构建重组质粒基本方法
同源重组构建质粒原理及方法

同源重组构建质粒原理及方法一、引言同源重组构建质粒是基因工程领域的关键技术,它通过将外源基因片段与适当的质粒DNA相连接,实现外源基因的表达和遗传转移。
本文将详细介绍同源重组构建质粒的原理和方法,以及常用的实验步骤和注意事项。
二、原理同源重组构建质粒的原理是通过内切酶在两个同源DNA片段上切割,然后连接起来形成一个新的质粒DNA。
同源DNA片段通常由外源基因和质粒DNA提供,通过互补的粘性末端序列将它们连接起来。
三、方法以下是同源重组构建质粒常用的方法和步骤:1. 选择合适的质粒和酶切位点首先,需要选择一个适合的质粒,根据实验需要选择带有合适酶切位点的质粒。
同时,还需要选择适合的内切酶用于切割质粒和外源基因片段。
2. 切割质粒和外源基因片段将选择好的质粒和外源基因片段与相应的内切酶一起反应,将其切割为互补的粘性末端序列。
切割后的质粒和外源基因片段会留下粘性末端。
3. 进行连接反应将切割好的质粒和外源基因片段加入连接反应中,可以使用DNA连接酶来催化连接。
4. 转化宿主细胞将连接好的质粒转化到宿主细胞中,常用的方法有热擦法、电穿孔法和化学法等。
宿主细胞可以是大肠杆菌等常用的实验宿主细胞。
5. 筛选转化子将转化到宿主细胞中的质粒进行筛选,可以通过选择性培养基或进行基因标记(如荧光蛋白等)来筛选转化子。
四、注意事项在同源重组构建质粒过程中,需要注意以下事项:1. 同源重组效率同源重组的效率是影响质粒构建成功率的关键因素。
需要合理选择酶切位点,确保质粒和外源基因片段有足够的同源性。
2. DNA连接酶的选择DNA连接酶的选择也是非常重要的。
不同的DNA连接酶在连接效率和酶切位点的要求上有所区别,选择适合的连接酶能提高连接效率。
3. 转化宿主细胞选择转化宿主细胞的选择也会影响质粒构建的成功率。
不同的宿主细胞对质粒的转化效率和表达能力有所不同,需要根据实验要求选择合适的宿主细胞。
4. 合理设计实验对照组为确保实验结果的可靠性和准确性,需要设计适当的对照组,验证质粒构建的成功性和外源基因的表达情况。
重组质粒的构建经验 [技巧]
![重组质粒的构建经验 [技巧]](https://img.taocdn.com/s3/m/f026746187c24028915fc3fa.png)
重组质粒的构建经验 [技巧]重组质粒的构建经验~~~昨天我在版中我看很多谷友询问重组质粒的构建问题,有些谷友说构建质粒需要一个月,甚至更长时间,这让我联想我刚做分子生物学时候的曲折。
重组质粒构建是常用的分子生物学手段,其实只是最基本的方法,一般一个星期同时构建三二个组质粒是没有问题的。
在国内先进的实验中,也大都是由实验员搞定。
但是其中还是有些基本的技巧需要掌握。
在这里将我的心得分享于大家,这也是我本人几年来一线工作时的经验积累,以期能为谷友提供借鉴,让大家在实验中少走弯路。
所涉及内容如下: 1) 克隆基因的酶切位点问题 2) 载体酶切的问题 3) 连接片段浓度比的问题在阐明上述问题同时,本人尽可能举些实验中的问题案例予以说明。
一、克隆基因的酶切位点问题 1、克隆位点选择的问题。
首先要对目标基因进行酶切位点扫描分析,列出其所含酶切位点清单。
然后对照质粒多克隆位点,所选择的克隆位点必须是目标基因所不含的酶切位点。
这是常识,不赘述。
2、保护碱基数目的问题。
在设计PCR引物时,引入酶切位点后,常常要加入保护碱基,这是大家所熟知的。
但是保护碱基数量多少,可能被新手所忽视。
这种忽视碰可能会大大影响后续的实验进展。
一般情况下,普通的内切酶只加入两个保护碱基,其内切反应就可以正常进行;而有一类,仅仅只加入两个保护碱基,其内切反应就不能正常进行,这是因为内切酶不能正常结合DNA片段上。
如NdeI就属这类,需要加入至少6个保护碱基,常用的HindIII也要三个。
下面是我提供这类酶的列表及其所需最少的保护碱基数,相信下列将有助于大这家的实验设计。
NcoI 4 NdeI 6 NheI 3 NotI 8 PmeI 6SacI 3 SalI 3 SmaI 3 HindIII 3 BstI 8 SphI 4XhoI 3 XbaI 3 SmaI 4 案例分析一:本人最初曾选用NdeI克隆位点,未注意到保护碱基数目的问题,设计PCR引物时,引入NdeI酶切位点后,只加上两个保护碱基,一个月内没有进展,始终不能成功构建重组载体。
重组质粒的构建

重组质粒的构建重组质粒的构建是基因工程的核心步骤之一,其目的是将目的基因插入到质粒载体中,以实现目的基因的稳定表达和克隆化。
以下是重组质粒构建的主要步骤:1.目的基因获取首先需要获取目的基因。
目的基因可以从基因文库、PCR、基因组测序等方法中获取。
根据需要选择合适的方法,将目的基因克隆到质粒载体中。
2.载体质粒选择选择适合的质粒载体是重组质粒构建的关键步骤之一。
根据目的基因的特点和表达要求,选择适合的质粒载体。
常见的质粒载体有pET、pUC、pBluescript等。
3.限制性酶切限制性酶切是重组质粒构建的重要步骤之一。
通过限制性酶切,将目的基因和质粒载体分别切开,露出粘性末端,以便于连接反应。
4.连接反应将切好的目的基因和质粒载体的粘性末端连接在一起,形成重组质粒。
连接反应需要使用T4DNA连接酶或其它连接酶进行催化。
连接反应需要在适宜的温度和pH 条件下进行一定时间,以确保重组质粒的正确构建。
5.转化宿主细胞将连接反应得到的重组质粒转化到宿主细胞中。
常见的宿主细胞有细菌、酵母、昆虫等。
转化方法有多种,如电穿孔法、化学转化法等。
转化后需要在适宜的培养条件下进行培养,以获得大量的重组质粒。
6.克隆筛选克隆筛选是重组质粒构建的重要步骤之一。
通过克隆筛选,可以确定重组质粒是否正确构建。
常见的克隆筛选方法有蓝白斑筛选、酶切法等。
7.序列验证最后需要对重组质粒进行序列验证,以确保目的基因的正确插入和序列的准确性。
序列验证可以通过Sanger测序等方法进行。
DNA重组质粒的构建概述

DNA重组质粒的构建概述引言DNA重组质粒是现代生物学研究中常用的工具,它可以用来携带外源基因并在目标生物体中表达,从而实现对基因功能的研究和利用。
本文将概述DNA重组质粒的构建过程,包括选择质粒载体、外源基因的克隆插入以及构建质粒的鉴定等内容。
选择质粒载体质粒是细胞内独立存在的环状DNA分子,广泛存在于细菌和酵母等单细胞生物中。
在构建DNA重组质粒时,选择一个适合的质粒载体非常关键。
常用的质粒载体有pUC19、pET28a、pET-DEST42等,在选择时可以根据实验需求考虑载体大小、选择标记物和基因表达系统等因素。
外源基因的克隆插入1. DNA片段的获取首先,需要获取外源基因的DNA片段。
这可以通过PCR扩增、基因合成或其他方法来获得。
在PCR扩增时,需要设计一对引物,使其能够特异性地扩增目标基因。
合成基因片段时,可以利用现代合成生物学的技术,将目标基因序列按照设计的引物进行人工合成。
2. 酶切和连接接下来,使用限制酶将质粒载体和外源基因片段酶切开。
酶切的目的是产生互补的黏性末端,使得质粒载体和外源基因片段可以互相连接。
选择适当的限制酶在切割时产生互补的黏性末端,使得连接更加有效。
然后,将质粒载体和外源基因片段连接在一起。
这可以使用DNA连接酶和连接试剂,在适当的条件下进行连接。
连接后的质粒称为重组质粒。
3. 转化宿主细胞将构建好的重组质粒转化到适当的宿主细胞中,使其能够在细胞内进行复制和表达。
常用的宿主细胞有大肠杆菌和酵母等。
构建质粒的鉴定通过一系列实验,对构建好的质粒进行鉴定,以确保其正确性和完整性。
常用的鉴定方法有限制酶切鉴定、测序验证、PCR扩增鉴定等。
1. 限制酶切鉴定利用正确的限制酶将质粒进行切割,然后经过琼脂糖凝胶电泳进行分析。
根据不同的切割模式,可以判断质粒是否正确构建。
2. 测序验证通过测序技术对质粒进行测序分析,确保质粒中的外源基因片段的完整性和准确性。
3. PCR扩增鉴定使用特异性引物对质粒进行PCR扩增,在琼脂糖凝胶电泳分析扩增产物的大小,判断质粒中的目标基因是否存在。
重组质粒的构建

连接酶催化DNA连接的最佳反应温度是37℃
▪ DNA重组技术中的核心是DNA片段之间的体外连接方案
DNA连接酶及连接机制
1 ) ATP 通 过 磷 酸 基 团 与 T4 DNA连接酶中的亮氨酸形成 磷酸-氨基键,从而形成酶ATP复合物;
限制性内切酶
具备多个限制酶的 识别位点(多克隆位 点) ,以便外源DNA的 插入与截取。
多种酶切口 单一酶切口 多克隆位点
或具备特异的重组 位点
11
载体的选择与改造应具备的条件
3.具有合适的筛选标记
具有遗传表型或筛选 标记,以区别阳性重组分子 和阴性重组分子,主要有抗 药性基因、酶基因、营养缺 陷型及形成噬菌斑的能力等。
二、基础知识
2. 重组DNA技术的基本过程
(1)目的基因的获得 (2)载体的选择与制备 (3)目的基因与载体的结合(DNA分子的体外连接) (4)重组DNA导入受体 (5)重组体筛选和鉴定 (6)目的基因表达 (7)基因产物的分离纯化
DNA重组操作过程
ab
剪切
载体
重组
B
引入宿 主细胞
Ab
抗性筛选
T载体
▪ 一般采用的方法是先把载体用某种限制性内切酶消化成平 头,再在70℃或72℃下在只加入dTTP的反应体系中用Taq DNA聚合酶处理半小时(也有人报道处理1~2小时能提高克隆效 率,这样加T反应会更彻底)。也可以用末端转移酶来完成加T 反应。载体自连、PCR产物串连可以忽略。
▪ 如果使用ddTTP,效果会更好。
实验二 重组质粒的构建
一、实验目的
▪通过本实验学会琼脂糖凝胶DNA回收和重组 DNA连接的方法。
重组质粒构建(protocol)

重组质粒的构建(beta版)一、引物设计:1.选择合适的载体。
酶切位点及其顺序(酶切位点的顺序一定不能颠倒;注意ATG和stop codon)。
2.在NCBI上再次确认目的片段的碱基序列。
1,使用word2,设计引物:primer-upPrimer-down3,另设计一对引物扩增CDS区,引物位于CDS区之外,扩增产物包含完整的CDS区。
引物长度约20个碱基。
4,核对----送公司合成。
5,对公司合成的引物快速离心,在超净台按照管子上标注的体积加入高压水(dd2H2O),配成100umol/ul(100uM),-20℃保存。
使用时按1:3比例稀释成25uM工作浓度。
二、PCR(P出目的片段):(一)、PCR P出目的片段:2,pcr: cDNA 1ul10x PFU buffer 2.5ul ℃ 5mindNTP 1ul ℃ 30secF’-Primer 1ul ℃ 30secR’-Primer 1ul ℃ X minPFU 0.5ul ℃ 5mindd2H2O 18ul(X是根据片段的长度设定,1000bp/min,退火温度根据Tm值来计算,一般低于Tm值5℃)3,跑胶、回收:(1),配胶:0.6g 琼脂糖60ml 1X TAE0.6ul (待温度降到50-60℃左右时)25分钟后,即可点样跑胶。
(2),跑胶:130-150V、25-30分钟左右。
(3),紫外灯下观察,切胶(要带防护手套和口罩)4,胶回收(胶回收试剂盒):按照试剂盒的protocol来做,在胶回收的最后一步,Elution Buffer预先在55-65℃温箱中水浴,放在37℃温箱中2min。
对胶回收的产物跑胶验证。
可建立10ul的体系:回收产物5ul、6xloading buffer 2ul、dd2H2O 5ul。
三、酶切、链接:1,目的片段酶切:(酶切时间根据酶的活性,70℃15-20min灭活)insert (胶回收产物) 10ul10 x buffer 2ul20ul的体系dd2H2O 6ulEcoRI 1ulHindⅢ1ul2,载体酶切:(1~2小时)Vector (1ug/ul):5 ul(总量5ug)10 x buffer 2ul20ul的体系dd2H2O 11ulEcoRI 1ulHindⅢ1ul为方便以后使用,载体可以一次性多切点。
构建重组质粒基本方法

构建重组质粒基本方法重组质粒是一种重要的遗传工程工具,用于将外源基因导入到宿主细胞中,从而实现特定基因的表达与功能研究。
构建重组质粒的基本方法可以概括为:选择质粒骨架、引物设计与合成、PCR扩增外源基因片段、DNA连接与重组、质粒扩增与提取、质粒鉴定与筛选,以下分别进行详细介绍。
一、选择质粒骨架在构建重组质粒时,首先需要选择一个合适的质粒骨架。
质粒骨架是指一个可复制的质粒DNA分子,常见的质粒骨架有pUC、pBR322、pET等。
质粒骨架上通常包含有宿主细胞可以识别的起始子和起始子附近的终止子,用于启动和终止转录过程,同时还包含选择标记基因,如抗生素抗性基因,以及其他在分子克隆中常用的诸如多克隆位点、限制酶切位点等。
二、引物设计与合成在构建重组质粒时,需要利用引物来扩增并克隆外源基因片段。
引物一般是两条DNA可控引物,其中一条是正向引物,另一条是反向引物。
引物的设计需要注意以下几点:引物的长度通常为15-30个碱基对,引物应该具有合适的Tm值,并且在引物双链的末端至少有2个碱基对是纯G或纯C。
引物可以使用商业引物合成公司合成。
三、PCR扩增外源基因片段使用引物扩增外源基因片段是构建重组质粒的一个关键步骤。
PCR反应一般包括DNA模板、引物、dNTPs和DNA聚合酶。
根据需要,可以使用特异性引物对目标基因进行PCR扩增,然后通过凝胶电泳检查PCR产物长度和纯度,并使用PCR产物进行下一步处理。
四、DNA连接与重组将PCR扩增得到的外源基因片段与质粒骨架进行连接和重组。
连接通常通过使用限制酶切和连接酶来实现。
限制酶切是利用限制酶切剪切DNA,生成具有互补粘性末端的DNA片段,然后将外源基因片段与质粒骨架进行连接。
连接酶可以使DNA片段之间的末端骨架参与phosphodiester结合反应,从而形成连体分子。
五、质粒扩增与提取将重组质粒转化到宿主细胞中,通过培养和培养基筛选来扩增质粒。
质粒扩增一般在含有抗生素的琼脂糖平板上进行,抗生素可以选择对宿主细胞有毒作用但不对重组质粒有毒的抗生素。
重组质粒构建流程

重组质粒构建流程导言在分子生物学研究中,质粒是一种重要的工具,可用于携带外源DNA,转导到靶细胞内进行表达或操纵基因。
在许多应用中,需要从头开始构建特定的质粒来满足实验需求。
本文将介绍重组质粒的构建流程,包括质粒设计、DNA片段的合成、连接和转化等步骤。
质粒设计重组质粒的构建首先需要进行质粒设计。
在设计过程中,需要考虑以下几个方面:质粒拓扑结构、宿主细胞、选择标记、启动子、终止子等。
其中,质粒拓扑结构是质粒构建的基础,可以选择环状质粒或线性质粒;宿主细胞是质粒的宿主细胞,需要考虑宿主细胞的特性和适用范围;选择标记是用于筛选携带外源DNA的宿主细胞,可以选择抗生素抗性标记、荧光蛋白标记等;启动子和终止子则是用于调控外源DNA的表达水平。
DNA片段的合成在质粒构建中,需要合成一系列DNA片段,包括载体骨架、选择标记、启动子、基因、终止子等。
DNA片段的合成可以通过多种方法进行,包括化学合成、PCR扩增、酶切和连接等。
在合成过程中,需要确保DNA片段的正确性和纯度,以保证后续的连接和转化效率。
连接连接是质粒构建的关键步骤,通过连接不同的DNA片段来构建目标质粒。
连接的方法包括酶切和连接、PCR扩增和连接、重组DNA技术等。
在连接过程中,需要确保连接效率和准确性,避免产生错误连接或杂交产物。
此外,对于大片段DNA的连接,还需要考虑连接的稳定性和转化效率。
质粒的放大和提取连接完成后,需要将质粒放大到足够的数量,并提取纯净的质粒DNA。
放大的方法可以选择细菌发酵、真菌发酵等,根据质粒的特性选择合适的宿主细胞进行放大。
质粒提取的方法包括碱裂解法、隐式裂解法等,确保提取的质粒DNA的纯度和完整性。
质粒的转化最后一步是将构建好的质粒转化到目标宿主细胞中,进行表达或操纵基因。
转化的方法可以选择化学转化、电转化、热激转化等,根据宿主细胞的特性和实验需求选择合适的转化方法。
在转化过程中,需要考虑转化效率、亲和性和表达水平等因素,确保转化的质粒可以稳定存在和表达。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
构建重组质粒基本方法
1.cDNA编码区片段的PCR扩增
50ul ×2
模版 1
5‘引物 1
3‘引物 1
dNTP 1
10×buffer 5
Taq 1
Milliq H2O 40
2.PCR产物纯化
1、加5倍体积的PB
2、将Spin柱放于2ml收集管上
3、加样液,14Krpm,离心1min
4、弃去排出液
5、加0.75ml PE, 14Krpm,离心1min
6、弃去排出液,14Krpm,离心1min
7、将Spin柱放在洁净1.5ml的Epp管中
O),静置2min, 14Krpm,8、往Spin柱的膜中央加入50μl的EB(或milliq H
2
离心1min
3.双酶切
载体和PCR产物分别用一下条件进行双酶切(反应体系均为30ul,37℃,酶切n 小时):
4.双酶切后的载体用试剂盒割胶回收
1.割胶并称重,加3倍体积的QG(胶块每100mg约合100μl的体积)
2.50℃,恒温10min,等到胶完全被溶解
3.将一个Spin柱放在一个2ml的收集管中
4.加样液,14Krpm,离心1min
5.弃去排出液
6.加0.75ml PE, 14Krpm,离心1min
7.弃去排出液,14Krpm,离心1min
8.将Spin柱放在洁净1.5ml的Epp管中
O),静置2min, 14Krpm,9.往Spin柱的膜中央加入50μl的EB(或milliq H
2
离心1min
5.连接
上述双酶切产物经过纯化(其中载体酶切产物割胶回收,PCR片段酶切后纯化步骤与上述PCR产物纯化步骤相同),在T4 DNA连接酶作用下16℃连接过夜。
连接体系如下:
载体 2ul
PCR 片段 6ul
10xT4 buffer 1ul
T4 DNA ligase 1ul
6.转化
取上述连接液5μl转化到预先制备的DH5α化学感受态细胞中,冰浴30分钟,42℃热激2min,置冰上5min,加入1mlLB培养液37℃摇床45min,离心5000rpm,1-5min(不要离心太久,以免太实),最后均匀涂布在含有100 ng/ml 抗生素的LB平板上(100-150 ul)。
将平板在37℃倒置培养过夜。
挑取阳性克隆菌落转划到另一块含有100 ng/ml抗生素的LB平板上,并对之进行编号,37℃倒置培养过夜。
7.菌落原位PCR
挑取转划后长出的阳性克隆菌落,加入3ul细菌DNA提取液破细胞。
将
细菌裂解液作为PCR模板,其他PCR组分及PCR条件同上。
PCR产物在2%
凝胶上进行电泳分析。
8. QIAGEN试剂盒抽提质粒
1)用1.5ml管离心收集细菌,两次,共3ml左右。
2)加入250ul的预冷的P1,打匀后在震荡仪上高速震荡1min。
3)加入250ul P2,温和颠倒数次混匀。
4)(在5min内)加入冰上预冷的溶液N3 350ul,迅速温和颠倒混匀,至出
现分散的絮状沉淀。
5)冰上静置2min后离心,13,000rpm,10min。
6)小心吸取上清于蓝色的spin柱中(勿吸到沉淀)
7)离心13,000rpm,1min,弃流出液
8)加入750ul PE,离心13,000rpm,1min,弃流出液
9)再离心一次,离心13,000rpm,1min,弃流出液。
以让管内彻底干燥。
10)将spin柱拿出,置于一干净的1.5ml管中,小心的在spin柱中央加入30ul
MilliQ H2O,或者Elution Buffer,室温静置2min。
11)离心13,000rpm,1min,收集质粒,测浓度,电泳检测。