是140平方厘米.故答案为:梯.29.(2019秋•平山县期末)一个三角形的底是4cm,如果底减少1cm,那么三角形的面积就减少1.5cm2.原来三角形的面积是多少平方厘米?【解答】解:1.5×2÷1=3÷1=3(厘米)4×3÷2=12÷2=6(平方厘米)答:原来三角形的面积是6平方厘米.30.(2019秋•勃利县期末)一块矩形绿地宽8米,面积200平方米,现长不变,宽增加到24米,扩大后的绿地面积是多少?【解答】解:(200÷8)×24=25×24=600(平方米)答:扩大后的绿地面积是600平方米.31.(2019秋•昌乐县期末)用四根小棒做成一个长方形,然后拉成一个平行四边形,如图.拉成后平行四边形面积比原来长方形面积增加了还是减少了?增加或减少了多少平方厘米?【解答】解:7×5﹣7×4=35﹣28=7(平方厘米)答:拉成后平行四边形面积比原来长方形面积减少了,减少了7平方厘米.32.(2019秋•嘉陵区期末)用木条和铁钉钉成一个长8dm、宽6dm的长方形.把它拉成一个平行四边形后,测得平行四边形的的高是3dm(如图).平行四边形的面积比长方形的面积减少了多少平方分米?【解答】解:8×6﹣8×3=48﹣24=24(平方分米)答:平行四边形的面积比长方形的面积减少了24平方分米.。

(完整版)人教版五年级数学上册第六单元测试卷(附答案)

(完整版)人教版五年级数学上册第六单元测试卷(附答案)

精心整理人教版五年级数学上册第六单元测试卷(附答案)(时间:90分钟分钟100分)一、填空题。

(16分)1.一个正方形的边长是am,那么它的周长是()m,面积是()m2。

2根,最下面一层有12根,共堆了11层,这堆钢管共有()根。

11.一个平行四边形,底是10dm,高是4dm,如果底不变,高增加2dm,那么面积()d m2,如果高不变,底增加2dm,那么面积增加()d m2。

12.一个直角梯形的下底是8cm,如果把上底增加3cm,它就变成了一个正方形。

这个梯形的面积是()cm2。

二、判断题。

(正确的画“√”,错误的画“?”)(5分)1.等底、等高的两个三角形,形状不一定相同,但它们的面积一定相等。

( )2.任意两个三角形都可以拼成一个平行四边形。

( )4.能拼成一个长方形的是两个完全一样的( )三角形。

A.锐角B.直角C.钝角D.任意5.一堆钢管,最上层4根,最下层10根,相邻两层均相差1根,这堆钢管共( )根。

A.35B.42C.49D.52四、求下列图形的面积。

(16分)1. 2.3. 4.五、求下列图形中阴影部分的面积。

(20分)1. 2.3.(单位:cm)4.(单位:cm)六、解决问题。

(33分)1.一块平行四边形玻璃,底为5m,高为4m,每平方米玻璃售价为48元。

买这块玻璃需要多少元?2.一块三角形广告牌,底是10m,高是3.4m。

如果要用油漆刷这块广告牌,每平方米用油漆0.75kg,刷这块广告牌一面至少要用油漆多少千克?(得数保留整千克)3.王大伯利用一面墙围成一个鸡舍(如图)。

已知所用篱笆全长11.5m。

这个鸡舍的面积是多少平方米?4.有一块三角形的花圃,底是25m,高是20m。

平均每平方米产鲜花50枝,这块花圃一共可以产鲜花多少枝?5.沙漏是古代的一种计量时间的工具。

你能算出如图所示沙漏截面的面积吗?(单位:cm)参考答案一、填空题:1、4aam22、平行四边形6.23、664、45、166、126 637、808、209、30。

人教版小学五年级数学上册第6章多边形的面积单元测试卷(有答案)

人教版小学五年级数学上册第6章多边形的面积单元测试卷(有答案)

人教版小学五年级数学上册第6章多边形的面积单元测试卷一.选择题(共10小题)1.一块长方形稻田长2500米,宽40米,面积()公顷.A.1 B.10 C.100 D.10002.计算如图平行四边形的面积,正确算式是()A.4×8 B.12×8 C.6×83.一个梯形的面积是16.32平方米,上底是0.8米,下底是7.2米,高()米.A.4.8米B.5.6米C.4.08米4.梯形的上底是3dm,下底是5dm,面积是16dm2,梯形的高是()A.4dm B.3dm C.2dm5.下列说法正确的是()A.一个边长为4厘米的正方形,它的周长和面积一样大B.用一根铁丝无论是围成什么样的长方形,它们的周长一样大C.面积相等的长方形,周长一定相等D.周长相等的长方形,面积也相等6.如图中,平行四边形的高是28cm,它的对应底是()A.36cm B.20cm C.25cm D.28cm7.一个三角形的底和高都扩大到原来的3倍,它的面积就扩大到原来的()倍.A.3 B.6 C.9 D.278.一个三角形的面积是36cm2,它的底是18cm,高是()cm.A.1 B.2 C.4 D.89.如图,这个平行四边形的一条高10cm,阴影部分的三角形的面积是()cm2.A.80 B.60或40 C.60 D.4010.如图中阴影分的面积是()平方厘米.(单位:cm)A.60 B.108 C.120 D.168二.填空题(共8小题)11.一个梯形的面积是240m2,上底是12m,下底是18m,高是m.12.一个等腰三角形其中两条边长是7厘米和15厘米,它的周长是厘米.13.用篱笆靠墙围一个梯形的地(如图),这块地的面积是234m2,篱笆长是米.14.一个平行四边形的面积是60dm2,底是5dm,这条底边对应的高是dm.15.如图,平行四边形的高是4厘米,它的面积是平方厘米.16.学校走廊长24米,宽3米.用面积是9平方分米的正方形地砖铺走廊地面,需要块.17.数一数,比一比.(每个方格表示1cm2)(1)图①的面积是cm2,图②的面积是cm2,图③的面积是cm2,图④的面积是cm2,图⑤的面积是cm2.(2)我认为图最难数,运用方法可以化难为易.18.如图直角三角形的面积是,斜边上的高是厘米.三.判断题(共5小题)19.我国古代数学家刘徽利用出入相补原理来计算平面图形的面积.(判断对错)20.面积相等的两个平行四边形,它的底和高一定都相等.(判断对错)21.梯形的上底和下底越大,梯形的面积就越大.(判断对错)22.边长100米的正方形面积是1公顷(判断对错)23.两个同底等高的三角形,形状一定相同,面积也相等..(判断对错)四.计算题(共1小题)24.求下面组合图形的面积.(单位:分米)五.操作题(共1小题)25.画出面积都是6cm2的平行四边形,三角形和梯形各一个.(每个小方格代表1cm2)六.应用题(共5小题)26.有一块平行四边形菜地,分成三块种菜:第一块种西红柿,第二块种黄瓜,第三块种茄子.每种菜地是多少平方米?27.文化广场有一块三角形空地,底是17米,高是20米,要给这块空地铺上草坪,每平方米草坪的价格是120元,准备20000元钱够吗?28.一批圆木堆叠成一堆,最下面的一层是9根,每往上一层就少放一根,共5层.(1)列式计算出最上一层有多少根?(2)列式计算出这批圆木共有多少根?29.一个平行四边形,底是5米,高是底的1.2倍,这个平行四边形的面积是多少?30.在公园里有两个花圃,它们的周长相等.其中长方形花圃长30米,宽18米,求另一个正方形花圃的面积.参考答案与试题解析一.选择题(共10小题)1.【解答】解:2500×40=100000平方米100000平方米=10公顷答:面积是10公顷.故选:B.2.【解答】解:6×8=48答:它的面积是48.故选:C.3.【解答】解:16.32×2÷(0.8+7.2)=32.64÷8=4.08(米)答:高是4.08米.故选:C.4.【解答】解:16×2÷(3+5)=32÷8=4(分米)答:它的高是4分米.故选:A.5.【解答】解:A.因为周长和面积不是同类量,所以无法进行比较.因此,一个边长为4厘米的正方形,它的周长和面积一样大.此说法错误.B.封闭图形一周的长就是这个图形的周长.因此,用一根铁丝无论是围成什么样的长方形,它们的周长一样大.此说法正确.C.根据长方形的面积公式:S=ab,周长公式:C=(a+b)×2,如:两个长方形的面积都是24平方厘米,其中一个长方形的长是24厘米,宽是1厘米,周长是50厘米,另一个长方形的长是6厘米,宽是4厘米,周长是20厘米.两个长方形的面积相等它们的周长不一定相等.因此,面积相等的长方形,周长一定相等.此说法错误.D.根据长方形的面积公式:S=ab,周长公式:C=(a+b)×2,如两个长方形的周长都是12厘米,其中一个长方形的长是5厘米,宽是1厘米,面积是5平方厘米,另一个长方形的长是4厘米,宽是2厘米,面积是8平方厘米.两个长方形的周长相等它们的面积不一定相等.因此,长相等的长方形,面积也相等.此说法错误.故选:B.6.【解答】解:如图中,平行四边形的高是28cm,它的对应底25cm.故选:C.7.【解答】解:3×3=9答:它的面积就扩大到原来的9倍.故选:C.8.【解答】解:36×2÷18=72÷18=4(厘米)答:高是4cm.故选:C.9.【解答】解:8×10÷2=80÷2=40(平方厘米)答:阴影部分的面积是40平方厘米.故选:D.10.【解答】解:10×12÷2=10×6=60(平方厘米)答:阴影分的面积是60平方厘米.故选:A.二.填空题(共8小题)11.【解答】解:240×2÷(12+18)=480÷30=16(米)答:高是16米.故答案为:16.12.【解答】解:15+15+7=37(厘米)答:它的周长是37厘米.故答案为:37.13.【解答】解:234×2÷12+12=39+12=51(米)答:篱笆长是51米.故答案为:51.14.【解答】解:60÷5=12(分米)答:这条底边对应的高是12分米.故答案为:12.15.【解答】解:3×4=12(平方厘米)答:它的面积为12平方厘米.故答案为:12.16.【解答】解:24×3=72(平方米)72平方米=7200平方分米7200÷9=800(块)答:需要地砖800块.故答案为:800.17.【解答】解:如图(1)图①的面积是 3cm2,图②的面积是 4cm2,图③的面积是 5cm2,图④的面积是 2cm2,图⑤的面积是 4.5cm2.(2)我认为图⑤最难数,运用割补方法可以化难为易.故答案为:3,4,5,2,4.5,⑤,割补.18.【解答】解:3×4÷2=6(平方厘米)6×2÷5=12÷5=2.4(厘米),答:这个三角形的面积是6平方厘米,斜边上的高是2.4厘米.故答案为:6平方厘米、2.4.三.判断题(共5小题)19.【解答】解:我国古代数学家刘徽利用出入相补原理来计算平面图形的面积.说法正确,故答案为:√.20.【解答】解:假设一个平行四边形的底是8厘米,高是4厘米,它的面积是8×4=32(平方厘米);另一个平行四边形的底是16厘米,高是2厘米,它的面积是16×2=32(平方厘米);因此,面积相等的两个平行四边形,它的底和高一定都相等.这种说法是错误的.故答案为:×.21.【解答】解:根据梯形的面积公式,梯形的面积由上底、下底、高三个要素确定,上底和下底越长不能说它们的面积就越大.故答案为:×.22.【解答】解:100×100=10000(平方米),10000平方米=1公顷,故答案为:√.23.【解答】解:因为三角形的面积公式为:三角形的面积=底×高÷2,所以只要是等底等高的三角形面积一定相等,形状不一定相同;故判断为:×.四.计算题(共1小题)24.【解答】解:28×20=560(平方分米)答:组合图形的面积是560平方分米.五.操作题(共1小题)25.【解答】解:作图如下:六.应用题(共5小题)26.【解答】解:西红柿菜地的面积:3.8×4.4÷2=8.36(平方米)黄瓜菜地的面积:4.2×4.4=18.48(平方米)茄子菜地的面积:(1.2+5)×4.4÷2=6.2×2.2=13.64(平方米)答:西红柿菜地的面积是8.36平方米,黄瓜菜地的面积是18.48平方米,茄子菜地的面积是13.64平方米.27.【解答】解:17×20÷2×120=170×120=20400(元)因为20400>20000,所以准备20000元钱不够.答:准备20000元钱不够.28.【解答】解:(1)9﹣1×4=5(根)答:最上一层有5根.(2)(5+9)×5÷2=14÷2×5=35(根)答:这批圆木共有35根.29.【解答】解:5×(5×1.2)=5×6=30(平方米)答:这个平行四边形的面积是30平方米.30.【解答】解:(30+18)×2÷4 =48×2÷4=96÷4=24(米)24×24=576(元)答:正方形花坛的面积是576平方米.。

人教版数学五年级上册《第六单元测试》(带答案)

人教版数学五年级上册《第六单元测试》(带答案)

第6单元综合测试一.选择题(共8小题)1.如图,()是平行四边形的高.A.a或b B.a C.b2.在学习平行四边形面积公式时,小明把一个平行四边形沿高剪开后,拼成一个长方形,他发现拼成的长方形与平行四边形相比()A.周长相等,面积相等B.面积相等,周长变短了C.周长相等,面积变了D.面积相等,周长变长了3.梯形的上底是3dm,下底是5dm,面积是16dm2,梯形的高是()A.4dm B.3dm C.2dm4.如果三角形的底不变,高乘3,则面积是原来的()倍.A.3B.6C.9D.1.55.李叔叔和张叔叔用同样长的篱笆一面靠墙分别围成如图所示的菜园,两个菜园面积相比是()A.李叔叔的菜园大B.张叔叔的菜园大C.一样大6.学校图书馆长9.7m,宽5.3m,用边长0.9m的正方形瓷砖铺地,()块够.(不考虑损耗)A.50B.60C.707.用18根1米长的木棒围长方形,围出的长方形面积最大是()平方米.A.14B.16C.18D.208.如图,平行四边形底边的中点是A,它的面积是48m2.涂色三角形的面积是()m2.A.4B.8C.12二.填空题(共8小题)9.一个平行四边形的面积是28m2,已知底是8m,与这条底相对应的高是m.10.一个梯形上下底的平均长度是8厘米,它的高是2.4厘米,它的面积是平方厘米.11.边长为的正方形土地,它的面积正好是1m2.12.一个长方形的面积是13平方厘米,在这个长方形中画一个面积最大的三角形,三角形的面积是平方厘米.13.一个三角形的面积是12.8cm2,与它等底等高的平行四边形的面积是cm2.14.一个平行四边形的底是5.5米,高是2米,面积是平方米.15.一个正方形花坛,边长扩大3倍,它的面积要倍.16.有一块平行四边形菜地(如图).DE=EF=FC,GB=BD,三角形GEF种的西红柿,面积是16平方米,这块平行四边形菜地的面积是平方米.三.判断题(共5小题)17.面积相等的两个正方形,周长不一定相等.(判断对错)18.如果一个梯形的上底增加5厘米,下底减少5厘米,高不变,那么它的面积也不变.(判断对错)19.如图我国历史文化遗产《易经》中的主要图象﹣﹣太极图,图中黑白两部分的周长和面积分别相等.(判断对错)20.一个三角形,底扩大到原来的2倍,要使面积不变,高要缩小到原来的.(判断对错)21.用木条做一个长方形框架,再拉成一个平行四边形,围成的面积要变小.(判断对错)四.计算题(共2小题)22.求阴影部分的面积和周长.23.小明计算一个梯形面积的时候发现,如果把这个梯形的上底增加5厘米,梯形的面积就增加了25平方厘米,且变成一个正方形,请你计算一下梯形原来的面积是多少?五.应用题(共2小题)24.公园有块平行四边形的草地,底是25米,高是28米.里面摆放的盆景每盆占地2.5平方米,一共可以摆放多少盆盆景?25.如图,从一块边长为15厘米的正方形木板中锯掉一个长方形,锯掉的长方形面积是30平方厘米.求剩下部分的面积和周长各是多少?六.操作题(共1小题)26.在下图中先画一条线,把它分成两个已学过的图形,再量出相关数据,并在图上标注出来(取整厘米数),然后求出这个图形的面积.七.解答题(共2小题)27.(1)计算出平行四边形的面积.(2)在格子图中画一个与这个平行四边形面积相等的三角形.28.如图是一个由七巧板组成的边长为8厘米的正方形,请列式计算出6号图形的面积.答案与解析一.选择题(共8小题)1.【分析】在平行四边形中,从一条边上的任意一点向对边作垂线,这点与垂足间的距离叫做以这条边为底的平行四边形的高.据此解答.【解答】解:根据平行四边形的高的意义可知,a、b都是平行四边形的高.故选:A.【点评】此题考查了平行四边形的高的意义及辨识.2.【分析】把一个平行四边形沿高剪拼成一个长方形,底和高都不变,则面积不变,但是周长变小了,据此即可进行解答.【解答】解:把一个平行四边形沿高剪拼成一个长方形,底和高都不变,则面积不变,但是边的长度变小了,所以周长变小了,故选:B.【点评】解答此题的关键是弄清楚:变化前后各条边的长度的变化,以及底和高的变化.3.【分析】根据梯形的面积公式:S=(a+b)h÷2,变形得:h=2S÷(a+b),据此解答.【解答】解:16×2÷(3+5)=32÷8=4(分米)答:它的高是4分米.故选:A.【点评】此题主要考查梯形面积公式的灵活运用.4.【分析】根据三角形的面积公式:S=ah和积的变化规律进行解答即可.【解答】解:根据积的变化规律知:一个因数不变,另一个因数扩大或缩小几倍(0除外),积也扩大或缩小几倍,所以一个三角形的底不变,高乘3,则面积是原来的3倍.故选:A.【点评】本题主要考查了学生根据三角形的面积公式和积的变化规律解答问题的能力.5.【分析】在梯形中,用篱笆的长减去20米等于梯形的上下底之和,再用梯形的面积=上下底之和×高÷2求出梯形的面积,在三角形中,用篱笆的长减去20米等于三角形的底,再用三角形的面积=底×高÷2求出三角形的面积,因为篱笆的长同样长,所以都减去20米,得数也相同,所以梯形的上下底之和等于三角形的底,所以求出它们的面积也相等,据此判断.【解答】解:由分析可得,在梯形和三角形中,用同样长的篱笆减去20米等于梯形的上下底之和,也是三角形的底,再用梯形的面积=上下底之和×高÷2求出梯形的面积,用三角形的面积=底×高÷2求出三角形的面积,所以求出它们的面积相等.故选:C.【点评】此题考查了梯形和三角形面积公式的实际应用.6.【分析】先依据长方形的面积公式S=ab求出图书室的面积,再除以每块瓷砖的面积,就是需要的瓷砖的块数,问题即可得解.【解答】解:9.7×5.3÷(0.9×0.9)=51.41÷0.81≈64(块)64<70答:70块够.故选:C.【点评】此题主要考查长方形和正方形的面积公式的理解和灵活应用.7.【分析】要使围出的长方形面积最大,必须围成长和宽最接近的长方形,长方形的周长相当于18米长的木棒,然后根据长方形的面积公式:S=ab求出面积即可得出答案.【解答】解:18÷2=9(米)①长8米,宽1米;②长7米,宽2米;③长6米,宽3米;④长5米,4米;5×4=20(平方米)答:围出的长方形面积最大是20平方米.故选:D.【点评】本题关键是确定长方形的形状是长5米,4米的长方形,长方形的面积公式:S=ab.8.【分析】因为等底等高的三角形的面积相等,所以涂色部分三角形的面积是平行四边形面积的,据此解答即可.【解答】解:48÷4=12(平方米)答:涂色三角形的面积是12平方米.故选:C.【点评】此题考查的目的是理解掌握等底等高的三角形与平行四边形面积之间的关系及应用.二.填空题(共8小题)9.【分析】根据平行四边形的面积公式,“平行四边形的面积=底×高”可得“高=平行四边形的面积÷底”,代入数据即可求解.【解答】解:28÷8=3.5(米)答:与这条底相对应的高是3.5m.故答案为:3.5.【点评】此题主要考查平行四边形的面积的计算方法的灵活应用.10.【分析】上下底的平均长度是8厘米,可得梯形的上下底之和是8×2=16(厘米),则根据梯形的面积=(上底+下底)×高÷2,代入数据即可解答.【解答】解:8×2×2.4÷2=8×2.4=19.2(平方厘米)答:它的面积是19.2平方厘米.故答案为:19.2.【点评】此题考查了梯形的面积公式的实际应用.关键是先求出上下底的和.11.【分析】根据正方形的面积公式:S=a2解答即可.【解答】解:因为1×1=1(m2),所以边长为1m的正方形土地,它的面积正好是1m2.故答案为:1m.【点评】此题考查的目的是理解掌握正方形的面积公式及应用.12.【分析】长方形内最大的三角形是以长方形的长或宽为底,以长方形的另一条边为高的三角形,这个三角形的面积等于长方形的面积的一半,由此利用长方形的面积除以2即可解答.【解答】解:13÷2=6.5(平方厘米)答:三角形的面积是6.5平方厘米.故答案为:6.5.【点评】注意长方形内最大的三角形的面积等于这个长方形的面积的一半.13.【分析】平行四边形的面积是和它等底等高三角形面积的2倍.据此解答.【解答】解:12.8×2=25.6(cm2)答:与它等底等高的平行四边形的面积是25.6cm2.故答案为:25.6.【点评】本题主要考查了学生对平行四边形的面积是和它等底等高三角形面积的2倍这一知识的掌握情况.14.【分析】根据平行四边形的面积公式:S=ah,把数据代入公式解答.【解答】解:5.5×2=11(平方米)答:面积是11平方米.故答案为:11.【点评】此题主要考查平行四边形面积公式的灵活运用,关键是熟记公式.15.【分析】根据正方形的面积公式:S=a2,再根据积的变化规律,积扩大的倍数等于因数扩大倍数的乘积,据此解答.【解答】解:3×3=9答:边长扩大3倍,它的面积要扩大9倍.故答案为:9.【点评】此题考查的目的是理解掌握正方形的面积公式、积的变化规律及应用.16.【分析】根据题目中的条件,连接GC,由DE=EF=FC,GB=BD,三角形GEF种的西红柿,面积是16平方米,可以得到三角形GDC的面积,从而得到平行四边形的面积.【解答】解:连接GC,如右图所示,因为DE=EF=FC,GB=BD,三角形GEF种的西红柿,面积是16平方米,所以三角形GEF的面积=三角形GFC的面积=三角形GDE的面积=16平方米,所以三角形GDC的面积是16×3=48(平方米),所以这块平行四边形菜地的面积是:48×4=192(平方米),故答案为:192.【点评】本题考查组合图形的面积,解答本题的关键是明确题意,知道平行四边形和三角形GDC的关系,利用数形结合的思想解答.三.判断题(共5小题)17.【分析】根据正方形的特征,正方形的4条边长都相等,如果两个正方形的面积相等,那么这两个正方形的周长一定相等.据此判断.【解答】解:根据正方形的面积公式:S=a2,周长公式:C=4a,如果两个正方形的面积相等,那么这两个正方形的边长一定相等,如果边长相等,那么周长一定相等.因此,面积相等的两个正方形,周长不一定相等.这种说法是错误的.故答案为:×.【点评】此题考查的目的是理解掌握正方形的特征,以及正方形面积、周长的意义.18.【分析】根据梯形的面积=(上底+下底)×高÷2,梯形的上底增加5厘米,下底减少5厘米,则梯形上底、下底的和不变,高不变,所以梯形的面积不变.据此判断.【解答】解:梯形的面积=(上底+下底)×高÷2,梯形的上底增加5厘米,下底减少5厘米,则梯形上底、下底的和不变,高不变,所以梯形的面积不变.因此,如果一个梯形的上底增加5厘米,下底减少5厘米,高不变,那么它的面积也不变.这种说法是正确的.故答案为:√.【点评】此题主要考查梯形面积公式的灵活运用,以及因数与积的变化规律的应用.19.【分析】因为太极图是旋转对称图形,所以图中阴阳(即圈内黑白)两部分的面积和周长都分别相等;由此即可判断.【解答】解:因为太极图是旋转对称图形,所以图中阴阳两部分的面积和周长都分别相等,是正确的.故答案为:√.【点评】解答本题的关键是,理解太极图是旋转对称图形.20.【分析】根据三角形的面积公式S=ah÷2,知道三角形的底扩大2倍,要使三角形的面积不变,高应缩小到原来的,列式解答即可.【解答】解:因为三角形的面积公式S=ah÷2如果三角形的底扩大2倍,面积不变即S=2a×h÷2则高应缩小到原来的.原题说法正确.故答案为:√.【点评】本题主要是灵活利用三角形的面积公式S=ah÷2解决问题.21.【分析】根据题意可知:把长方形框架拉成平行四边形,平行四边形的底等于长方形的长,平行四边形的高小于长方形的宽,所以平行四边形的面积小于长方形的面积.据此判断.【解答】解:把长方形框架拉成平行四边形,平行四边形的底等于长方形的长,平行四边形的高小于长方形的宽,所以平行四边形的面积小于长方形的面积.因此,用木条做一个长方形框架,再拉成一个平行四边形,围成的面积要变小.这种说法是正确的.故答案为:√.【点评】此题考查的目的是理解掌握长方形、平行四边形的特征,以及长方形、平行四边形的面积公式及应用.四.计算题(共2小题)22.【分析】根据图示可知,该阴影部分的面积等于外直径是20厘米、内直径是12厘米的环形面积的一半;周长等于直径是20厘米的圆的周长的一半,加上直径是12厘米的圆的周长的一半,加上(20﹣12)厘米.【解答】解:3.14×[(20÷2)2﹣(12÷2)2]÷2=3.14×[100﹣36]÷2=3.14×64÷2=100.48(平方厘米)3.14×20×2÷2+3.14×12×2÷2+(20﹣12)=62.8+37.68+8=108.48(厘米)答:阴影部分的面积为100.48平方厘米,周长为108.48厘米.【点评】本题主要考查组合图形的周长鹅面积,关键把组合图形转化为规则图形,利用规则图形的周长和面积公式计算.23.【分析】如果上底延长5厘米那么这个直角梯形就多出一个与它等高的三角形,三角形的底是5厘米,可利用三角形的面积=底×高÷2计算出直角梯形的高,直角梯形与增加的三角形组成了一个正方形,可用正方形的面积减去三角形的面积即可得到答案.【解答】解:直角梯形的高为:25×2÷5=10(厘米)直角梯形的面积为:10×10﹣25=100﹣25=75(平方厘米)答:梯形原来的面积是75平方厘米.【点评】解答此题的关键是根据增加的长度和面积确定直角梯形的高,然后再列式计算即可.五.应用题(共2小题)24.【分析】根据平行四边形的面积噶:S=ah,求出平行四边形的面积,再除以每盆占地面积,列式解答即可.【解答】解:28×25÷2.5=700÷2.5=280(棵)答:一共可以摆放280盆盆景.【点评】此题考查了平行四边形面积公式的实际应用.25.【分析】根据图示可知,剩余部分的面积等于原正方形面积,减掉30平方厘米;剩余部分的周长与原正方形周长相等.利用正方形周长和面积公式,把数代入计算即可.【解答】解:15×15﹣30=225﹣30=195(平方厘米)15×4=60(厘米)答:剩余部分的面积是195平方厘米,周长是60厘米.【点评】本题主要考查组合图形的周长和面积,关键把组合图形转化为规则图形,利用规则图形的周长和面积公式计算.六.操作题(共1小题)26.【分析】根据图形的特点,把这个图形分成一个直角三角形和一个平行四边形.通过测量平行四边形的底长4厘米、高2厘米,三角形的底4厘米、高2厘米.利用平行四边形、三角形面积公式计算即可.【解答】解:如图:4×2+4×2÷2=8+4=12(平方厘米)答:这个图形的面积是12平方厘米.【点评】本题主要考查组合图形的面积,关键把组合图形转化为规则图形,利用规则图形的面积公式计算.七.解答题(共2小题)27.【分析】(1)先数出平行四边形的底和高;再根据平行四边形的面积公式求出平行四边形的面积.(2)画一个与这个平行四边形面积相等的三角形,根据三角形是与它等底等高的平行四边形面积的一半,让三角形底和平行四边形的底相同,三角形的高是平行四边形高的2倍,由此画出图形即可解答.【解答】解:(1)4×3=12(平方厘米)答:平行四边形的面积是12平方厘米.(2)画底是4厘米,高是3×2=6厘米的三角形,则这个三角形就和平行四边形的面积相等.【点评】本题考查了三角形的面积和平行四边形的面积的应用.28.【分析】如右图,画出3个辅助线,得出6号图形的面积是此整个正方形的的,即×=,然后根据正方形的面积公式:s=a2,把数据代入公式求出整个正方形的面积,再根据一个数乘分数的意义,用乘法解答即可.【解答】解:8×8=64(平方厘米)最小的三角形即6号图形的面积是:64×=4(平方厘米)答:6号图形的面积是4平方厘米.【点评】此题的解答关键是:分析各个小图形的面积之和占整个正方形面积的几分之几.。

人教版小学数学五年级上册6单元测试卷(含答案及培优)

人教版小学数学五年级上册6单元测试卷(含答案及培优)

第6单元跟踪检测卷一、填一填。

(每题2分,共18分)1.三角形的面积=( ),用字母表示为S=( )。

2.一个三角形的底是20 cm,高是2 cm,面积是( )cm2;与它等底等高的平行四边形的面积是( )cm2。

3.如图,把一个长方形框架拉成了一个平行四边形,周长( ),面积( )。

(填“变大”“变小”或“不变”)4.梯形的上底是8 cm,下底是2 dm,高是6 cm,它的面积是( )cm2。

5.一个平行四边形的底是8 cm,面积是36 cm2,它的高是( )cm。

6.0.45公顷=( )平方米0.68 m2=( ) dm2 7.小鸭和小狗在雪地上玩耍,留下的脚印如图,估一估,( )的脚印大。

8.如下图,在由五个正方形拼成的长方形中,画了两个三角形,三角形A的面积是25平方厘米,那么三角形B的面积是( )平方厘米。

9.一个直角梯形的下底是6厘米,如果将下底减少2厘米,它就变成了一个正方形,这个梯形的面积是( )平方厘米。

二、辨一辨。

(对的画“√”,错的画“×”)(每题1分,共5分) 1.平行四边形的面积是三角形面积的2倍。

( ) 2.等底等高的三角形,它们的形状不一定相同,但周长和面积都相等。

( ) 3. 图中阴影部分的面积是大平行四边形面积的一半。

( )4.已知梯形的面积、高、上底,求下底,可以用方程解决,也可以根据下底=面积×2÷高-上底用算术法解决。

( ) 5.一个平行四边形和一个三角形的面积和高都相等,如果平行四边形的底是10 m,那么三角形的底也是10 m。

( ) 三、选一选。

(把正确答案的序号填在括号里)(每题2分,共10分) 1.如图,求平行四边形的面积,列式不正确的是( )。

A.2×2.4B.2.4×3C.1.6×32.将两个完全一样的梯形拼成平行四边形,下面说法错误的是( )。

A.梯形的面积是平行四边形的一半B.平行四边形的高=梯形的高C.平行四边形的底=梯形的下底3.图中( )三角形的面积是平行四边形面积的一半。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版五年级数学上册第六单元测试卷
一、我来填一填。

1.一个平行四边形,底边是5.7 m,面积是2
2.8 m2,高是()。

2.一个三角形和一个平行四边形等底等高,如果平行四边形的面积是128 m2,那么三角形的面积是()。

3.一个面积是2.4平方米的梯形,上底是1.4米,高是1.2米,下底是()米。

4.一个三角形的底是0.4米,是高的2倍,它的面积是()。

5.一个三角形比与它等底等高的平行四边形的面积少30平方厘米,则这个三角形的面积是()。

6.工地上有一堆钢管,横截面是一个梯形,已知最上面一层有2根,最下面一层有12根,共堆了11层,这堆钢管共有()根。

7.一个三角形的面积是10平方米,如果底和高都扩大到原来的2倍,它的面积是()平方米。

有一块面积是500平方米的直角三角形地,一条直角边为125米,另一条直角边是()米。

8.下图方格中叶子的面积约是()cm2。

二、我来判一判。

1.平行四边形的面积等于三角形面积的2倍。

()
2.把一个长方形的框架挤压成一个平行四边形,面积减少了。

()
3.两个三角形的面积相等,则它们的底和高分别相等。

()
三、我来选一选。

1.把一个平行四边形任意分割成两个梯形,这两个梯形中()总是相等的。

A.高
B.面积
C.上下两底的和
2.在右图中,平行四边形的面积是涂色部分面积的()。

A.3倍
B.4倍
C.6倍
3.在下图中,平行线间有三个图形,它们的面积相比()。

A.三角形的面积大
B.梯形的面积大
C.面积都相等
四、我来算一算。

1.计算下面图形的面积。

(单位:m)
(1)(2 ) (3)
2.计算下面图中涂色部分的面积。

(单位:cm)
(1)(2)
(3)(4)
五、解决问题。

1.一块三角形的地,底是50米,高是36米,这块地的面积是多少?如果用拖拉机每天耕地180平方米,这块地几天才能耕完?
2.一堆圆形钢管堆在一起,它的横截面形状是等腰梯形。

已知这堆钢管最上面的一层有8根,最下面的一层有13根,并且下面一层都比上面一层多1根。

这堆钢管共有多少根?
3.右图是小希家的一块菜地,其中萝卜地的面积是48 m2。

白菜地的面积是多少平方米?
4.在一块底是120 m、高是85 m的平行四边形果园中间挖一个边长是30 m的正方形水池,种植果树的面积是多少平方米?
参考答案
一、1.4 m
2.64 m2
3.2.6
4.0.04平方米
5.30平方厘米
6.77
7.408
8.21
二、1.✕ 2.√ 3.✕
三、1.A 2.B 3.C
四、1.(1)(5+10)×7.8÷2=58.5(m2)
(2)1.5×3.6÷2+2.8×2.5=9.7(m2)
(3)8×24+10×24÷2=312(m2)
2.(1)图中涂色部分的面积即是空白处三角形的面积。

24×18÷2=216(cm2)
(2)160×100-(40+160)×(100-40)÷2-40×40=8400(cm2)
(3)26×15-(10+12)×8÷2=302(cm2)
(4)8×(19-10)÷2×2+10×24=312(cm2)
五、1.50×36÷2=900(平方米)
900÷180=5(天)
答:这块地的面积是900平方米,这块地5天才能耕完。

2.13-8+1=6(层)
(8+13)×6÷2=63(根)
答:这堆钢管共有63根。

3.48×2÷12=8(m)
20×8÷2=80(m2)
答:白菜地的面积是80 m2。

4.120×85-30×30=9300(m2)
答:种植果树的面积是9300 m2。

相关文档
最新文档