杭州市西湖区2020年中考数学一模试卷(有答案)

合集下载

2020年浙江省杭州市中考数学一模试卷及答案解析

2020年浙江省杭州市中考数学一模试卷及答案解析

2020年浙江省杭州市中考数学一模试卷一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1.(3分)﹣2的绝对值是( ) A .﹣2 B .2C .12D .−122.(3分)下列计算正确的是( )A .m 4+m 3=m 7B .(m 4) 3=m 7C .2m 5÷m 3=m 2D .m (m ﹣1)=m 2﹣m3.(3分)如图,P 为⊙O 外一点,PC 切⊙O 于C ,PB 与⊙O 交于A 、B 两点.若P A =1,PB =5,则PC =( )A .3B .√5C .4D .无法确定 4.(3分)为了解某班学生每天使用零花钱的情况,小敏随机调查了15名同学,结果如表:每天用零花钱(单位:元) 12345人数2 4 53 1则这15名同学每天使用零花钱的众数和中位数分别是( )A .3,3B .5,2C .3,2D .3,55.(3分)某工程甲单独完成要30天,乙单独完成要25天.若乙先单独干15天,剩下的由甲单独完成,设甲、乙一共用x 天完成,则可列方程为( )A .x+1525+1530=1 B .x+1530+1525=1 C .1530+x−1525=1D .x−1530+1525=16.(3分)如图,已知一组平行线a ∥b ∥c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且AB =3,BC =4,EF =4.8,则DE =( )A .7.2B .6.4C .3.6D .2.47.(3分)如图,BD 是△ABC 的角平分线,AE ⊥BD ,垂足为F .若∠ABC =36°,∠C =44°,则∠EAC 的度数为( )A .18°B .28°C .36°D .38°8.(3分)直线l 1:y =kx +b 与直线l 2:y =bx +k 在同一坐标系中的大致位置是( )A .B .C .D .9.(3分)关于x 的二次函数y =x 2+2kx +k ﹣1,下列说法正确的是( ) A .对任意实数k ,函数图象与x 轴都没有交点B .对任意实数k ,函数图象没有唯一的定点C .对任意实数k ,函数图象的顶点在抛物线y =﹣x 2﹣x ﹣1上运动D .对任意实数k ,当x ≥﹣k ﹣1时,函数y 的值都随x 的增大而增大10.(3分)如图,在△ABC 中,∠C =90°,D 是BC 边上一点,∠ADC =3∠BAD ,BD =4,DC =3.则AB 的值为( )A .5+3√2B .2+2√15C .7√2D .√113二、填空题:本题有6个小题,每小题4分,共24分 11.(4分)分解因式:3x 2+6xy +3y 2= .12.(4分)一个袋子中有1个红球,2个黄球,每个球除颜色外都相同,从中摸出2个球,2个球颜色不同的概率为 . 13.(4分)分式方程2x−1=1x的解是 . 14.(4分)已知一个扇形的面积为12πcm 2,圆心角的度数为108°,则它的弧长为 .15.(4分)已知关于x 的不等式组{5x −a >3(x −1)2x −1≤7的所有整数解的和为7,则a 的取值范围是 .16.(4分)一张直角三角形纸片ABC ,∠ACB =90°,AB =13,AC =5,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,则CD 的长为 . 三、解答题:本大题有7个小题,共66分解答应写出文字说明、证明过程或演算步骤. 17.(6分)先化简再求值:(ab−b a)•aba+b,其中a =1,b =2. 18.(8分)光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各50名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成统计图(不完整).根据统计图表中的信息,解答下列问题:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有人,男生最喜欢“乒乓球“项目的有人.(2)请将条形统计图补充完整;(3)若该校有男生450人,女生400人,请估计该校喜欢“羽毛球”项目的学生总人数.19.(8分)如图,D、E是以AB为直径的⊙O上两点,且∠AED=45°.(1)过点D作DC∥AB,求证:直线CD与⊙O相切;(2)若⊙O的半径为12,sin∠ADE=3,求AE的长.420.(10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6√2,AF=4√2,求AE的长.21.(10分)已知Rt△ABC的斜边AB在平面直角坐标系的x轴上,点C(2,6)在反比例函数y1=k x的图象上,且sin∠BAC= 35(1)求k的值和边AC的长;(2)求点B的坐标;交于M与N点,求出x为何值时,y2≥y1.(3)有一直线y2=kx+10与y1=kx22.(12分)已知一次函数y1=2x+b的图象与二次函数y2=a(x2+bx+1)(a≠0,a、b为常数)的图象交于A、B两点,且A 的坐标为(0,1).(1)求出a、b的值,并写出y1,y2的表达式;(2)验证点B的坐标为(1,3),并写出当y1≥y2时,x的取值范围;(3)设u=y1+y2,v=y1﹣y2,若m≤x≤n时,u随着x的增大而增大,且v也随着x的增大而增大,求m的最小值和n的最大值.23.(12分)在△ABC 和△DBE 中,CA =CB ,EB =ED ,点D 在AC 上.(1)如图1,若∠ABC =∠DBE =60°,求证:∠ECB =∠A ;(2)如图2,设BC 与DE 交于点F .当∠ABC =∠DBE =45°时,求证:CE ∥AB ; (3)在(2)的条件下,若tan ∠DEC =12时,求EFDF的值.2020年浙江省杭州市中考数学一模试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1.(3分)﹣2的绝对值是( ) A .﹣2B .2C .12D .−12【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2, 故选:B .【点评】本题考查了绝对值的定义,是中考的常见题型,比较简单,熟记绝对值的定义是本题的关键. 2.(3分)下列计算正确的是( ) A .m 4+m 3=m 7 B .(m 4) 3=m 7 C .2m 5÷m 3=m 2D .m (m ﹣1)=m 2﹣m【分析】直接利用整式的混合运算法则分别计算判断即可. 【解答】解:A 、m 4与m 3,无法合并,故此选项错误; B 、(m 4) 3=m 12,故此选项错误; C 、2m 5÷m 3=2m 2,故此选项错误; D 、m (m ﹣1)=m 2﹣m ,正确. 故选:D .【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.3.(3分)如图,P 为⊙O 外一点,PC 切⊙O 于C ,PB 与⊙O 交于A 、B 两点.若P A =1,PB =5,则PC =( )A .3B .√5C .4D .无法确定【分析】求出半径的长,求出PO 长,根据切线的性质求出∠PCO =90°,再根据勾股定理求出即可. 【解答】解:∵P A =1,PB =5, ∴AB =PB ﹣P A =4, ∴OC =OA =OB =2, ∴PO =1+2=3, ∵PC 切⊙O 于C , ∴∠PCO =90°,在Rt △PCO 中,由勾股定理得:PC =√PO 2−OC 2=√32−22=√5, 故选:B .【点评】本题考查了勾股定理和切线的性质,能熟记切线的性质的内容是解此题的关键,注意:圆的切线垂直于过切点的半径.4.(3分)为了解某班学生每天使用零花钱的情况,小敏随机调查了15名同学,结果如表:每天用零花钱(单位:元) 12345人数24531则这15名同学每天使用零花钱的众数和中位数分别是( )A .3,3B .5,2C .3,2D .3,5【分析】根据众数和中位数的定义分别进行解答即可.【解答】解:这15名同学每天使用零花钱的众数为3元,中位数为3元,故选:A.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)某工程甲单独完成要30天,乙单独完成要25天.若乙先单独干15天,剩下的由甲单独完成,设甲、乙一共用x 天完成,则可列方程为()A.x+1525+1530=1 B.x+1530+1525=1C.1530+x−1525=1 D.x−1530+1525=1【分析】根据题意列出方程求出答案.【解答】解:设甲、乙一共用x天完成,则可列方程为:x−15 30+1525=1.故选:D.【点评】本题考查由实际问题抽象出一元一次方程,解题的关键是找出等量关系,本题属于基础题型.6.(3分)如图,已知一组平行线a∥b∥c,被直线m、n所截,交点分别为A、B、C和D、E、F,且AB=3,BC=4,EF =4.8,则DE=()A.7.2 B.6.4 C.3.6 D.2.4【分析】根据平行线分线段成比例定理列出比例式,代入计算得到答案.【解答】解:∵a∥b∥c,∴DEEF=ABBC,即DE4.8=34,解得,DE=3.6,故选:C.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=36°,∠C=44°,则∠EAC的度数为()A.18°B.28°C.36°D.38°【分析】根据∠EAC=∠BAC﹣∠BAF,求出∠BAC,∠BAF即可解决问题.【解答】解:∵∠ABC=36°,∠C=44°,∴∠BAC=180°﹣36°﹣44°=100°,∵BD平分∠ABC,∴∠ABD=12∠ABC=18°,∵AE⊥BD,∴∠BF A=90°,∴∠BAF=90°﹣18°=72°,∴∠EAC =∠BAC ﹣∠BAF =100°﹣72°=28°, 故选:B .【点评】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 8.(3分)直线l 1:y =kx +b 与直线l 2:y =bx +k 在同一坐标系中的大致位置是( )A .B .C .D .【分析】根据一次函数的系数与图象的关系依次分析选项,找k 、b 取值范围相同的即得答案. 【解答】解:根据一次函数的系数与图象的关系依次分析选项可得:A 、由图可得,y 1=kx +b 中,k <0,b <0,y 2=bx +k 中,b >0,k <0,b 、k 的取值矛盾,故本选项错误;B 、由图可得,y 1=kx +b 中,k >0,b <0,y 2=bx +k 中,b >0,k >0,b 的取值相矛盾,故本选项错误;C 、由图可得,y 1=kx +b 中,k >0,b <0,y 2=bx +k 中,b <0,k >0,k 的取值相一致,故本选项正确;D 、由图可得,y 1=kx +b 中,k >0,b <0,y 2=bx +k 中,b <0,k <0,k 的取值相矛盾,故本选项错误; 故选:C .【点评】本题主要考查了一次函数的图象性质,要掌握它们的性质才能灵活解题.解答本题注意理解:直线y =kx +b 所在的位置与k 、b 的符号有直接的关系.9.(3分)关于x 的二次函数y =x 2+2kx +k ﹣1,下列说法正确的是( ) A .对任意实数k ,函数图象与x 轴都没有交点B .对任意实数k ,函数图象没有唯一的定点C .对任意实数k ,函数图象的顶点在抛物线y =﹣x 2﹣x ﹣1上运动D .对任意实数k ,当x ≥﹣k ﹣1时,函数y 的值都随x 的增大而增大【分析】利用△=(2k ﹣1)2+3>0可对A 进行判断;利用点(−12,−34)满足抛物线解析式可对B 进行判断;先求出抛物线顶点坐标为(﹣k ,﹣k 2+k ﹣1),则根据二次函数图象上点的坐标特征可对C 进行判断;先表示出抛物线的对称轴方程,然后利用二次函数的性质可对D 进行判断.【解答】解:A 、△=4k 2﹣4(k ﹣1)=(2k ﹣1)2+3>0,抛物线与x 轴有两个交点,所以A 选项错误;B 、k (2x +1)=y +1﹣x 2,k 为任意实数,则2x +1=0,y +1﹣x 2=0,所以抛物线经过定点(−12,−34),所以B 选项错误; C 、y =(x +k )2﹣k 2+k ﹣1,抛物线的顶点坐标为(﹣k ,﹣k 2+k ﹣1),则抛物线的顶点在抛物线y =﹣x 2﹣x ﹣1上运动,所以C 选项正确;D 、抛物线的对称轴为直线x =−2k2=−k ,抛物线开口向上,则x >﹣k 时,函数y 的值都随x 的增大而增大,所以D 选项错误. 故选:C .【点评】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.10.(3分)如图,在△ABC 中,∠C =90°,D 是BC 边上一点,∠ADC =3∠BAD ,BD =4,DC =3.则AB 的值为( )A.5+3√2B.2+2√15C.7√2D.√113【分析】延长CB到E,使得BE=BA.设BE=AB=a.利用相似三角形的性质,勾股定理构建方程即可解决问题.【解答】解:如图,延长CB到E,使得BE=BA.设BE=AB=a.∵BE=BA,∴∠E=∠BAE,∵∠ADC=∠ABD+∠BAD=2∠E+∠BAD=3∠BAD,∴∠BAD=∠E,∵∠ADB=∠EDA,∴△ADB∽△EDA,∴ADED=DBAD,∴AD2=4(4+a)=16+4a,∵AC2=AD2﹣CD2=AB2﹣BC2,∴16+4a﹣32=a2﹣72,解得a=2+2√15或2﹣2√15(舍弃).∴AB=2+2√15,故选:B.【点评】本题考查相似三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题:本题有6个小题,每小题4分,共24分11.(4分)分解因式:3x2+6xy+3y2=3(x+y)2.【分析】先利用提取公因式法提取数字3,再利用完全平方公式继续进行分解.【解答】解:3x2+6xy+3y2,=3(x2+2xy+y2),=3(x+y)2【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(4分)一个袋子中有1个红球,2个黄球,每个球除颜色外都相同,从中摸出2个球,2个球颜色不同的概率为23.【分析】画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:画树状图如下:由树状图知,共有6种等可能结果,其中2个球颜色不同的有4种结果, ∴2个球颜色不同的概率为46=23, 故答案为:23.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.13.(4分)分式方程2x−1=1x的解是 x =﹣1 . 【分析】观察分式方程得最简公分母为x (x ﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 【解答】解:方程的两边同乘x (x ﹣1),得 2x =x ﹣1, 解得x =﹣1.检验:把x =﹣1代入x (x ﹣1)=2≠0. ∴原方程的解为:x =﹣1. 故答案为:x =﹣1.【点评】本题考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.14.(4分)已知一个扇形的面积为12πcm 2,圆心角的度数为108°,则它的弧长为6√105πcm . 【分析】先根据扇形的面积公式求出扇形的半径,再根据弧长公式求出弧长即可.【解答】解:设扇形的半径为Rcm ,∵扇形的面积为12πcm 2,圆心角的度数为108°, ∴108π×R 2360=12π,解得:R =2√10,∴弧长为108π×2√10180=6√105π(cm ),故答案为:6√105πcm .【点评】本题考查了扇形面积的计算和弧长的计算,能熟记公式是解此题的关键.15.(4分)已知关于x 的不等式组{5x −a >3(x −1)2x −1≤7的所有整数解的和为7,则a 的取值范围是 7≤a <9或﹣3≤a <﹣1 .【分析】先求出求出不等式组的解集,再根据已知得出关于a 的不等式组,求出不等式组的解集即可.【解答】解:{5x −a >3(x −1)①2x −1≤7②,∵解不等式①得:x >a−32, 解不等式②得:x ≤4, ∴不等式组的解集为a−32<x ≤4, ∵关于x 的不等式组{5x −a >3(x −1)2x −1≤7的所有整数解的和为7,∴当a−32>0时,这两个整数解一定是3和4,∴2≤a−32<3, ∴7≤a <9,当a−32<0时,﹣3≤a−32<−2, ∴﹣3≤a <﹣1,∴a 的取值范围是7≤a <9或﹣3≤a <﹣1. 故答案为:7≤a <9或﹣3≤a <﹣1.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能得出关于a 的不等式组是解此题的关键.16.(4分)一张直角三角形纸片ABC ,∠ACB =90°,AB =13,AC =5,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,则CD 的长为103或6017. 【分析】根据沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,分两种情况讨论:∠DEB =90°或∠BDE =90°,分别依据勾股定理或者相似三角形的性质,即可得到CD 的长. 【解答】解:∵∠ACB =90°,AB =13,AC =5, ∴BC =√AB 2−AC 2=12, 根据题意,分两种情况: ①如图,若∠DEB =90°,则∠AED =90°=∠C , CD =ED ,连接AD ,则Rt △ACD ≌Rt △AED (HL ), ∴AE =AC =5,BE =AB ﹣AE =13﹣5=8, 设CD =DE =x ,则BD =BC ﹣CD =12﹣x , 在Rt △BDE 中,DE 2+BE 2=BD 2, ∴x 2+82=(12﹣x )2解得x =103, ∴CD =103;②如图,若∠EDB =90°,则∠CDE =∠DEF =∠C =90°,CD =DE , ∴四边形CDEF 是正方形, ∴∠AFE =∠EDB =90°, ∠AEF =∠B , ∴△AEF ∽△EBD , ∴AF ED =EF BD ,6017设CD =x ,则EF =CF =x ,AF =5﹣x ,BD =12﹣x ,∴5−x x =x 12−x , 解得x =6017. ∴CD =6017. 综上所述,CD 的长为103或6017. 【点评】本题考查了翻折变换,综合运用勾股定理、相似三角形的判定与性质、正方形的判定与性质解答,解题关键是根据题意分两种情况讨论.三、解答题:本大题有7个小题,共66分解答应写出文字说明、证明过程或演算步骤.17.(6分)先化简再求值:(a b −b a )•ab a+b ,其中a =1,b =2. 【分析】先把分式化简后,再把a 、b 的值代入求出分式的值. 【解答】解:原式=a 2−b 2ab •ab a+b =(a+b)(a−b)ab ⋅ab a+b=a ﹣b ,当a =1,b =2时,原式=1﹣2=﹣1.【点评】本题考查了分式的化简求值,熟练化简分式是解题的关键.18.(8分)光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各50名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成统计图(不完整).根据统计图表中的信息,解答下列问题:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有 10 人,男生最喜欢“乒乓球“项目的有 20 人.(2)请将条形统计图补充完整;(3)若该校有男生450人,女生400人,请估计该校喜欢“羽毛球”项目的学生总人数.【分析】(1)根据题目中的数据和条形统计图中的数据,可以计算出女生最喜欢“踢毽子”项目的人数,然后根据扇形统计图中的数据,可以计算出男生最喜欢“乒乓球“项目的人数;(2)根据(1)中的结果,可以得到女生最喜欢“踢毽子”项目的有10人,从而可以将条形统计图补充完整;(3)根据统计图中的数据和该校有男生450人,女生400人,可以计算出该校喜欢“羽毛球”项目的学生总人数.【解答】解:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有:50﹣15﹣9﹣9﹣7=10(人),男生最喜欢“乒乓球“项目的有:50×(1﹣8%﹣10%﹣14%﹣28%)=50×40%=20(人),故答案为:10,20;(2)由(1)知,女生最喜欢“踢毽子”项目的有10人,补全完整的条形统计图如右图所示;(3)450×28%+400×950=126+72198(人),答:该校喜欢“羽毛球”项目的学生一共有198人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.19.(8分)如图,D、E是以AB为直径的⊙O上两点,且∠AED=45°.(1)过点D作DC∥AB,求证:直线CD与⊙O相切;,求AE的长.(2)若⊙O的半径为12,sin∠ADE=34【分析】(1)连接OD,根据圆周角定理求出∠AOD,根据平行线的性质求出∠ODC=90°,根据切线的判定得出即可;(2)连接BE,根据圆周角定理求出∠B=∠ADE,解直角三角形求出即可.【解答】(1)证明:连接OD,∵∠AED=45°,∴由圆周角定理得:∠AOD=2∠AED=90°,∵CD∥AB,∴∠CDO=∠AOD=90°,即OD⊥CD,∵OD过O,∴直线CD与⊙O相切;(2)解:连接BE,∵AB为⊙O的直径,∴∠AEB=90°,∵由圆周角定理得:∠B=∠ADE,sin∠ADE=3 4,∴sin∠ADE=sin B,∵sin B=AE AB ,∵⊙O的半径为12,∴AE24=34,解得:AE=18.【点评】本题考查了解直角三角形,圆周角定理,切线的判定,平行线的性质等知识点,能综合运用知识点进行推理是解此题的关键.20.(10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6√2,AF=4√2,求AE的长.【分析】(1)由平行四边形的性质和平行线的性质得出∠ADF=∠CED,∠B+∠C=180°;由∠AFE+∠AFD=180°,∠AFE =∠B,得出∠AFD=∠C,即可得出结论;(2)根据平行四边形的性质可得出CD=AB=8,根据相似三角形的性质可得出ADDE =AFDC,求出DE=12.证出AE⊥AD,由勾股定理即可得出答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠ADF=∠CED,∠B+∠C=180°;∵∠AFE+∠AFD=180°,∠AFE=∠B,∴∠AFD=∠C,∴△ADF∽△DEC;(2)解:∵四边形ABCD是平行四边形,∴DC=AB=8.∵△ADF∽△DEC,∴ADDE=AFDC,即6√2DE=4√28,∴DE=12.∵AD∥BC,AE⊥BC,∴AE⊥AD.在Rt△ADE中,∠EAD=90°,DE=12,AD=6√2,∴AE =√DE 2−AD 2=√122−(6√2)2=6√2.【点评】此题主要考查的是平行四边形的性质、相似三角形的判定和性质以及勾股定理的运用,解题的关键判定三角形相似.21.(10分)已知Rt △ABC 的斜边AB 在平面直角坐标系的x 轴上,点C (2,6)在反比例函数y 1=k x的图象上,且sin ∠BAC =35 (1)求k 的值和边AC 的长;(2)求点B 的坐标;(3)有一直线y 2=kx +10与y 1=k x 交于M 与N 点,求出x 为何值时,y 2≥y 1.【分析】(1)本题需先根据C 点的坐标在反比例函数y 1=k x 的图象上,从而得出k 的值,再根据且sin ∠BAC =35,得出AC 的长;(2)本题需先根据已知条件,得出∠DAC =∠DCB ,从而得出CD 的长,根据点B 的位置即可求出正确答案;(3)解方程组即可得到结论.【解答】解:(1)∵点C (2,6)在反比例函数y =k x 的图象上,∴6=k 2,解得k =12,∵sin ∠BAC =35∴sin ∠BAC =6AC =35, ∴AC =10;∴k 的值和边AC 的长分别是:12,10;(2)①当点B 在点A 右边时,如图,作CD ⊥x 轴于D .∵△ABC 是直角三角形,∴∠DAC =∠DCB ,又∵sin ∠BAC =35,∴tan ∠DAC =34,∴BD CD =34, 又∵CD =6, ∴BD =92,∴OB =2+92=132, ∴B (132,0); ②当点B 在点A 左边时,如图,作CD ⊥x 轴于D .∵△ABC 是直角三角形, ∴∠B +∠A =90°,∠B +∠BCD =90°,∴∠DAC =∠DCB ,又∵sin ∠BAC =35,∴tan ∠DAC =34,∴BD CD =34, 又∵CD =6,∴BD =92,BO =BD ﹣2=52, ∴B (−52,0) ∴点B 的坐标是(−52,0),(132,0); (3)∵k =12,∴y 2=12x +10与y 1=12x , 解{y =12x +10y =12x得,{x =23y =18,{x =−32y =−8, ∴M (23,18),N 点(−32,﹣8),∴−32<x <0或x >23时,y 2≥y 1.【点评】本题考查了反比例函数与一次函数的交点问题,解直角三角形,正确的理解题意是解题的关键.22.(12分)已知一次函数y 1=2x +b 的图象与二次函数y 2=a (x 2+bx +1)(a ≠0,a 、b 为常数)的图象交于A 、B 两点,且A 的坐标为(0,1).(1)求出a 、b 的值,并写出y 1,y 2的表达式;(2)验证点B 的坐标为(1,3),并写出当y 1≥y 2时,x 的取值范围;(3)设u =y 1+y 2,v =y 1﹣y 2,若m ≤x ≤n 时,u 随着x 的增大而增大,且v 也随着x 的增大而增大,求m 的最小值和n 的最大值.【分析】(1)把A 点的坐标分别代入两个函数的解析式,便可求得a 与b 的值;(2)画出函数图象,根据函数图象作答;(3)求出出个函数的对称轴,根据函数的性质得出“u 随着x 的增大而增大,且v 也随着x 的增大而增大”时x 的取值范围,进而得m 的最小值和n 的最大值.【解答】解:(1)把A (0,1)代入y 1=2x +b 得b =1,把A (0,1)代入y 2=a (x 2+bx +1)得,a =1,∴y 1=2x +1,y 2=x 2+x +1;(2)作y 1=2x +1,y 2=x 2+x +1的图象如下:由函数图象可知,y 1=2x +1不在y 2=x 2+x +1下方时,0≤x ≤3,∴当y 1≥y 2时,x 的取值范围为0≤x ≤3;(3)∵u =y 1+y 2=2x +1+x 2+x +1=x 2+3x +2=(x +1.5)2﹣0.25,∴当x ≥﹣1.5时,u 随x 的增大而增大;v =y 1﹣y 2=(2x +1)﹣(x 2+x +1)=﹣x 2+x =﹣(x ﹣0.5)2+0.25,∴当x ≤0.5时,v 随x 的增大而增大,∴当﹣15≤x ≤0.5时,u 随着x 的增大而增大,且v 也随着x 的增大而增大,∵若m ≤x ≤n 时,u 随着x 的增大而增大,且v 也随着x 的增大而增大,∴m 的最小值为﹣1.5,n 的最大值为0.5.【点评】本题是二次函数的综合题,主要考查了函数的图象与性质,利用函数图象求不等式的解集,待定系数法,关键是熟练掌握二次函数的性质,灵活运用性质解题.23.(12分)在△ABC 和△DBE 中,CA =CB ,EB =ED ,点D 在AC 上.(1)如图1,若∠ABC =∠DBE =60°,求证:∠ECB =∠A ;(2)如图2,设BC 与DE 交于点F .当∠ABC =∠DBE =45°时,求证:CE ∥AB ;(3)在(2)的条件下,若tan ∠DEC =12时,求EF DF的值. 【分析】(1)根据SAS 可证明△ABD ≌△CBE .得出∠A =∠ECB ;(2)得出△ABC 和△DBE 都是等腰直角三角形,证明△ABD ∽△CBE ,则∠BAD =∠BCE =45°,可得出结论;(3)过点D 作DM ⊥CE 于点M ,过点D 作DN ∥AB 交CB 于点N ,设DM =MC =a ,得出DN =2a ,CE =a ,证明△CEF ∽△DNF ,可得出答案.【解答】(1)证明:∵CA =CB ,EB =ED ,∠ABC =∠DBE =60°,∴△ABC 和△DBE 都是等边三角形,∴AB =BC ,DB =BE ,∠A =60°.∵∠ABC =∠DBE =60°,∴∠ABD =∠CBE ,∴△ABD ≌△CBE (SAS ).∴∠A =∠ECB ;(2)证明:∵∠ABC=∠DBE=45°,CA=CB,EB=ED,∴△ABC和△DBE都是等腰直角三角形,∴∠CAB=45°,∴ABBC=√2,DB BE=√2,∴ABBC=DBBE,∵∠ABC=∠DBE,∴∠ABD=∠CBE,∴△ABD∽△CBE,∴∠BAD=∠BCE=45°,∵∠ABC=45°,∴∠ABC=∠BCE,∴CE∥AB;(3)解:过点D作DM⊥CE于点M,过点D作DN∥AB交CB于点N,∵∠ACB=90°,∠BCE=45°,∴∠DCM=45°,∴∠MDC=∠DCM=45°,∴DM=MC,设DM=MC=a,∴DC=√2a,∵DN∥AB,∴△DCN为等腰直角三角形,∴DN=√2DC=2a,∵tan∠DEC=DMME=12,∴ME=2DM,∴CE=a,∴CEDN=a2a=12,∵CE∥DN,∴△CEF∽△DNF,∴EFDF=CEDN=12.【点评】本题是三角形综合题,考查了等边三角形的判定与性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,相似三角形的判定与性质,锐角三角函数等知识,正确作出辅助线,熟练掌握基本图形的性质是解题的关键.。

浙江省杭州市2020年中考数学一模试卷解析版

浙江省杭州市2020年中考数学一模试卷解析版

A.
B.
C.
D.
9. 关于 x 的二次函数 y=x2+2kx+k-1,下列说法正确的是( )
A. 对任意实数 k,函数图象与 x 轴都没有交点 B. 对任意实数 k,函数图象没有唯一的定点 C. 对任意实数 k,函数图象的顶点在抛物线 y=-x2-x-1 上运动 D. 对任意实数 k,当 x≥-k-1 时,函数 y 的值都随 x 的增大而增大
DE=( )
A. 7.2 B. 6.4 C. 3.6 D. 2.4
7. 如图,BD 是△ABC 的角平分线,AE⊥BD,垂足为 F.若∠ABC=36°,∠C=44°,则∠EAC 的度数为( )
A. 18°
B. 28°
C. 36°
第 1 页,共 17 页
D. 38°
8. 直线 l1:y=kx+b 与直线 l2:y=bx+k 在同一坐标系中的大致位置是( )
第 5 页,共 17 页
1.【答案】B
答案和解析
【解析】解:|-2|=2, 故选:B. 根据绝对值的定义,可直接得出-2 的绝对值. 本题考查了绝对值的定义,是中考的常见题型,比较简单,熟记绝对值的定义是本题的 关键.
,沿过点 D 的直线折叠,使直角顶点 C 落在斜边 AB 上的点 E 处,当△BDE 是直角 三角形时,则 CD 的长为______. 三、解答题(本大题共 7 小题,共 66.0 分)
17. 先化简再求值:( - )• ,其中 a=1,b=2.
第 2 页,共 17 页
18. 光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各 50 名进行 一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据 ,绘制成统计图(不完整).根据统计图表中的信息,解答下列问题:

浙江省杭州2020年中考模拟试卷数学试题(含答案)

浙江省杭州2020年中考模拟试卷数学试题(含答案)

2020年浙江杭州中考模拟试卷数学考试题号一二三总分评分1.-23等于( )A. -6B. 6C. -8D. 82.在平面直角坐标系中,点关于原点对称的点的坐标是A. B. C. D.3.如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形的上底AD、下底BC以及腰AB均相切,切点分别是D、C、E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是().A. 9B. 10C. 12D. 144.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B 种饮料单价为x元/瓶,那么下面所列方程正确的是( )A. 2(x-1)+3x=13B. 2(x+1)+3x=13C. 2x+3(x+1)=13D. 2x+3(x-1)=135.如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A. 8,9B. 8,8.5C. 16,8.5D. 16,10.56.如图,AB和CD表示两根直立于地面的柱子,AC和BD表示起固定作用的两根钢筋,AC与BD相交于点M,已知AB=8m,CD=12m,则点M离地面的高度MH为( )A. 4 mB. mC. 5mD. m7.若等腰三角形中有一个角等于110°,则其它两个角的度数为().A. 70°B. 110°和70°C. 35°和35°D. 30°和70°8.已知点A,点B在一次函数y=kx+b(k,b为常数,且k≠0)的图象上,点A在第三象限,点B在第四象限,则下列判断一定正确的是()A. b<0B. b>0C. k<0D. k>09.身高相等的四名同学甲、乙、丙、丁参加风筝比赛,四人放出风筝的线长、线与地面的夹角如下表(假设风筝线是拉直的),则四名同学所放的风筝中最高的是()同学甲乙丙丁放出风筝线长140m 100m 95m 90m线与地面夹角30°45°45°60°A. 甲B. 乙C. 丙D. 丁10.已知抛物线与轴交于点A、B,与轴交于点C,则能使△ABC为等腰三角形抛物线的条数是()A. 5B. 4C. 3D. 2二、填空题:本大题有6个小题,每小题4分,共24分11.把多项式2x2y﹣4xy2+2y3分解因式的结果是________12.一组数据7,x,8,y,10,z,6的平均数为4,则x,y,z的平均数是________.13.若圆锥的地面半径为,侧面积为,则圆锥的母线是________ .14.如图,和分别是的直径和弦,且,,交于点,若,则的长是________.15.一次函数y = kx + b ,当- 3 £x £ 1时,对应的y 值为1 £y £ 9 ,则k + b =________;16.已知等腰中,,,,在线段上,是线段上的动点,的最小值是________.三、解答题:本大题有7个小题,共66分17.化简:18.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如表:(1)把表中所空各项数据填写完整;选手选拔成绩/环中位数平均数甲 10 9 8 8 10 9 ________ ________乙 10 10 8 10 7 ________ ________ 9(2(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.19.如图,已知:,,,点,分别在,上,连接,且,是上一点,的延长线交的延长线于点.(1)求证:;(2)求证:.20.大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:x(天) 1 2 3 (50)p(件)118 116 114 (20)销售单价q(元/件)与x满足:当1≤x<25时q=x+60;当25≤x≤50时q=40+ .(1)请分析表格中销售量p与x的关系,求出销售量p与x的函数关系.(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.(3)这50天中,该超市第几天获得利润最大?最大利润为多少?21.某校数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD中,AB=4,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB于点P,另一边交BC的延长线于点Q.(1)求证:AP=CQ;(2)如图②,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;(3)在(2)的条件下,若AP=1,求PE的长.22.已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A (10,0),B(8,2 ),C(0,2 ),点T在线段OA上(不与线段端点重合),将纸片折叠,使点A落在射线AB上(记为点A′),折痕经过点T,折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S.(1)求∠OAB的度数,并求当点A′在线段AB上时,S关于t的函数关系式;(2)当纸片重叠部分的图形是四边形时,求t的取值范围;(3)S存在最大值吗?若存在,求出这个最大值,并求此时t的值;若不存在,请说明理由.23.如图,在⊙中,弦,相交于点,且.(1)求证:;(2)若,,当时,求:①图中阴影部分面积.②弧的长.答案解析部分一、选择题1.C2.C3.D4.A5.A6.B7.C8.A9.D10.B二、填空题11.2y(x﹣y)2【解答】解:原式=2y(x2﹣2xy+y2)=2y(x﹣y)2.故答案为:2y(x﹣y)2.12.-1【解答】解:∵一组数据7,x,8,y,10,z,6的平均数为4,∴=4,解得,x+y+z=﹣3,∴=﹣1,故答案为:﹣1.13.13【解答】设母线长为R,则:解得:故答案为13.14.5【解答】连接CD;Rt△AOB中,∠A=30°,OB=5,则AB=10,OA=5 ;在Rt△ACD中,∠A=30°,AD=2OA=10 ,∴AC=cos30°×10 =15,∴BC=AC-AB=15-10=5.故答案为515.9或1【解答】解:①当x=-3时,y=1;当x=1时,y=9,则解得:所以k + b =2+7=9;②当x=-3时,y=9;当x=1时,y=1,则解得:,所以k + b=-2+3=1.故答案为9或1.16.【解答】解:∵AC=BC,OC⊥AB,∴AB=2OB=6,∵OC=4,∴BC=5,∴A,B关于y轴对称,过A作AM⊥BC于M,交y轴于P,∵∠AMB=∠COB=90°,∠ABM=∠CBO,∴△ABM∽△CBO,∴,即,∴AM=,∴PM+PB的最小值是,故答案为:.三、解答题:本大题有7个小题,共66分.17. 解:===1【分析】根据同分母分式的减法法则计算,再根据完全平方公式展开,合并同类项后约分计算即可求解.18. (1)9,9,9,9.5(2)解:s2甲= [2×(8﹣9)2+2×(9﹣9)2+2×(10﹣9)2]=;s2乙= [(7﹣9)2+(8﹣9)2+(9﹣9)2+3×(10﹣9)2]=(3)解:我认为推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适【解答】解:(1)甲:将六次测试成绩按从小到大的顺序排列为:8,8,9,9,10,10,中位数为(9+9)÷2=9,平均数为(10+9+8+8+10+9)÷6=9;乙:第6次成绩为9×6﹣(10+10+8+10+7)=9,将六次测试成绩按从小到大的顺序排列为:7,8,9,10,10,10,中位数为(9+10)÷2=9.5;填表如下:选手选拔成绩/环中位数平均数甲10 9 8 8 10 9 9 9乙10 10 8 10 7 9 9.5 919. (1)证明:∵,,∴,,又∵,∴(2)证明:∵在△BGF中,∴∠HGF>∠GBF,∵,∴∠ADE=∠GBF,∴20. (1)解:设销售量p件与销售的天数x的函数解析式为p=kx+b,代入(1,118),(2,116)得解得因此销售量p件与销售的天数x的函数解析式为p=﹣2x+120(2)解:当1≤x<25时,y=(60+x﹣40)(﹣2x+120)=﹣2x2+80x+2400,当25≤x≤50时,y=(40+ ﹣40)(﹣2x+120)= ﹣2250(3)解:当1≤x<25时,y=﹣2x2+80x+2400,=﹣2(x﹣20)2+3200,∵﹣2<0,∴当x=20时,y有最大值y1,且y1=3200;当25≤x≤50时,y= ﹣2250;∵135000>0,∴随x的增大而减小,当x=25时,最大,∵y1>y2∴这50天中第20天时该超市获得利润最大,最大利润为3200元21. (1)证明:∵四边形ABCD是正方形,∴∠ADC=∠A=∠B=∠BCD=∠DCQ=90°,AD=BC=CD=AB=4,∵∠PDQ=90°,∴∠ADP=∠CDQ,在△APD和△CQD中,,∴△APD≌△CQD(ASA),∴AP=CQ(2)解;PE=QE,理由如下:由(1)得:△APD≌△CQD,∴PD=QD,∵DE平分∠PDQ,∴∠PDE=∠QDE,在△PDE和△QDE中,,∴△PDE≌△QDE(SAS),∴PE=QE(3)解:由(2)得:PE=QE,由(1)得:CQ=AP=1,∴BQ=BC+CQ=5,BP=AB﹣AP=3,设PE=QE=x,则BE=5﹣x,在Rt△BPE中,由勾股定理得:32+(5﹣x)2=x2,解得:x=3.4,即PE的长为3.422. (1)解:∵A,B两点的坐标分别是A(10,0)和B(8,2 ),∴tan∠OAB= = ,∴∠OAB=60°,当点A′在线段AB上时,∵∠OAB=60°,TA=TA′,∴△A′TA是等边三角形,且TP⊥AA′,∴TP=(10﹣t)sin60°= (10﹣t),A′P=AP= AT= (10﹣t),∴S=S△ATP= A′P•TP= (10﹣t)2,当A´与B重合时,AT=AB==4,所以此时6≤t<10(2)解:当点A′在线段AB的延长线上,且点P在线段AB(不与B重合)上时,纸片重叠部分的图形是四边形(如图①,其中E是TA′与CB的交点),假设点P与B重合时,AT=2AB=8,点T的坐标是(2,0),由(1)中求得当A´与B重合时,T的坐标是(6,0),则当纸片重叠部分的图形是四边形时,2<t<6(3)解:S存在最大值.①当6≤t<10时,S= (10﹣t)2,在对称轴t=10的左边,S的值随着t的增大而减小,∴当t=6时,S的值最大是2 ;②当2≤t<6时,由图①,重叠部分的面积S=S△A′TP﹣S△A′EB,∵△A′EB的高是A′B•sin60°,∴S= (10﹣t)2﹣(10﹣t﹣4)2×+ (﹣4)2×= (﹣t2+2t+30)=﹣(t﹣2)2+4 ,当t=2时,S的值最大是4 ;③当0<t≤2,即当点A′和点P都在线段AB的延长线上是(如图②,其中E是TA´与CB的交点,F是TP 与CB的交点),∵∠EFT=∠ETF,四边形ETAB是等腰梯形,∴EF=ET=AB=4,∴S= EF•OC= ×4×2 =4 .综上所述,S的最大值是4 ,此时t的值是t=2.23. (1)证明:连接,,∵,∴,∵,∴,∵,∴,∵,∴≌,∴.(2)解:作于,于,由()可知,∴,∵,,,,∴四边形是正方形,∴,∵,∴≌,∴,∵,,∴,,,∵,∴.①.②,∴,∴.。

浙江省杭州市西湖区2020年数学中考模拟试卷(4月)

浙江省杭州市西湖区2020年数学中考模拟试卷(4月)

浙江省杭州市西湖区2020年数学中考模拟试卷(4月)一、选择题(本大题有10小题,每小题3分,共30分。

)(共10题;共29分)1.下列实数中,无理数是()A. πB. ﹣C.D. |﹣4|2.若点P(2,﹣3)与点Q(x,y)关于x轴对称,则x,y的值分别是()A. ﹣2,3B. 2,3C. ﹣2,﹣3D. 2,﹣33.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据求得这个几何体的侧面积是()A. 12cm2B. (12+π)cm2C. 6πcm2D. 8πcm24.如图,已知点A,B,C,D,E是⊙O的五等分点,则∠BAD的度数是()A. 36°B. 48°C. 72°D. 96°5.下列4个图案中,轴对称图形的个数是()A. 1个B. 2个C. 3个D. 4个6.为了更好地迎接庐阳区排球比赛,某校积极准备,从全校学生中遴选出21名同学进行相应的排球训练,该训练队成员的身高如下表:身高(cm) 170 172 175 178 180 182 185人数(个)2 4 5 2 4 3 1则该校排球队21名同学身高的众数和中位数分别是(单位:cm)()A. 185,178B. 178,175C. 175,178D. 175,1757.如图,在△ABC中,∠B=50°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD,则∠BAD的度数为()A. 50°B. 60°C. 70°D. 80°8.三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的一个根,则这个三角形的周长是()A. 9B. 11C. 13D. 149.某山区有一种土特产品,若加工后出售,单价可提高20%,但重量会减少10%.现有该种土特产品300千克,全部加工后可以比不加工多卖240元,设加工前单价是x元/kg,加工后的单价是y元/kg,由题意,可列出关于x,y的方程组是()A. B.C. D.10.如图,一次函数与反比例函数的图象交于A(1,8)和B(4,2)两点,点P是线段AB上一动点(不与点A和B重合),过P点分别作x轴,y轴的垂线PC,PD交反比例函数图象于点E,F,则四边形OEPF 面积的最大值是()A. 3B. 4C.D. 6二、填空题(本大题有6小题,每小题4分,共24分)(共6题;共24分)11.分解因式:2x2+x﹣6=________.12. 2019年央视春晚创下了跨媒体收视传播新纪录.据统计,除夕当晚,海内外收视的观众总规模达11.73亿人.数据11.73亿人用科学记数法表示为________人.13.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球不放回,再随机地摸出一个小球,则两次摸出的小球的标号的和为奇数的概率是________.14.若甲、乙两名同学五次数学模拟考试成绩的平均分都是135分,且甲同学成绩的方差S甲2=1.05,乙同学成绩的方差S乙2=0.41,则甲、乙两名同学成绩相对稳定的是________.15.在△ABC中,AB=AC=2,BD是AC边上的高,且BD=,则∠ACB的度数是________.16.如图,直角三角形纸片的两直角边长分别为4,8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值是________.三、解答题(本大题有7个小题,共66分)(共7题;共72分)17.先化简,再求代数式的值,其中.18.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的面积.19.网络时代,新兴词汇层出不穷.为了解大众对网络词汇的理解,某兴趣小组举行了一个“我是路人甲”的调查活动:选取四个热词A:“硬核人生”,B:“好嗨哦”,C:“双击666”,D:“杠精时代”在街道上对流动人群进行了抽样调查,要求被调查的每位只能勾选一个最熟悉的热词,根据调查结果,该小组绘制了如下的两幅不完整的统计图,请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了________名路人.(2)补全条形统计图;(3)扇形图中的b=________.20.如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)21.如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D从O点出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连结DE.(1)求证:△CDE是等边三角形;(2)如图2,当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长;若不存在,请说明理由;(3)如图3,当点D在射线OM上运动时,是否存在以D、E、B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.22.某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.23.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过点A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B,C两点,求直线BC和抛物线的表达式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M 的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.答案解析部分一、选择题(本大题有10小题,每小题3分,共30分。

2020-2021学年浙江省杭州市中考一模数学试卷及答案解析

2020-2021学年浙江省杭州市中考一模数学试卷及答案解析

杭州市中考一模数学试卷考生须知:本试卷分试题卷和答题卷两部分.满分120分,考试时间100分钟.答题时,不能使用计算器,在答题卷指定位置内写明校名,姓名和班级,填涂考生号. 所有答案都做在答题卡标定的位置上,请务必注意试题序号和答题序号相对应.参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标(-ab 2,a b ac 442-) 一.仔细选一选 (本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列几何体中,主视图相同的是( )A .②④B .②③C .①②D .①④2.下列计算正确的是( )A .a 3+a 2=a 5B .(3a -b)2=9a 2-b 2C .b a a b a 326=÷D .(-ab 3)2=a 2b 63.如图,已知BD ∥AC ,∠1=65°,∠A =40°,则∠2的大小是( )A .40°B .50°C .75°D .95°4.已知两圆的圆心距d =3,它们的半径分别是一元二次方程x 2-5x +4=0的两个根,这两圆的位置关系是( )A. 外切B. 内切C. 外离D. 相交5. 用1张边长为a 的正方形纸片,4张边长分别为a 、b (b >a )的矩形纸片,4张边长为b 的正方形纸片,正好拼成一个大正方形(按原纸张进行无空隙、无重叠拼接),则拼成的大正方形边长为( )A .a +b +2 abB .2a +bC .2244b ab a ++D .a +2b6.下列说法正确的是( )A .中位数就是一组数据中最中间的一个数B . 9,8,9,10,11,10这组数据的众数是9C .如果x 1,x 2,x 3,…,x n 的平均数是a ,那么(x 1-a )+(x 2-a )+…+(x n -a )=0D .一组数据的方差是这组数据与平均数的差的平方和7.若04411422=+-++-b b a a ,则=++b aa 221( ) A .12 B .14.5 C .16 D .326+8.如图,已知点A (4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与射线AC 相交于点D .当△ODA 是等边三角形时,这两个二次函数的最大值之和等于( )A .5B .534C .32D .323 9.如图,已知第一象限内的点A 在反比例函数x y 1=上,第二象限的点B 在反比例函数x k y =上, 且OA ⊥OB ,33A sin =,则k 的值为( ) A .-3 B .-4 C .-22 D .21-10.阅读理解:我们把对非负实数x “四舍五入”到个位的值记为《x 》,即当n 为非负整数..时, 若21-n ≤x <21+n ,则《x 》=n. 例如:《0.67》=1,《2.49》=2,……. 给出下列关于《x 》的 问题:①《2》=2;②《2x 》=2《x 》;③当m 为非负整数时,《x m 2+》=m +《2x 》; ④若《2x -1》=5, 则实数x 的取值范围是411≤x <413;⑤满足《x 》=x 23的非负实数x 有三个.其中正确结论的个数是( )A .1B .2C .3D .4二.认真填一填 (本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.某班随机抽取了8名男同学测量身高,得到数据如下(单位m ):1.72 , 1.80, 1.76, 1.77,1.70,1.66,1.72,1.79,则这组数据的:(1)中位数是 ;(2)众数是 .12.如图,在▱ABCD 中,E 是AD 边上的中点,连接BE ,并延长BE 交CD 延长线于点F ,则△EDF 与△BCF 的周长之比是 .13.把sin60°、cos60°、tan60°按从小到大顺序排列,用“<”连接起来 .14. 将半径为4 cm 的圆形纸片沿AB 折叠后,圆弧恰好能经过圆心O ,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为 cm.15.已知⊙P 的半径为1,圆心P 在抛物线342+-=x x y 上运动,当⊙P 与x 轴相切时,圆心P 的坐标为 .16.如图,在矩形ABCD 中,AB =2,AD =5,点P 在线段BC 上运动,现将纸片折叠,使点A 与点P 重合,得折痕EF (点E 、F 为折痕与矩形边的交点),设BP =x ,当点E 落在线段AB 上,点F 落在线段AD 上时,x 的取值范围是 .三.全面答一答 (本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(本小题6分)(1)先化简,再求值:2)2()1)(1(++-+a a a ,其中41=a . (2)化简xx x -+-2422.18.(本小题8分)3月,某海域发生沉船事故.我海事救援部门用高频海洋探测仪进行海上搜救,分别在A 、B 两个探测点探测到C 处疑是沉船点.如图,已知A 、B 两点相距200米,探测线与海平面的夹角分别是30°和60°,试求点C 的垂直深度CD 是多少米.(精确到米,参考数据:41.12≈,73.13≈)19.(本小题8分)(1)在一次考试中,李老师从所教两个班全体参加考试的80名学生中随机抽取了20名学生的答题卷进行统计分析.其中某个单项选择题答题情况如下表(没有多选和不选):①根据表格补全扇形统计图(要标注角度和对应选项字母,所画扇形大致符合即可);②如果这个选择题满分是3分,正确的选项是D ,则估计全体学生该题的平均得分是多少?(2)将分别写有数字4、2、1、13的四张形状质地相同的卡片放入袋中,随机抽取一张,记下数字放回袋中,第二次再随机抽取一张,记下数字:①请用列表或画树状图方法(用其中一种),求出两次抽出卡片上的数字有多少种等可能结果; ②设第一次抽得的数字为x, 第二次抽得的数字为y ,并以此确定点P (x ,y ),求点P 落在双曲线xy 4上的概率.20.(本小题10分)如图,在四边形ABCD 中,AB =AD ,CB =CD ,E 是CD 上一点,连结BE 交AC 于点F ,连结DF .(1)证明:△ABF ≌△ADF ;(2)若AB ∥CD ,试证明四边形ABCD 是菱形;(3)在(2)的条件下,又知∠EFD =∠BCD ,请问你能推出什么结论?(直接写出一个结论,要求结论中含有字母E )21.(本小题10分)为控制H7N9病毒传播,某地关闭活禽交易,冷冻鸡肉销量上升. 某公司在春节期间采购冷冻鸡肉60箱销往城市和乡镇.已知冷冻鸡肉在城市销售平均每箱的利润 y 1(百元)与销售数量x(箱)的关系为⎪⎪⎩⎪⎪⎨⎧<≤+-≤<+=)6020(5.7401)200(51011x x x x y ,在乡镇销售平均每箱的利润y 2(百元)与销售数量t (箱)的关系为⎪⎩⎪⎨⎧<≤+-≤<=)6030(8151)300(62t t t y : (1)t 与x 的关系是 ;将y 2转换为以x 为自变量的函数,则y 2= ;(2)设春节期间售完冷冻鸡肉获得总利润W (百元),当在城市销售量x (箱)的范围是0<x ≤20时,求W 与x 的关系式;(总利润=在城市销售利润+在乡镇销售利润)(3)经测算,在20<x ≤30的范围内,可以获得最大总利润,求这个最大总利润,并求出此时x 的值.22.(本小题12分)如图,在一个边长为9cm 的正方形ABCD 中,点E 、M 分别是线段AC 、CD 上的动点,连结DE 并延长交正方形的边于点F ,过点M 作MN ⊥DF 于点H ,交AD 于点N .设点M 从点C 出发,以1cm/s 的速度沿CD 向点D 运动;点E 同时从点A 出发,以2cm/s 速度沿AC 向点C 运动,运动时间为t (t >0):(1)当点F 是AB 的三等分点时,求出对应的时间t ;(2)当点F 在AB 边上时,连结FN 、FM :①是否存在t 值,使FN =MN ?若存在,请求出此时t 的值;若不存在,请说明理由; ②是否存在t 值,使FN =FM ?若存在,请求出此时t 的值;若不存在,请说明理由.23.(本小题12分)如图,点P 是直线:22-=x y 上的一点,过点P 作直线m ,使直线m 与抛物线2x y =有两个交点,设这两个交点为A 、B :(1)如果直线m 的解析式为2+=x y ,直接写出A 、B 的坐标;(2)如果已知P 点的坐标为(2, 2),点A 、B 满足PA =AB ,试求直线m 的解析式;(3)设直线与y 轴的交点为C ,如果已知∠AOB =90°且∠BPC =∠OCP ,求点P 的坐标.中考一模数学答案一.选择题 ADCBD CBCDB二.填空题(本题有6个小题,每小题4分,共24分)11.1.74;1.72 12.1︰2 13.cos60°<sin60°<tan60° 14.328 15.)1,2(-、)1,22(± 16.215-≤x ≤2 (说明:13题可以32321<<;15题,写出其中2个给3分;16题,有一个端值正确给1分)三、解答题17.(6分)(1)原式=+++-a a a 4122 4 --------1分; 合并得54+a ---------1分; 求得值为6--------1分(2)原式=242--x x ---------1分;分解因式得2)2)(2(--+x x x -------1分;结果=2+x --------------1分18.( 8分)解法一:由图形可得∠BCA =30°,∴CB =BA =200--------2分∴在Rt △CDB 中又含30°角,得DB =21CB =100 ----------2分∴由勾股定理DC ==22B D -CB 22100200-------------2分解得CD =1003,∴点C 的垂直深度CD 是173米.--------2分解法二:设CD =x ,在Rt △ACD 中,∴AD =3CD =3x ,在Rt △BCD 中,BD =33CD =33x由题意得,AD -BD =200,即3x ―33x =200,解得:)(1733100米≈⨯=x(同样给分)19.(8分)(1)①补全扇形图------------------------------------- 2分②平均分1.95分----------------------------------2分(2)①列表或树状图,得16种等可能结果-------2分②点P 落在x y 4=上的概率为163 -------------2分20.(10分)(1)∵AB =AD ,CB =CD ,CA 公共,∴△ABC ≌△ADC (SSS )-------------------------2分 ∴∠1=∠2,又AB =AD ,FA 公共,∴△ABF ≌△ADF (SAS )-----------------------------2分(2)证明:∵AB ∥CD ,∴∠1=∠3,-----------------------1分又∵∠1=∠2,∴∠2=∠3,∴AD =CD ,------------------1分∵AB =AD ,CB =CD ∴AB=CB=CD=AD ,------------------1分∴四边形ABCD 是菱形;-----------------------------------------1分(3)BE ⊥CD 或∠BEC =∠BED =90°或△BEC ∽△DEF 或∠EFD =∠BAD ---------------2分 写出其中一个.21.(10分)(1) x t -=60 ----------------------1分;⎪⎩⎪⎨⎧≤<+<≤=)300(4151)6030(62x x x y -----------------------------2分 (2) 综合⎪⎪⎩⎪⎪⎨⎧<≤+-≤<+=)6020(5.7401)200(51011x x x x y 和(1)中 y 2 ,当对应的x 范围是0<x ≤20 时,2405301)60)(4151()5101(2++=-+++=x x x x x x W ------------------------------------------------3分(3)当20<x ≤30 时,2405.712011)60)(4151()5.7401(22++-=-+++-=x x x x x x W --------------2分 W 顶点x =11450>30,∴W 在20<x ≤30随x 增大而增大,∴最大值x =30时取得------------1分∴W 最大=382.5(百元)---------------------------------------------------------------------------------------1分22.(12分)(1)∵AB ∥CD ,∴△AFE ∽△CDE ,-----------------------------------------------------1分当点F 是边AB 三等分点时,则AF =3或AF =6 ,(i)AF =3时,∵EC AE CD AF =,∴AE-29AE 93=,∴AE =429 ,∴49=t ------------2分 (ii)同理,AF =6,AE =5218,∴518=t ,-----------------------------------------------2分(2)设CM =t ,F 在边AB 上时,用t 表示线段AF 、ND 、AN :由△AFE ∽△CDE ,∴tt 22929F -=A ,得AF=t t -99.------------------1分又易证△MND ∽△DFA ,∴ADMD AF ND =, 解得ND =t .------------------1分∴AN =DM =9-t ,---------------------------------------------------------1分 ① 当FN =MN 时,则由AN =DM, ∴△FAN ≌△NDM ,--------------------------------------------1分∴AF =ND ,即tt -99=t ,得t=0,不合题意.∴此种情形不存在;----------------------------1分② 当FN =FM 时,由MN ⊥DF ,等腰三角形三线合一,得HN =HM =HD , ------------------1分∴△NDM 是等腰Rt △, DN =DM =MC , ∴M 为中点,∴t =29, -------------------------1分23.(12分)(1)A (2, 4)、B (-1,1)-------------------------------------2分(2)解法一:设法求出A 的坐标:设A (m, m 2)、B (a, b ),过A 作x 轴垂线,过P 、B 作y 轴垂线,∵PA =AB ,∴△ABF ≌△APE∴B 的横坐标a =2 m ―2,纵坐标b =m 2―(2―m 2)=2 m 2―2∵点B 在抛物线上,b =a 2, ∴2 m 2―2=(2 m ―2)2,解得m =1或m =3,∴得点A (1, 1)或A (3, 9)-------------2分∵P (2, 2),可得直线m 的解析式为:x y = 或127-=x y ------------------2分(各1分)(解法二:设B (a ,a 2),∵PA =AB ,∴A 是线段PB 的中点,∴A ()22,222++a a∵A 在抛物线上,∴=+222a 2)22(+a 解得∴a =0或4,∴B(0, 0)、B (4,16),两个点B 坐标(2分),解析式(2分),解法二比较简单)(3)设直线m :()0≠+=k b kx y 交y 轴于D ,设A (1x ,21x ),B (2x ,22x ). 过A 、B 分别作AE 、BF 垂直x 轴于E 、F ,∵∠AOB =90°,∴△AEO ∽△OFB , ∴BF OF OE AE =,222121x x x x -=,∴121-=⋅x x----------------------------------1分∵A 、B 是b kx y +=与2x y =的交点,∴21,x x 是2x b kx =+的解, ∴2422,1b k k x +±=由121-=⋅x x 解得:1=b ,∴D (0,1)---------1分∵∠BPC =∠OCP ,∴DP =DC =3,---------------------------------------1分 过P 作PG 垂直y 轴于G ,则:PG 2+GD 2=DP 2,∴设P (a, 2a ―2),有2223)122(=--+a a , -----------------------1分 解得0=a (舍去)或512=a ,∴P )514,512(------------------------------2分。

2020年浙江省杭州市中考数学一模试卷及答案解析

2020年浙江省杭州市中考数学一模试卷及答案解析

2020年浙江省杭州市中考数学一模试卷一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1.(3分)﹣2的绝对值是( ) A .﹣2 B .2C .12D .−122.(3分)下列计算正确的是( )A .m 4+m 3=m 7B .(m 4) 3=m 7C .2m 5÷m 3=m 2D .m (m ﹣1)=m 2﹣m3.(3分)如图,P 为⊙O 外一点,PC 切⊙O 于C ,PB 与⊙O 交于A 、B 两点.若P A =1,PB =5,则PC =( )A .3B .√5C .4D .无法确定 4.(3分)为了解某班学生每天使用零花钱的情况,小敏随机调查了15名同学,结果如表:每天用零花钱(单位:元) 12345人数2 4 53 1则这15名同学每天使用零花钱的众数和中位数分别是( )A .3,3B .5,2C .3,2D .3,55.(3分)某工程甲单独完成要30天,乙单独完成要25天.若乙先单独干15天,剩下的由甲单独完成,设甲、乙一共用x 天完成,则可列方程为( )A .x+1525+1530=1 B .x+1530+1525=1 C .1530+x−1525=1D .x−1530+1525=16.(3分)如图,已知一组平行线a ∥b ∥c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且AB =3,BC =4,EF =4.8,则DE =( )A .7.2B .6.4C .3.6D .2.47.(3分)如图,BD 是△ABC 的角平分线,AE ⊥BD ,垂足为F .若∠ABC =36°,∠C =44°,则∠EAC 的度数为( )A .18°B .28°C .36°D .38°8.(3分)直线l 1:y =kx +b 与直线l 2:y =bx +k 在同一坐标系中的大致位置是( )A .B .C .D .9.(3分)关于x 的二次函数y =x 2+2kx +k ﹣1,下列说法正确的是( ) A .对任意实数k ,函数图象与x 轴都没有交点B .对任意实数k ,函数图象没有唯一的定点C .对任意实数k ,函数图象的顶点在抛物线y =﹣x 2﹣x ﹣1上运动D .对任意实数k ,当x ≥﹣k ﹣1时,函数y 的值都随x 的增大而增大10.(3分)如图,在△ABC 中,∠C =90°,D 是BC 边上一点,∠ADC =3∠BAD ,BD =4,DC =3.则AB 的值为( )A .5+3√2B .2+2√15C .7√2D .√113二、填空题:本题有6个小题,每小题4分,共24分 11.(4分)分解因式:3x 2+6xy +3y 2= .12.(4分)一个袋子中有1个红球,2个黄球,每个球除颜色外都相同,从中摸出2个球,2个球颜色不同的概率为 . 13.(4分)分式方程2x−1=1x的解是 . 14.(4分)已知一个扇形的面积为12πcm 2,圆心角的度数为108°,则它的弧长为 .15.(4分)已知关于x 的不等式组{5x −a >3(x −1)2x −1≤7的所有整数解的和为7,则a 的取值范围是 .16.(4分)一张直角三角形纸片ABC ,∠ACB =90°,AB =13,AC =5,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,则CD 的长为 . 三、解答题:本大题有7个小题,共66分解答应写出文字说明、证明过程或演算步骤. 17.(6分)先化简再求值:(ab−b a)•aba+b,其中a =1,b =2. 18.(8分)光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各50名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成统计图(不完整).根据统计图表中的信息,解答下列问题:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有人,男生最喜欢“乒乓球“项目的有人.(2)请将条形统计图补充完整;(3)若该校有男生450人,女生400人,请估计该校喜欢“羽毛球”项目的学生总人数.19.(8分)如图,D、E是以AB为直径的⊙O上两点,且∠AED=45°.(1)过点D作DC∥AB,求证:直线CD与⊙O相切;(2)若⊙O的半径为12,sin∠ADE=3,求AE的长.420.(10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6√2,AF=4√2,求AE的长.21.(10分)已知Rt△ABC的斜边AB在平面直角坐标系的x轴上,点C(2,6)在反比例函数y1=k x的图象上,且sin∠BAC= 35(1)求k的值和边AC的长;(2)求点B的坐标;交于M与N点,求出x为何值时,y2≥y1.(3)有一直线y2=kx+10与y1=kx22.(12分)已知一次函数y1=2x+b的图象与二次函数y2=a(x2+bx+1)(a≠0,a、b为常数)的图象交于A、B两点,且A 的坐标为(0,1).(1)求出a、b的值,并写出y1,y2的表达式;(2)验证点B的坐标为(1,3),并写出当y1≥y2时,x的取值范围;(3)设u=y1+y2,v=y1﹣y2,若m≤x≤n时,u随着x的增大而增大,且v也随着x的增大而增大,求m的最小值和n的最大值.23.(12分)在△ABC 和△DBE 中,CA =CB ,EB =ED ,点D 在AC 上.(1)如图1,若∠ABC =∠DBE =60°,求证:∠ECB =∠A ;(2)如图2,设BC 与DE 交于点F .当∠ABC =∠DBE =45°时,求证:CE ∥AB ; (3)在(2)的条件下,若tan ∠DEC =12时,求EFDF的值.2020年浙江省杭州市中考数学一模试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1.(3分)﹣2的绝对值是( ) A .﹣2B .2C .12D .−12【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2, 故选:B .【点评】本题考查了绝对值的定义,是中考的常见题型,比较简单,熟记绝对值的定义是本题的关键. 2.(3分)下列计算正确的是( ) A .m 4+m 3=m 7 B .(m 4) 3=m 7 C .2m 5÷m 3=m 2D .m (m ﹣1)=m 2﹣m【分析】直接利用整式的混合运算法则分别计算判断即可. 【解答】解:A 、m 4与m 3,无法合并,故此选项错误; B 、(m 4) 3=m 12,故此选项错误; C 、2m 5÷m 3=2m 2,故此选项错误; D 、m (m ﹣1)=m 2﹣m ,正确. 故选:D .【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.3.(3分)如图,P 为⊙O 外一点,PC 切⊙O 于C ,PB 与⊙O 交于A 、B 两点.若P A =1,PB =5,则PC =( )A .3B .√5C .4D .无法确定【分析】求出半径的长,求出PO 长,根据切线的性质求出∠PCO =90°,再根据勾股定理求出即可. 【解答】解:∵P A =1,PB =5, ∴AB =PB ﹣P A =4, ∴OC =OA =OB =2, ∴PO =1+2=3, ∵PC 切⊙O 于C , ∴∠PCO =90°,在Rt △PCO 中,由勾股定理得:PC =√PO 2−OC 2=√32−22=√5, 故选:B .【点评】本题考查了勾股定理和切线的性质,能熟记切线的性质的内容是解此题的关键,注意:圆的切线垂直于过切点的半径.4.(3分)为了解某班学生每天使用零花钱的情况,小敏随机调查了15名同学,结果如表:每天用零花钱(单位:元) 12345人数24531则这15名同学每天使用零花钱的众数和中位数分别是( )A .3,3B .5,2C .3,2D .3,5【分析】根据众数和中位数的定义分别进行解答即可.【解答】解:这15名同学每天使用零花钱的众数为3元,中位数为3元,故选:A.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)某工程甲单独完成要30天,乙单独完成要25天.若乙先单独干15天,剩下的由甲单独完成,设甲、乙一共用x 天完成,则可列方程为()A.x+1525+1530=1 B.x+1530+1525=1C.1530+x−1525=1 D.x−1530+1525=1【分析】根据题意列出方程求出答案.【解答】解:设甲、乙一共用x天完成,则可列方程为:x−15 30+1525=1.故选:D.【点评】本题考查由实际问题抽象出一元一次方程,解题的关键是找出等量关系,本题属于基础题型.6.(3分)如图,已知一组平行线a∥b∥c,被直线m、n所截,交点分别为A、B、C和D、E、F,且AB=3,BC=4,EF =4.8,则DE=()A.7.2 B.6.4 C.3.6 D.2.4【分析】根据平行线分线段成比例定理列出比例式,代入计算得到答案.【解答】解:∵a∥b∥c,∴DEEF=ABBC,即DE4.8=34,解得,DE=3.6,故选:C.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=36°,∠C=44°,则∠EAC的度数为()A.18°B.28°C.36°D.38°【分析】根据∠EAC=∠BAC﹣∠BAF,求出∠BAC,∠BAF即可解决问题.【解答】解:∵∠ABC=36°,∠C=44°,∴∠BAC=180°﹣36°﹣44°=100°,∵BD平分∠ABC,∴∠ABD=12∠ABC=18°,∵AE⊥BD,∴∠BF A=90°,∴∠BAF=90°﹣18°=72°,∴∠EAC =∠BAC ﹣∠BAF =100°﹣72°=28°, 故选:B .【点评】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 8.(3分)直线l 1:y =kx +b 与直线l 2:y =bx +k 在同一坐标系中的大致位置是( )A .B .C .D .【分析】根据一次函数的系数与图象的关系依次分析选项,找k 、b 取值范围相同的即得答案. 【解答】解:根据一次函数的系数与图象的关系依次分析选项可得:A 、由图可得,y 1=kx +b 中,k <0,b <0,y 2=bx +k 中,b >0,k <0,b 、k 的取值矛盾,故本选项错误;B 、由图可得,y 1=kx +b 中,k >0,b <0,y 2=bx +k 中,b >0,k >0,b 的取值相矛盾,故本选项错误;C 、由图可得,y 1=kx +b 中,k >0,b <0,y 2=bx +k 中,b <0,k >0,k 的取值相一致,故本选项正确;D 、由图可得,y 1=kx +b 中,k >0,b <0,y 2=bx +k 中,b <0,k <0,k 的取值相矛盾,故本选项错误; 故选:C .【点评】本题主要考查了一次函数的图象性质,要掌握它们的性质才能灵活解题.解答本题注意理解:直线y =kx +b 所在的位置与k 、b 的符号有直接的关系.9.(3分)关于x 的二次函数y =x 2+2kx +k ﹣1,下列说法正确的是( ) A .对任意实数k ,函数图象与x 轴都没有交点B .对任意实数k ,函数图象没有唯一的定点C .对任意实数k ,函数图象的顶点在抛物线y =﹣x 2﹣x ﹣1上运动D .对任意实数k ,当x ≥﹣k ﹣1时,函数y 的值都随x 的增大而增大【分析】利用△=(2k ﹣1)2+3>0可对A 进行判断;利用点(−12,−34)满足抛物线解析式可对B 进行判断;先求出抛物线顶点坐标为(﹣k ,﹣k 2+k ﹣1),则根据二次函数图象上点的坐标特征可对C 进行判断;先表示出抛物线的对称轴方程,然后利用二次函数的性质可对D 进行判断.【解答】解:A 、△=4k 2﹣4(k ﹣1)=(2k ﹣1)2+3>0,抛物线与x 轴有两个交点,所以A 选项错误;B 、k (2x +1)=y +1﹣x 2,k 为任意实数,则2x +1=0,y +1﹣x 2=0,所以抛物线经过定点(−12,−34),所以B 选项错误; C 、y =(x +k )2﹣k 2+k ﹣1,抛物线的顶点坐标为(﹣k ,﹣k 2+k ﹣1),则抛物线的顶点在抛物线y =﹣x 2﹣x ﹣1上运动,所以C 选项正确;D 、抛物线的对称轴为直线x =−2k2=−k ,抛物线开口向上,则x >﹣k 时,函数y 的值都随x 的增大而增大,所以D 选项错误. 故选:C .【点评】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.10.(3分)如图,在△ABC 中,∠C =90°,D 是BC 边上一点,∠ADC =3∠BAD ,BD =4,DC =3.则AB 的值为( )A.5+3√2B.2+2√15C.7√2D.√113【分析】延长CB到E,使得BE=BA.设BE=AB=a.利用相似三角形的性质,勾股定理构建方程即可解决问题.【解答】解:如图,延长CB到E,使得BE=BA.设BE=AB=a.∵BE=BA,∴∠E=∠BAE,∵∠ADC=∠ABD+∠BAD=2∠E+∠BAD=3∠BAD,∴∠BAD=∠E,∵∠ADB=∠EDA,∴△ADB∽△EDA,∴ADED=DBAD,∴AD2=4(4+a)=16+4a,∵AC2=AD2﹣CD2=AB2﹣BC2,∴16+4a﹣32=a2﹣72,解得a=2+2√15或2﹣2√15(舍弃).∴AB=2+2√15,故选:B.【点评】本题考查相似三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题:本题有6个小题,每小题4分,共24分11.(4分)分解因式:3x2+6xy+3y2=3(x+y)2.【分析】先利用提取公因式法提取数字3,再利用完全平方公式继续进行分解.【解答】解:3x2+6xy+3y2,=3(x2+2xy+y2),=3(x+y)2【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(4分)一个袋子中有1个红球,2个黄球,每个球除颜色外都相同,从中摸出2个球,2个球颜色不同的概率为23.【分析】画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:画树状图如下:由树状图知,共有6种等可能结果,其中2个球颜色不同的有4种结果, ∴2个球颜色不同的概率为46=23, 故答案为:23.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.13.(4分)分式方程2x−1=1x的解是 x =﹣1 . 【分析】观察分式方程得最简公分母为x (x ﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 【解答】解:方程的两边同乘x (x ﹣1),得 2x =x ﹣1, 解得x =﹣1.检验:把x =﹣1代入x (x ﹣1)=2≠0. ∴原方程的解为:x =﹣1. 故答案为:x =﹣1.【点评】本题考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.14.(4分)已知一个扇形的面积为12πcm 2,圆心角的度数为108°,则它的弧长为6√105πcm . 【分析】先根据扇形的面积公式求出扇形的半径,再根据弧长公式求出弧长即可.【解答】解:设扇形的半径为Rcm ,∵扇形的面积为12πcm 2,圆心角的度数为108°, ∴108π×R 2360=12π,解得:R =2√10,∴弧长为108π×2√10180=6√105π(cm ),故答案为:6√105πcm .【点评】本题考查了扇形面积的计算和弧长的计算,能熟记公式是解此题的关键.15.(4分)已知关于x 的不等式组{5x −a >3(x −1)2x −1≤7的所有整数解的和为7,则a 的取值范围是 7≤a <9或﹣3≤a <﹣1 .【分析】先求出求出不等式组的解集,再根据已知得出关于a 的不等式组,求出不等式组的解集即可.【解答】解:{5x −a >3(x −1)①2x −1≤7②,∵解不等式①得:x >a−32, 解不等式②得:x ≤4, ∴不等式组的解集为a−32<x ≤4, ∵关于x 的不等式组{5x −a >3(x −1)2x −1≤7的所有整数解的和为7,∴当a−32>0时,这两个整数解一定是3和4,∴2≤a−32<3, ∴7≤a <9,当a−32<0时,﹣3≤a−32<−2, ∴﹣3≤a <﹣1,∴a 的取值范围是7≤a <9或﹣3≤a <﹣1. 故答案为:7≤a <9或﹣3≤a <﹣1.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能得出关于a 的不等式组是解此题的关键.16.(4分)一张直角三角形纸片ABC ,∠ACB =90°,AB =13,AC =5,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,则CD 的长为103或6017. 【分析】根据沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,分两种情况讨论:∠DEB =90°或∠BDE =90°,分别依据勾股定理或者相似三角形的性质,即可得到CD 的长. 【解答】解:∵∠ACB =90°,AB =13,AC =5, ∴BC =√AB 2−AC 2=12, 根据题意,分两种情况: ①如图,若∠DEB =90°,则∠AED =90°=∠C , CD =ED ,连接AD ,则Rt △ACD ≌Rt △AED (HL ), ∴AE =AC =5,BE =AB ﹣AE =13﹣5=8, 设CD =DE =x ,则BD =BC ﹣CD =12﹣x , 在Rt △BDE 中,DE 2+BE 2=BD 2, ∴x 2+82=(12﹣x )2解得x =103, ∴CD =103;②如图,若∠EDB =90°,则∠CDE =∠DEF =∠C =90°,CD =DE , ∴四边形CDEF 是正方形, ∴∠AFE =∠EDB =90°, ∠AEF =∠B , ∴△AEF ∽△EBD , ∴AF ED =EF BD ,6017设CD =x ,则EF =CF =x ,AF =5﹣x ,BD =12﹣x ,∴5−x x =x 12−x , 解得x =6017. ∴CD =6017. 综上所述,CD 的长为103或6017. 【点评】本题考查了翻折变换,综合运用勾股定理、相似三角形的判定与性质、正方形的判定与性质解答,解题关键是根据题意分两种情况讨论.三、解答题:本大题有7个小题,共66分解答应写出文字说明、证明过程或演算步骤.17.(6分)先化简再求值:(a b −b a )•ab a+b ,其中a =1,b =2. 【分析】先把分式化简后,再把a 、b 的值代入求出分式的值. 【解答】解:原式=a 2−b 2ab •ab a+b =(a+b)(a−b)ab ⋅ab a+b=a ﹣b ,当a =1,b =2时,原式=1﹣2=﹣1.【点评】本题考查了分式的化简求值,熟练化简分式是解题的关键.18.(8分)光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各50名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成统计图(不完整).根据统计图表中的信息,解答下列问题:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有 10 人,男生最喜欢“乒乓球“项目的有 20 人.(2)请将条形统计图补充完整;(3)若该校有男生450人,女生400人,请估计该校喜欢“羽毛球”项目的学生总人数.【分析】(1)根据题目中的数据和条形统计图中的数据,可以计算出女生最喜欢“踢毽子”项目的人数,然后根据扇形统计图中的数据,可以计算出男生最喜欢“乒乓球“项目的人数;(2)根据(1)中的结果,可以得到女生最喜欢“踢毽子”项目的有10人,从而可以将条形统计图补充完整;(3)根据统计图中的数据和该校有男生450人,女生400人,可以计算出该校喜欢“羽毛球”项目的学生总人数.【解答】解:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有:50﹣15﹣9﹣9﹣7=10(人),男生最喜欢“乒乓球“项目的有:50×(1﹣8%﹣10%﹣14%﹣28%)=50×40%=20(人),故答案为:10,20;(2)由(1)知,女生最喜欢“踢毽子”项目的有10人,补全完整的条形统计图如右图所示;(3)450×28%+400×950=126+72198(人),答:该校喜欢“羽毛球”项目的学生一共有198人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.19.(8分)如图,D、E是以AB为直径的⊙O上两点,且∠AED=45°.(1)过点D作DC∥AB,求证:直线CD与⊙O相切;,求AE的长.(2)若⊙O的半径为12,sin∠ADE=34【分析】(1)连接OD,根据圆周角定理求出∠AOD,根据平行线的性质求出∠ODC=90°,根据切线的判定得出即可;(2)连接BE,根据圆周角定理求出∠B=∠ADE,解直角三角形求出即可.【解答】(1)证明:连接OD,∵∠AED=45°,∴由圆周角定理得:∠AOD=2∠AED=90°,∵CD∥AB,∴∠CDO=∠AOD=90°,即OD⊥CD,∵OD过O,∴直线CD与⊙O相切;(2)解:连接BE,∵AB为⊙O的直径,∴∠AEB=90°,∵由圆周角定理得:∠B=∠ADE,sin∠ADE=3 4,∴sin∠ADE=sin B,∵sin B=AE AB ,∵⊙O的半径为12,∴AE24=34,解得:AE=18.【点评】本题考查了解直角三角形,圆周角定理,切线的判定,平行线的性质等知识点,能综合运用知识点进行推理是解此题的关键.20.(10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6√2,AF=4√2,求AE的长.【分析】(1)由平行四边形的性质和平行线的性质得出∠ADF=∠CED,∠B+∠C=180°;由∠AFE+∠AFD=180°,∠AFE =∠B,得出∠AFD=∠C,即可得出结论;(2)根据平行四边形的性质可得出CD=AB=8,根据相似三角形的性质可得出ADDE =AFDC,求出DE=12.证出AE⊥AD,由勾股定理即可得出答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠ADF=∠CED,∠B+∠C=180°;∵∠AFE+∠AFD=180°,∠AFE=∠B,∴∠AFD=∠C,∴△ADF∽△DEC;(2)解:∵四边形ABCD是平行四边形,∴DC=AB=8.∵△ADF∽△DEC,∴ADDE=AFDC,即6√2DE=4√28,∴DE=12.∵AD∥BC,AE⊥BC,∴AE⊥AD.在Rt△ADE中,∠EAD=90°,DE=12,AD=6√2,∴AE =√DE 2−AD 2=√122−(6√2)2=6√2.【点评】此题主要考查的是平行四边形的性质、相似三角形的判定和性质以及勾股定理的运用,解题的关键判定三角形相似.21.(10分)已知Rt △ABC 的斜边AB 在平面直角坐标系的x 轴上,点C (2,6)在反比例函数y 1=k x的图象上,且sin ∠BAC =35 (1)求k 的值和边AC 的长;(2)求点B 的坐标;(3)有一直线y 2=kx +10与y 1=k x 交于M 与N 点,求出x 为何值时,y 2≥y 1.【分析】(1)本题需先根据C 点的坐标在反比例函数y 1=k x 的图象上,从而得出k 的值,再根据且sin ∠BAC =35,得出AC 的长;(2)本题需先根据已知条件,得出∠DAC =∠DCB ,从而得出CD 的长,根据点B 的位置即可求出正确答案;(3)解方程组即可得到结论.【解答】解:(1)∵点C (2,6)在反比例函数y =k x 的图象上,∴6=k 2,解得k =12,∵sin ∠BAC =35∴sin ∠BAC =6AC =35, ∴AC =10;∴k 的值和边AC 的长分别是:12,10;(2)①当点B 在点A 右边时,如图,作CD ⊥x 轴于D .∵△ABC 是直角三角形,∴∠DAC =∠DCB ,又∵sin ∠BAC =35,∴tan ∠DAC =34,∴BD CD =34, 又∵CD =6, ∴BD =92,∴OB =2+92=132, ∴B (132,0); ②当点B 在点A 左边时,如图,作CD ⊥x 轴于D .∵△ABC 是直角三角形, ∴∠B +∠A =90°,∠B +∠BCD =90°,∴∠DAC =∠DCB ,又∵sin ∠BAC =35,∴tan ∠DAC =34,∴BD CD =34, 又∵CD =6,∴BD =92,BO =BD ﹣2=52, ∴B (−52,0) ∴点B 的坐标是(−52,0),(132,0); (3)∵k =12,∴y 2=12x +10与y 1=12x , 解{y =12x +10y =12x得,{x =23y =18,{x =−32y =−8, ∴M (23,18),N 点(−32,﹣8),∴−32<x <0或x >23时,y 2≥y 1.【点评】本题考查了反比例函数与一次函数的交点问题,解直角三角形,正确的理解题意是解题的关键.22.(12分)已知一次函数y 1=2x +b 的图象与二次函数y 2=a (x 2+bx +1)(a ≠0,a 、b 为常数)的图象交于A 、B 两点,且A 的坐标为(0,1).(1)求出a 、b 的值,并写出y 1,y 2的表达式;(2)验证点B 的坐标为(1,3),并写出当y 1≥y 2时,x 的取值范围;(3)设u =y 1+y 2,v =y 1﹣y 2,若m ≤x ≤n 时,u 随着x 的增大而增大,且v 也随着x 的增大而增大,求m 的最小值和n 的最大值.【分析】(1)把A 点的坐标分别代入两个函数的解析式,便可求得a 与b 的值;(2)画出函数图象,根据函数图象作答;(3)求出出个函数的对称轴,根据函数的性质得出“u 随着x 的增大而增大,且v 也随着x 的增大而增大”时x 的取值范围,进而得m 的最小值和n 的最大值.【解答】解:(1)把A (0,1)代入y 1=2x +b 得b =1,把A (0,1)代入y 2=a (x 2+bx +1)得,a =1,∴y 1=2x +1,y 2=x 2+x +1;(2)作y 1=2x +1,y 2=x 2+x +1的图象如下:由函数图象可知,y 1=2x +1不在y 2=x 2+x +1下方时,0≤x ≤3,∴当y 1≥y 2时,x 的取值范围为0≤x ≤3;(3)∵u =y 1+y 2=2x +1+x 2+x +1=x 2+3x +2=(x +1.5)2﹣0.25,∴当x ≥﹣1.5时,u 随x 的增大而增大;v =y 1﹣y 2=(2x +1)﹣(x 2+x +1)=﹣x 2+x =﹣(x ﹣0.5)2+0.25,∴当x ≤0.5时,v 随x 的增大而增大,∴当﹣15≤x ≤0.5时,u 随着x 的增大而增大,且v 也随着x 的增大而增大,∵若m ≤x ≤n 时,u 随着x 的增大而增大,且v 也随着x 的增大而增大,∴m 的最小值为﹣1.5,n 的最大值为0.5.【点评】本题是二次函数的综合题,主要考查了函数的图象与性质,利用函数图象求不等式的解集,待定系数法,关键是熟练掌握二次函数的性质,灵活运用性质解题.23.(12分)在△ABC 和△DBE 中,CA =CB ,EB =ED ,点D 在AC 上.(1)如图1,若∠ABC =∠DBE =60°,求证:∠ECB =∠A ;(2)如图2,设BC 与DE 交于点F .当∠ABC =∠DBE =45°时,求证:CE ∥AB ;(3)在(2)的条件下,若tan ∠DEC =12时,求EF DF的值. 【分析】(1)根据SAS 可证明△ABD ≌△CBE .得出∠A =∠ECB ;(2)得出△ABC 和△DBE 都是等腰直角三角形,证明△ABD ∽△CBE ,则∠BAD =∠BCE =45°,可得出结论;(3)过点D 作DM ⊥CE 于点M ,过点D 作DN ∥AB 交CB 于点N ,设DM =MC =a ,得出DN =2a ,CE =a ,证明△CEF ∽△DNF ,可得出答案.【解答】(1)证明:∵CA =CB ,EB =ED ,∠ABC =∠DBE =60°,∴△ABC 和△DBE 都是等边三角形,∴AB =BC ,DB =BE ,∠A =60°.∵∠ABC =∠DBE =60°,∴∠ABD =∠CBE ,∴△ABD ≌△CBE (SAS ).∴∠A =∠ECB ;(2)证明:∵∠ABC=∠DBE=45°,CA=CB,EB=ED,∴△ABC和△DBE都是等腰直角三角形,∴∠CAB=45°,∴ABBC=√2,DB BE=√2,∴ABBC=DBBE,∵∠ABC=∠DBE,∴∠ABD=∠CBE,∴△ABD∽△CBE,∴∠BAD=∠BCE=45°,∵∠ABC=45°,∴∠ABC=∠BCE,∴CE∥AB;(3)解:过点D作DM⊥CE于点M,过点D作DN∥AB交CB于点N,∵∠ACB=90°,∠BCE=45°,∴∠DCM=45°,∴∠MDC=∠DCM=45°,∴DM=MC,设DM=MC=a,∴DC=√2a,∵DN∥AB,∴△DCN为等腰直角三角形,∴DN=√2DC=2a,∵tan∠DEC=DMME=12,∴ME=2DM,∴CE=a,∴CEDN=a2a=12,∵CE∥DN,∴△CEF∽△DNF,∴EFDF=CEDN=12.【点评】本题是三角形综合题,考查了等边三角形的判定与性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,相似三角形的判定与性质,锐角三角函数等知识,正确作出辅助线,熟练掌握基本图形的性质是解题的关键.。

2020年浙江省杭州市西湖区中考数学模拟试卷

2020年浙江省杭州市西湖区中考数学模拟试卷

中考数学模拟试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.下列实数中,无理数是()A. πB. -C.D. |-4|2.若点P(2,-3)与点Q(x,y)关于x轴对称,则x,y的值分别是()A. -2,3B. 2,3C. -2,-3D. 2,-33.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据求得这个几何体的侧面积是()A. 12cm2B. (12+π)cm2C. 6πcm2D. 8πcm24.如图,已知点A,B,C,D,E是⊙O的五等分点,则∠BAD的度数是()A. 36°B. 48°C. 72°D. 96°5.下列4个图案中,轴对称图形的个数是()A. 1个B. 2个C. 3个D. 4个6.为了更好地迎接庐阳区排球比赛,某校积极准备,从全校学生中遴选出21名同学进行相应的排球训练,该训练队成员的身高如下表:身高(cm)170172175178180182185人数(个)2452431则该校排球队21名同学身高的众数和中位数分别是(单位:cm)()A. 185,178B. 178,175C. 175,178D. 175,1757.如图,在△ABC中,∠B=50°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD,则∠BAD 的度数为()A. 50°B. 60°C. 70°D. 80°8.三角形的两边长分别为3和6,第三边的长是方程x2-6x+8=0的一个根,则这个三角形的周长是()A. 9B. 11C. 13D. 149.某山区有一种土特产品,若加工后出售,单价可提高20%,但重量会减少10%.现有该种土特产品300千克,全部加工后可以比不加工多卖240元,设加工前单价是x元/kg,加工后的单价是y元/kg,由题意,可列出关于x,y的方程组是()A.B.C.D.10.如图,一次函数与反比例函数的图象交于A(1,8)和B(4,2)两点,点P是线段AB上一动点(不与点A和B重合),过P点分别作x轴,y轴的垂线PC,PD 交反比例函数图象于点E,F,则四边形OEPF面积的最大值是()A. 3B. 4C.D. 6二、填空题(本大题共6小题,共24.0分)11.分解因式:2x2+x-6=______.12.2019年央视春晚创下了跨媒体收视传播新纪录.据统计,除夕当晚,海内外收视的观众总规模达11.73亿人.数据11.73亿人用科学记数法表示为______人.13.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球不放回,再随机地摸出一个小球,则两次摸出的小球的标号的和为奇数的概率是______.14.若甲、乙两名同学五次数学模拟考试成绩的平均分都是135分,且甲同学成绩的方差S甲2=1.05,乙同学成绩的方差S乙2=0.41,则甲、乙两名同学成绩相对稳定的是______.15.在△ABC中,AB=AC=2,BD是AC边上的高,且BD=,则∠ACB的度数是______.16.如图,直角三角形纸片的两直角边长分别为4,8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值是______.三、解答题(本大题共7小题,共56.0分)17.先化简,再求代数式()的值,其中a=2sin60°+tan45°.18.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的面积.19.网络时代,新兴词汇层出不穷.为了解大众对网络词汇的理解,某兴趣小组举行了一个“我是路人甲”的调查活动:选取四个热词A:“硬核人生”,B:“好嗨哦”,C:“双击666”,D:“杠精时代”在街道上对流动人群进行了抽样调查,要求被调查的每位只能勾选一个最熟悉的热词,根据调查结果,该小组绘制了如下的两幅不完整的统计图,请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了______名路人.(2)补全条形统计图;(3)扇形图中的b=______.20.如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)21.如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D从O点出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD 绕点C逆时针方向旋转60°得到△BCE,连结DE.(1)求证:△CDE是等边三角形;(2)如图2,当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE 的最小周长;若不存在,请说明理由;(3)如图3,当点D在射线OM上运动时,是否存在以D、E、B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.22.某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.23.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且抛物线经过点A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B,C两点,求直线BC和抛物线的表达式;(2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.答案和解析1.【答案】A【解析】解:A.π是无理数;B.是分数,属于有理数;C.,是整数,属于有理数;D.|-4|=4,是整数,属于有理数.故选:A.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.【答案】B【解析】解:∵点P(2,-3)与点Q(x,y)关于x轴对称,∴x=2,y=3,故选:B.根据关于x轴的对称点的坐标特点可得答案.此题主要考查了关于x轴的对称点的坐标,关键是掌握关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数.3.【答案】C【解析】【分析】此题主要考查了由三视图确定几何体及圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【解答】解:先由三视图确定该几何体是圆柱体,底面半径为2÷2=1(cm),高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故选C.4.【答案】C【解析】解:∵点A,B,C,D,E是⊙O的五等分点,∴弧BD的度数为144度,∴∠A=72°.故选:C.点A、B、C、D、E是⊙O的五等分点,则每段弧的度数等于72度,弧BD的度数为144度,由圆周角定理知,弧BD对的圆周角∠A是弧BD的度数的一半,即∠A=72°.本题利用了一个周角是360度和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.【答案】B【解析】解:第二个图形是轴对称图形,第三个图形是轴对称图形,轴对称图形的共2个,故选:B.根据轴对称图形的概念可得答案.此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.6.【答案】D【解析】解:因为175出现的次数最多,所以众数是:175cm;因为第十一个数是175,所以中位数是:175cm.故选:D.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据.本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.【答案】C【解析】解:在△ABC中,∵∠B=50°,∠C=30°,∴∠BAC=180°-∠B-∠C=100°,由作图可知MN为AC的中垂线,∴DA=DC,∴∠DAC=∠C=30°,∴∠BAD=∠BAC-∠DAC=70°,故选C.根据内角和定理求得∠BAC=100°,由中垂线性质知DA=DC,即∠DAC=∠C=30°,从而得出答案.本题主要考查作图-基本作图,熟练掌握中垂线的作图和性质是解题的关键.8.【答案】C【解析】解:解方程x2-6x+8=0得,x=2或4,∴第三边长为2或4.边长为2,3,6不能构成三角形;而3,4,6能构成三角形,∴三角形的周长为3+4+6=13,故选:C.易得方程的两根,那么根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.此题主要考查了因式分解法解一元二次方程以及三角形的三边关系,求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯.9.【答案】D【解析】【分析】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.根据题意可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故选D.10.【答案】C【解析】解:设一次函数解析式为y=kx+b,反比例函数解析式为y=,∵A(1,8)和B(4,2)是两个函数图象的交点,∴y=,∴,∴,∴y=-2x+10,∵S△ODF=S△ECO=4,设点P的坐标(x,-2x+10),∴四边形OEPF面积=xy-8=x(-2x+10)-8=-2x2+10x-8=-2(x-)2+,∴当x=时,面积最大为;故选:C.利用A和B两个点求出解析式,将面积转化为二次函数的形式,利用二次函数的性质求最大值;本题考查反比例函数k的几何意义,反比例函数和一次函数的解析式求法,二次函数最值的求法;熟练掌握待定系数法求解析式的方法,理解反比例函数k的几何意义是解题的关键.11.【答案】(2x-3)(x+2)【解析】解:原式=(2x-3)(x+2).故答案为:(2x-3)(x+2)原式利用十字相乘法分解即可.此题考查了因式分解-十字相乘法,熟练掌握十字相乘的方法是解本题的关键.12.【答案】1.173×109【解析】解:11.73亿=1173000000=1.173×109.故答案为:1.173×109.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.【答案】【解析】解:画树状图为:共有12种等可能的结果数,其中两次摸出的小球的标号的和为奇数的结果数为8,所以两次摸出的小球的标号的和为奇数的概率==.故答案为.先画树状图展示所有12种等可能的结果数,再找出其中两次摸出的小球的标号的和为奇数的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.14.【答案】乙【解析】解:∵s甲2>s乙2,∴成绩相对稳定的是乙.故填乙.根据方差的意义判断.方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立本题考查方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.【答案】30°或60°【解析】解:∵△ABC中,AB=AC=2,BD是AC边上的高,且BD=,∴sin A==,∴∠A=60°或∠A=180°-60°=120°.∴当∠A=60°时,∠ACB=(180°-∠A)=(180°-60°)=60°;∠A=120°时,∠ACB=(180°-∠A)=(180°-120°)=30°.△ABC是等腰三角形,作出底边上的高,根据三角函数求角的度数.解答此题的关键是要注意∠A为锐角和钝角两种情况,不要漏解.16.【答案】【解析】解:根据题意,BE=AE.设BE=x,则CE=8-x.在Rt△BCE中,x2=(8-x)2+42,解得x=5,∴CE=8-5=3,∴tan∠CBE=.故答案为:.折叠后形成的图形相互全等,设BE=x,则CE=8-x,在Rt△BCE中利用勾股定理求出BE,利用三角函数的定义可求出.本题考查锐角三角函数的概念:在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.17.【答案】解:原式=[-]×(a+1)=,∵a=2sin60°+tan45°=+1,∴原式==.【解析】直接将原式通分进而分解因式后再化简,把已知代入得出答案.此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.18.【答案】证明:(1)∵DE∥BC,DF∥AB,∴四边形BFDE是平行四边形,∵BD是△ABC的角平分线,∴∠EBD=∠DBF,∵DE∥BC,∴∠EDB=∠DBF,∴∠EBD=∠EDB,∴BE=ED,∴平行四边形BFDE是菱形;(2)连接EF,交BD于O,∵∠BAC=90°,∠C=30°,∴∠ABC=60°,∵BD平分∠ABC,∴∠DBC=30°,∴BD=DC=12,∵DF∥AB,∴∠FDC=∠A=90°,∴DF=,在Rt△DOF中,OF=,∴菱形BFDE的面积=.【解析】(1)根据平行四边形的和菱形的判定证明即可;(2)根据含30°的直角三角形的性质和勾股定理以及菱形的面积解答即可.此题考查了菱形的判定和性质,熟练掌握菱形的判定和性质是解题的关键.19.【答案】300 90【解析】解:(1)本次调查中,一共调查了:120÷=300(名),故答案为:300;(2)选D的有:300×=90(名)选C的有300-120-75-90=15(名),补全的条形统计图如右图所示;(3)b°=360°×=90°,则b=90,故答案为:90.(1)根据选择A的人数和扇形统计图中所对的圆心角的度数,可以求得本次调查了多少名路人;(2)根据扇形统计图中的数据可以求得选择C和选择D的人数,本题得以解决;(3)根据条形统计图中的数据可以求得b的值.本题考查条形统计图、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.20.【答案】解:(1)直线BC与⊙O相切;连结OD,∵OA=OD,∴∠OAD=∠ODA,∵∠BAC的角平分线AD交BC边于D,∴∠CAD=∠OAD,∴∠CAD=∠ODA,∴OD∥AC,∴∠ODB=∠C=90°,即OD⊥BC.又∵直线BC过半径OD的外端,∴直线BC与⊙O相切.(2)设OA=OD=r,在Rt△BDO中,∠B=30°,∴OB=2r,在Rt△ACB中,∠B=30°,∴AB=2AC=6,∴3r=6,解得r=2.(3)在Rt△ACB中,∠B=30°,∴∠BOD=60°.∴.∵∠B=30°,OD⊥BC,∴OB=2OD,∴AB=3OD,∵AB=2AC=6,∴OD=2,BD=2S△BOD=×OD•BD=2,∴所求图形面积为.【解析】(1)连接OD,根据平行线判定推出OD∥AC,推出OD⊥BC,根据切线的判定推出即可;(2)①根据含有30°角的直角三角形的性质得出OB=2OD=2r,AB=2AC=3r,从而求得半径r的值;②根据S阴影=S△BOD-S扇形DOE求得即可.本题考查了切线的判定,含有30°角的直角三角形的性质,扇形的面积等知识点的应用,主要考查学生的推理能力.21.【答案】解:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=2cm,∴△BDE的最小周长=CD+4=2+4;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意,②当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEC=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA-DA=6-4=2,∴t=2÷1=2s;③当6<t<10s时,不存在直角三角形.④如图,当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14s,综上所述:当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.【解析】本题考查了旋转的性质,等边三角形的判定和性质,三角形周长的计算,直角三角形的判定,熟练掌握旋转的性质是解题的关键.(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(2)当6<t<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;(3)存在,①当点D与点B重合时,D,B,E不能构成三角形;②当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEC=60°,求得∠CEB=30°,求得OD=OA-DA=6-4=2,于是得到t=2÷1=2s;③当6<t <10s时,不存在直角三角形;④当t>10s时,由旋转的性质得到∠DBE=60°,求得∠BDE >60°,于是得到t=14÷1=14s.22.【答案】解:(1)设成人有x人,少年y人,,解得,,答:该旅行团中成人与少年分别是17人、5人;(2)①由题意可得,由成人8人和少年5人带队,则所需门票的总费用是:100×8+5×100×0.8+(10-8)×100×0.6=1320(元),答:由成人8人和少年5人带队,则所需门票的总费用是1320元;②设可以安排成人a人,少年b人带队,则1≤a≤17,1≤b≤5,当10≤a≤17时,若a=10,则费用为100×10+100×b×0.8≤1200,得b≤2.5,∴b的最大值是2,此时a+b=12,费用为1160元;若a=11,则费用为100×11+100×b×0.8≤1200,得b≤,∴b的最大值是1,此时a+b=12,费用为1180元;若a≥12,100a≥1200,即成人门票至少是1200元,不合题意,舍去;当1≤a<10时,若a=9,则费用为100×9+100b×0.8+100×1×0.6≤1200,得b≤3,∴b的最大值是3,a+b=12,费用为1200元;若a=8,则费用为100×8+100b×0.8+100×2×0.6≤1200,得b≤3.5,∴b的最大值是3,a+b=11<12,不合题意,舍去;同理,当a<8时,a+b<12,不合题意,舍去;综上所述,最多安排成人和少年12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中成人10人,少年2人时购票费用最少.【解析】(1)根据题意可以列出相应的方程组,本题得以解决;(2)①根据题意可以求得由成人8人和少年5人带队,所需门票的总费用;②利用分类讨论的方法可以求得相应的方案以及花费,再比较花费多少即可解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和分类讨论的数学思想解答.23.【答案】解:(1)∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,点A(1,0),∴B(-3,0),设抛物线的解析式为:y=a(x+3)(x-1),把C(0,3)代入得:-3a=3,a=-1,∴抛物线的解析式为:y=-x2-2x+3,把B(-3,0)和C(0,3)代入y=mx+n中,,解得:,∴直线BC的解析式为:y=x+3;(2)设直线BC与对称轴x=-1的交点为M,则此时MA+MC的值最小.把x=-1代入直线y=x+3得y=2,∴M(-1,2),即当点M到点A的距离与到点C的距离之和最小时,M的坐标为(-1,2);(3)设P(-1,t),又B(-3,0),C(0,3),∴BC2=32+32=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10.①若点B为直角顶点,则BC2+PB2=PC2,即18+4+t2=t2-6t+10,解得t=-2;②若点C为直角顶点,则BC2+PC2=PB2,即18+t2-6t+10=4+t2,解得t=4;③若点P为直角顶点,则PB2+PC2=BC2,即4+t2+t2-6t+10=18,解得t=.综上所述,P的坐标为(-1,-2)或(-1,4)或(-1,)或(-1,).【解析】(1)先由对称性可得点B的坐标,利用待定系数法求二次函数和一次函数的解析式;(2)根据最短路径问题可得M的位置:直线BC与对称轴x=-1的交点为M,根据直线BC的解析式可得M的坐标;(3)设P(-1,t),根据勾股定理计算得:BC2=32+32=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10.分别令三个顶点为直角顶点,列方程可得t的值.本题综合考查了二次函数的图象与性质、待定系数法求函数的解析式、利用轴对称性质确定线段的最小长度,难度适中,是一道不错的中考压轴题.。

2020届初三中考数学一诊联考试卷含参考答案 (浙江)

2020届初三中考数学一诊联考试卷含参考答案 (浙江)

2020届**市初三中考一诊联考试卷数 学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。

2.回答客观题时,选出每小题答案后,用2B 铅笔把答题卡上对应的答案标号涂黑。

如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,将本试卷和答题卡一并收回。

4.考试时间:120分钟。

一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.对于实数a ,b 下列判断正确的是( )A .若a b =,则 a b =B .若22a b >,则 a b >C b =,则a b =D =a b =2.某市从不同学校随机抽取100名初中生对“使用数学教辅用书的册数”进行调查,统计结果如下:关于这组数据,下列说法正确的是( )A .众数是2册B .中位数是2册C .平均数是3册D .方差是1.53.如图1,在矩形ABCD 中,动点M 从点A 出发,沿A →B →C 方向运动,当点M 到达点C 时停止运动,过点M 作MN ⊥AM 交CD 于点N ,设点M 的运动路程为x ,CN =y ,图2表示的是y 与x 的函数关系的大致图象,则矩形ABCD 的面积是( )A .20B .18C .10D .94.下列命题是假命题的是( )A .到线段两端点距离相等的点在线段的垂直平分线上B .等边三角形既是轴对称图形,又是中心对称图形C .n 边形(3)n ≥的内角和是180360n ︒︒-D .旋转不改变图形的形状和大小5.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( )A .众数是5B .中位数是5C .平均数是6D .方差是3.66.小明做“用频率估计概率”的试验时,根据统计结果,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是( )A.任意买一张电影票,座位号是2的倍数的概率B.一副去掉大小王的扑克牌,洗匀后,从中任抽一张牌的花色是红桃C.抛一个质地均匀的正方体骰子,落下后朝上的面点数是3D.一个不透明的袋子中有4个白球、1个黑球,它们除了颜色外都相同,从中抽到黑球7.对于函数y=-2(x-3)2,下列说法不正确的是()A.开口向下B.对称轴是3x=C.最大值为0D.与y轴不相交8.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则阴影部分图形的面积为()A.4πB.2πC.πD.2 3π9.设A,B,C表示三种不同的物体,现用天平称了两次,情况如上图所示,那么A,B,C这三种物体按质量从大到小的顺序排应为( )A.A,B,C B.C,B,A C.B,A,C D.B,C,A10.已知四边形ABCD 的对角线AC 、BD 相交于点O ,下列条件中,不能判定四边形ABCD 是平行四边形的是( )A .ADB CBD ∠=∠,//AB CDB .ADB CBD ∠=∠,DAB BCD ∠=∠C .DAB BCD ∠=∠,AB CD =D .ABD CDB ∠=∠,OA OC =二、填空题(共4题,每题4分,共16分)11.如图,矩形ABCD 中,AB =4,BC =3,F 是AB 中点,以点A 为圆心,AD 为半径作弧交AB 于点E ,以点B 为圆心,BF 为半径作弧交BC 于点G ,则图中阴影部分面积的差S 1﹣S 2为_____.12.矩形ABCD 中,AB=8,AD=6,E 为BC 边上一点,将△ABE 沿着AE 翻折,点B 落在点F 处,当△EFC 为直角三角形时BE=_____.13.在五边形ABCDE 中,若440A B C D ∠+∠+∠+∠=︒,则E ∠=______︒.14.直线y =2x +1经过点(0,a ),则a =________.三、解答题(共6题,总分54分)15.“五一”小长假期间,小李一家想到以下四个5A 级风景区旅游:A .石林风景区;B .香格里拉普达措国家公园;C .腾冲火山地质公园;D .玉龙雪山景区.但因为时间短,小李一家只能选择其中两个景区游玩(1)若小李从四个景区中随机抽出两个景区,请用树状图或列表法求出所有可能的结果;(2)在随机抽出的两个景区中,求抽到玉龙雪山风景区的概率.16.如图,在平面直角坐标系中,△ABC 的一边AB 在x 轴上,∠ABC=90°,点C(4,8)在第一象限内,AC 与y 轴交于点E,抛物线y=234x +bx+c 经过A .B 两点,与y 轴交于点D(0,−6).(1)请直接写出抛物线的表达式;(2)求ED 的长;(3)点P 是x 轴下方抛物线上一动点,设点P 的横坐标为m ,△PAC 的面积为S ,试求出S 与m 的函数关系式;(4)若点M 是x 轴上一点(不与点A 重合),抛物线上是否存在点N ,使∠CAN=∠MAN.若存在,请直接写出点N 的坐标;若不存在,请说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省杭州市西湖区2020年中考数学一模试卷(解析版)一.选择题1.﹣0.25的相反数是()A. B. 4 C. ﹣4 D. ﹣52.据我市统计局在网上发布的数据,2020年我市生产总值(GDP)突破千亿元大关,达到了1050亿元,将1050亿用科学记数法表示正确的是()A. 105×109B. 10.5×1010C. 1.05×1011D. 1050×1083.下列运算正确的是()A.a+a2=a3B.(a2)3=a6C.(x﹣y)2=x2﹣y2D.a2a3=a64.使不等式x﹣1≥2与3x﹣7<8同时成立的x的整数值是()A. 3,4B. 4,5C. 3,4,5D. 不存在5.如图,△ABC中,∠C=80°,若沿图中虚线截去∠C,则∠1+∠2=()A. 360°B. 260°C. 180°D. 140°6.有五个相同的小正方体堆成的物体如图所示,它的主视图是()A. B. C. D.7.如图,在4×3长方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()A. B. C. D.8.在乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示,对于这10名学生的参赛成绩,下列说法中错误的是()A.众数是90B.中位数是90C.平均数是90D.极差是159.已知等边△ABC,顶点B(0,0),C(2,0),规定把△ABC先沿x轴绕着点C顺时针旋转,使点A落在x轴上,称为一次变换,再沿x轴绕着点A顺时针旋转,使点B落在x轴上,称为二次变换,…经过连续2017次变换后,顶点A的坐标是()A. (4033,)B. (4033,0)C. (4036,)D. (4036,0)10.如图,在△ABC中,∠ACB=90°,AC=BC=2.E,F分别是射线AC、CB上的动点,且AE=BF,EF与AB交于点G,EH⊥AB于点H,设AE=x,GH=y,下面能够反映y与x之间函数关系的图象是()A. B. C. D.二.填空题11.若代数式有意义,则实数x的取值范围是________.12.分解因式:x3y﹣2x2y2+xy3=________.13.已知三个边长分别为2、3、5的正方形如图排列,则图中阴影部分面积为________.14.如图,在四边形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE 于点M.则下列结论:①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的序号是________.三.综合题15.计算:(π﹣)0+ ﹣(﹣1)2017﹣tan60°.16.已知反比例函数的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2),(1)求这两个函数的关系式;(2)观察图象,写出使得y1>y2成立的自变量x的取值范围.17.如图所示,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)直接写出△ABC与△A′B′C′的位似比;(3)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A′B′C′关于点O中心对称的△A″B″C″,并直接写出△A″B″C″各顶点的坐标.18.一种药品在进价上加价100%作为原价,后经两次降价后利润率为28%,求平均每次的降价率?19.小高发现电线杆AB的影子落在土坡的坡面CD和地面BC上,量得CD=12米,BC=20米,CD与地面成30°角,且此时测得1米杆的影长为2米,求电线杆的高度.(结果保留根号)20.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,连接CE,DE.AC与DE相交于点F.(1)求证:△ADF∽△CEF;(2)若AD=4,AB=6,求的值.21.如图,AB是⊙O的直径,C是的中点,CE⊥AB于E,BD交CE于F.(1)求证:CF=BF;(2)若CD=6,AC=8,求BE、CF的长.22.一服装批发店出售星星童装,每件进价120元,批发价200元,多买优惠;凡是一次买10件以上的,每多买一件,所买的全部服装每件就降低1元,但是最低价为为每件160元,(1)求一次至少买多少件,才能以最低价购买?(2)写出服装店一次销售x件时,能获利润y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围;(3)一天,甲批发了46件,乙批发了50件,店主却发现卖46件赚的钱反而比卖50件赚的钱多,你能用数学知识解释这一现象吗?为了不出现这种现象,在其他优惠条件不变的情况下,店家应把最低价每件160元至少提高到多少?23.综合题(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是________;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.答案解析部分一.<b >选择题</b>1.【答案】A【考点】相反数【解析】【解答】解:﹣0.25的相反数是0.25,故答案为:A.【分析】只有符号不同的两个数是互为相反数。

2.【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:将1050亿用科学记数法表示为1.05×1011,故答案为:C.【分析】科学记数法—表示绝对值较大的数,一般表示成a10n,其中1|a|10,n是原数的整数位数减一。

3.【答案】B【考点】同类项、合并同类项,同底数幂的乘法,幂的乘方与积的乘方,完全平方公式【解析】【解答】解:A、a+a2,无法计算,故此选项错误;B、(a2)3=a6,正确;C、(x﹣y)2=x2﹣2xy+y2,故此选项错误;D、a2a3=a5,故此选项错误;故答案为:B.【分析】利用整式加法其实质就是合并同类项,不是同类项的不能合并;幂的乘方底数不变指数相乘;完全平方公式的展开式是一个三项式;同底数的幂相乘,底数不变指数相加进行判断即可。

4.【答案】A【考点】一元一次不等式组的整数解【解析】【解答】解:根据题意得:,解得:3≤x<5,则x的整数值是3,4;故答案为:A.【分析】分别解出每一个不等式,然后根据大小小大中间找得出解集,再在解集中找到整数解。

5.【答案】B【考点】三角形内角和定理,三角形的外角性质【解析】【解答】解:∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=∠C+(∠C+∠3+∠4)=80°+180°=260°.故答案为:B.【分析】利用三角形的外角和定理得∠1=∠4+∠C,∠2=∠3+∠C,再根据角的和差得出结论。

【考点】简单组合体的三视图【解析】【解答】解:从正面看易得第一层有3个正方形,第二层最左边有一个正方形.故答案为:B.【分析】主视图就是从正面看得到的正投影,利用定义求解即可。

7.【答案】D【考点】利用轴对称设计图案,概率公式【解析】【解答】解:∵在3×4正方形网格中,任选取一个白色的小正方形并涂黑,共有8种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有2种情况,如图,∴使图中黑色部分的图形构成一个轴对称图形的概率是:2÷8= .故答案为:D.【分析】在正方形网格中,任选取一个白色的小正方形并涂黑,共有8种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有2种情况,根据概率公式计算即可。

8.【答案】C【考点】算术平均数,中位数、众数,极差【解析】【解答】解:∵90出现了5次,出现的次数最多,∴众数是90;故A正确;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;故B正确;∵平均数是(80×1+85×2+90×5+95×2)÷10=89;故C错误;极差是:95﹣80=15;故D正确.综上所述,C选项符合题意;故答案为:C.【分析】一组数据的总和除以这组数据的个数就得到这组数据的平均数,一组数据中出现次数最多的数据是众数,把一组数据按从小到大的顺序排列处于最中间位置的数就是中位数,这组数据的最大值与最小值的差就是极差,用它们的定义进行判断即可。

9.【答案】D【考点】锐角三角函数的定义,坐标与图形变化-旋转【解析】【解答】解:顶点A的坐标分别为(4,0),(5,),(8,0),(9,),…,2017÷2=1008…1,1008×4+4=4036,故顶点A的坐标是(4036,0).故答案为:D.【分析】利用已知点坐标得出等边△ABC边长为2,根据三角函数可得等边△ABC的高,顶点A的坐标分别为(4,0),(5,),(8,0),(9,),…,进而找到点的变化规律,即可得出答案。

【考点】等腰三角形的判定与性质,勾股定理,平行线分线段成比例【解析】【解答】解:∵∠ACB=90°,AC=BC=2,∴△ABC是等腰直角三角形,∴AB= = =2 ,∠A=45°,∵EH⊥AB于点H,∴△AHE是等腰直角三角形,∴AH= AE= x,过点B作BD∥AC交EF于点D,则= ,= ,∴BD= •AE= •x,BD= •EC= •(2﹣x),∴•x= •(2﹣x),整理得,BG(x+2)=(2 ﹣BG)(2﹣x),解得BG= ﹣x,根据图形,GH=AB﹣AH﹣BG,=2 ﹣x﹣(﹣x),=2 ﹣x﹣+ x,= ,即y= ,是一条平行于x轴的直线.故答案为:C,【分析】先判断出△ABC是等腰直角三角形,再判断出△AHE是等腰直角三角形,然后根据勾股定理计算出AB、AH的长度,过点B作BD∥AC交EF于点D,然后利用平行线分线段成比例得出B D:A E = B G :A G , B F:F C = B D:E C ,再表示出BD、然后求出BG的长度,最后根据,GH=AB﹣AH﹣BG,代入数据就可以得出y关于x的函数关系式,再根据函数相应的图像解答。

相关文档
最新文档