工程光学习题参考答案第十章 光的电磁理论基础

合集下载

郁道银 工程光学-物理光学答案整理

郁道银 工程光学-物理光学答案整理

第一章 光的电磁理论基础1.一平面电磁波可表示为 x E = 0 ,y E = 2cos[2π×1014(c z-t )+2π] ,z E = 0,求: (1)该电磁波的频率、波长、振幅和原点的初相位? (2)波的传播方向和电矢量的振动方向? (3)相应的磁场B 的表达式?解:(1)由y E = 2cos[2π×1014(c z-t )+2π]知: 频率:f=1014(Hz )λ=ct=c/f =ss m 114810103⨯=6103⨯(m) )(3m μ= A=2(m v ) 0ϕ=2π (2)传播方向Z , 振动方向Y 。

(3)相应磁矢量B 的大小εμ1=B E C = 881067.01032-⨯=⨯=B ()⎪⎪⎪⎩⎪⎪⎪⎨⎧==⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-⨯⨯-=-002102cos 1067.0148z y x B B T t c z B ππ2.在玻璃中传播的一个线偏振光可以表示为21510cos 10(),0,00.65x y z zE t E E cπ=-==,求:(1)光的频率、波长、振幅;(2)玻璃的折射率;(3)光波的传播方向和电矢量的振动方向。

解:(1)由21510cos 10()0.65x zE t cπ=-可知: 15141051022f ωπππ===⨯15220.39100.65um kcππλπ=== A=2(m v )xz(v)0Z H E =⨯y(E)(H)(2) 1.53c c n v fλ=== (3)传播方向Z , 振动方向X 。

3. 已知:h=0.01mm 5.1=μnm 500=λ 插入前后所引起的光程位相变化求光程的位相变化 解:)(10501.05.001.0101.05.13mm l -⨯=⨯=⨯-⨯=∆ )(202rad lππλϕ=⨯∆=∆4.已知: ()t a E ωα-=111cos ,()t a E ωα-=222cosHz 15102⨯=πω ,m v a 61= ,m v a 82= ,01=α,22πα=求:合成波表达式解:()()t a t a E E E ωαωα-+-=+=221121cos cos()t A ωα-=cos)cos(2212122212αα-++=a a a a Am v 100c o s 86264362=⨯⨯++=π3406806cos cos sin sin 22112211=++⨯=++=αααααa a a a tg)(927.01801.531.53)34(rad arctg o =⨯===πα ())(102927.0cos 105m v t E ⨯-=π5. 已知:()t A x E c zx -=ωcos 0 ,()[]450cos πωω+-=t A y E c z y求:所成正交分量的光波的偏振态 解:由已知得 A a a ==21,454512πωπωαα=⋅-+⋅=-c z c z 代入椭圆方程:()()1221221222212sin cos 2αααα-=--+a a E E a E a E y x y x2122222222=-+A E E A E A E y x y x ()2245sinsin 12-==-παα <0 ∴右旋椭圆光1λ椭圆长轴与x 轴夹角ψ ∞=-=ψδcos 22222121a a a a tg oo 902702==ψ∴或 又2345ππδπ<=< 的解舍去o 902=ψ∴o 2702=ψ∴ o135=ψ 第二章光的干涉和干涉系统1。

工程光学基础 习题参考答案

工程光学基础 习题参考答案
所以:
1.β = 0, l' = 0, l = −50 2.β = −0.1, l' = −550, l = −55 3.β = −0.2, l' = −60, l = −300 4.β = −1, l'= −100, l = −100 5.β = 1, l' = 0, l = 0 6.β = 5, l' = −200, l = −40 7.β = 10, l' = −450, l = 45 8.β = ∞, l' = +∞, l = −50
n
1.5 10 15
Q L = −∞,∴U = 0
∴U'= I − I'
L'
=
r

1
+
sin I' sin U '

=
100
1
+
1 / 15 sin(1.9166)

=
299.332
则 实 际 光 线 的 像 方 截 距 为 299.332 , 与 高 斯 像 面 的 距 离 为 :
根据公式 n' − n = n'−n (1-20)有: n' − 1 = n'−1 ,可以看出此种情况不存在。
l' l r
r −∞ r
计算第②种情况:易知入射光线经第一面折射后过光轴与反射面的交点。
其余参考题 14。
21、一物体位于半径为 r 的凹面镜前什么位置时,可分别得到:放大 4 倍的实 像,放大 4 倍的虚像、缩小 4 倍的实像和缩小 4 倍的虚像? 解: (1)放大 4 倍的实像
(2)放大四倍虚像 (3)缩小四倍实像 (4)缩小四倍虚像

工程光学第十章光的电磁理论基础

工程光学第十章光的电磁理论基础

2E 1
z2 v2
2E 0
t2
图10-2 沿z 轴传播的平面波示意图
令= zt, zt,则有
v
v
E= f1(vzt)f2(vzt),和 B= f1(vzt)f2(vzt)
2021/6/28
科学出版社 高等教育出版中心
12
工程光学 第十章 光的电磁理论基础
平面电磁波及其性质
波动方程的平面波解
E=f1
2021/6/28
科学出版社 高等教育出版中心
7
工程光学 第十章 光的电磁理论基础
电磁场的波动性
对于电磁场远离辐: 射源 =0,j=0
•E 0
E
B
B
t E

B
0 点积为零,叉积与时间偏导成正比
E = - t B 2 tE 2
t
E • E 2 E
波 动
Sw1(E2
2
1B2)
S
E
H(矢量形式)(10-49)
2021/6/28
科学出版社 高等教育出版中心
19
工程光学 第十章 光的电磁理论基础
在10.2.1节讨论中已经知道,各向同性均匀介质中的E 场和
H 场在量值上满足
E H
(10-50)
对电场强度 E (z,t)A coks z (t)的一维平面简谐电磁
22
工程光学 第十章 光的电磁理论基础
10.3 光波的叠加
1 波的叠加原理 2 同频率、同振动方向单色光波的叠加 3 频率相同、振动方向相互垂直的光波的叠加 4 不同频率单色光波的叠加
2021/6/28
科学出版社 高等教育出版中心
23
工程光学 第十章 光的电磁理论基础

第三版工程光学答案

第三版工程光学答案

第一章3、一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm 。

4、一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n = 66666.01sin 22==n I745356.066666.01cos 22=-=I 88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:1mmI 1=90︒n 1 n 2200mmL I 2 xn0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 .16、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。

解:该题可以应用单个折射面的高斯公式来解决,设凸面为第一面,凹面为第二面。

(1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:会聚点位于第二面后15mm处。

大学基础物理学答案(习岗)第10章

大学基础物理学答案(习岗)第10章

129第十章 量子物理基础本章提要1. 光的量子性· 物体由于自身具有一定温度而以电磁波的形式向周围发射能量的现象称热辐射。

· 在任何温度下都能全部吸收照射到其表面上的各种波长的光(电磁波),的物体称为绝对黑体,简称黑体。

· 单位时间内从物体单位表面积发出的、波长在λ附近单位波长间隔内电磁波的能量称单色辐射本领(又称单色辐出度),用)(T M λ表示· 单位时间内物体单位表面积发出的包括所有波长在内的电磁波的辐射功率称为辐射出射度,用则M 表示,M 与)(T M λ的关系为0()d M M T λλ∞=⎰2. 维恩位移定律在不同的热力学温度T 下,单色辐射本领的实验曲线存在一个峰值波长λm , T 和λm 满足如下关系:λm T b =其中,b 是维恩常量。

该式称维恩位移定律。

3. 斯忒藩—玻尔兹曼定律· 黑体的辐射出射度M 与温度T 的关系为4T M σ=其中,σ为斯忒藩—玻尔兹曼常量。

该结果称斯忒藩—玻尔兹曼定律。

· 对于一般的物体4T M εσ=ε称发射率。

4. 黑体辐射· 能量子假说:黑体辐射不是连续地辐射能量,而是一份份地辐射能量,并且每一份能量与电磁波的频率ν成正比,满足条件E nhv =,其中n =1,2,3,…,等正整数,h 为普朗克常数。

这种能量分立的概念被称为能量量子化,130每一份最小的能量E hv =称为一个能量子。

· 普朗克黑体辐射公式(简称普朗克公式)为112)(/52-=kT hc e hc T M λλλπ其中,h 是普朗克常量。

由普朗克公式可以很好地解释黑体辐射现象。

· 光子假说:光是以光速运动的粒子流,这些粒子称为光量子,简称光子。

一个光子具有的能量为νh E =动量为 λh p =5. 粒子的波动性· 实物粒子也具有波粒二象性,它的能量E 、动量p 与和它相联系的波的频率ν、波长λ满足关系2E mc h ν==λh p m u == 这两个公式称为德布罗意公式或德布罗意假设。

光学工程(郁道银)第三版课后答案_物理光学

光学工程(郁道银)第三版课后答案_物理光学

n 1 2 0.52 2 ) ( ) 0.0426 n 1 2.52 n 1 2 1 1.52 2 经过第三面时,反射比为3 ( ) ( ) 0.0426 n 1 1 1.52 经过第二面时,1 =45,sin 2 1.52 sin 45 2 90
9. 电矢量方向与入射面成 45 度角的一束线偏振光入射到两介质的界面上, 两介质的折射率 分别为 n1 1, n2 1.5 ,问:入射角 1 50 度时,反射光电矢量的方位角(与入射面所成
的角)?若 1 60 度,反射光的方位角又为多少? 解:
() 1 1 50,由折射定律 2 sin 1 ( rs
得证。亦可由 rs , rp 求证.
n玻
11. 光束垂直入射到 45 度直角棱镜的一个侧面,并经斜面反射后由底二个侧面射出(见图 10-40) ,若入射光强为 I 0 ,求从棱镜透过的出射光强 I?设棱镜的折射率为 1.52,且不考 虑棱镜的吸收。
I0
45
I
图 10-40 习题 11 图
解:
经过第一面时,反射比为1 (
u r
r r
r r k r kx x k y y kz z
k x 2, k y 3, k z 4 r uu r uu r u u r uu r uu r u u r k k x x0 k y y0 k z z0 2 x0 3 y0 4 z0 u u r r r u r 2 uu 3 uu 4 u k0 x0 y0 z0 29 29 29
7. 太阳光(自然光)以 60 度角入射到窗玻璃(n=1.5)上,试求太阳光的透射比。 解:
sin 2 sin ocs 2 6

工程光学第二版答案

工程光学第二版答案

第一章1.略2.略1、答:设屏到针孔的初始距离为x ,因为光在均匀介质中沿直线传播,所以根据三角形相似可得:3、一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm 。

4、一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n = 66666.01sin 22==n I745356.066666.01cos 22=-=I88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=1mmI 1=90︒n 1 n 2200mmL I 2 x8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n 0 .16、一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。

如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。

解:该题可以应用单个折射面的高斯公式来解决,设凸面为第一面,凹面为第二面。

工程光学习题解答第九章_光的电磁理论基础

工程光学习题解答第九章_光的电磁理论基础

第九 章 光的电磁理论基础1. 一个平面电磁波可以表示为140,2cos[210()],02x y z z E E t E cππ==⨯-+=,求(1)该电磁波的频率、波长、振幅和原点的初相位?(2)拨的传播方向和电矢量的振动方向?(3)相应的磁场B的表达式?解:(1)平面电磁波cos[2()]zE A t cπνϕ=-+ 对应有1462,10,,3102A Hz m πνϕλ-====⨯。

(2)波传播方向沿z 轴,电矢量振动方向为y 轴。

(3)B E →→与垂直,传播方向相同,∴0By Bz ==814610[210()]2z Bx CEy t c ππ===⨯⨯-+2. 在玻璃中传播的一个线偏振光可以表示2150,0,10cos 10()0.65y z x zE E E t cπ===-,试求(1)光的频率和波长;(2)玻璃的折射率。

解:(1)215cos[2()]10cos[10()]0.65z zE A t t ccπνϕπ=-+=- ∴1514210510v Hz πνπν=⇒=⨯72/2/0.65 3.910n k c m λππ-===⨯(2)8714310 1.543.910510n c c n v λν-⨯====⨯⨯⨯ 3.在与一平行光束垂直的方向上插入一片透明薄片,薄片的厚度0.01h mm =,折射率n=1.5,若光波的波长为500nm λ=,试计算透明薄片插入前后所引起的光程和相位的变化。

解:光程变化为 (1)0.005n h mm ∆=-=相位变化为)(20250010005.026rad πππλδ=⨯⨯=∆= 4. 地球表面每平方米接收到来自太阳光的功率为 1.33kw,试计算投射到地球表面的太阳光的电场强度的大小。

假设太阳光发出波长为600nm λ=的单色光。

解:∵22012I cA ε== ∴1322()10/I A v m c ε=5. 写出平面波8100exp{[(234)1610]}E i x y z t =++-⨯的传播方向上的单位矢量0k 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章 光的电磁理论基础解:(1)平面电磁波cos[2()]zE A t cπνϕ=-+ 对应有1462,10,,3102A Hz m πνϕλ-====⨯。

(2)波传播方向沿z 轴,电矢量振动方向为y 轴。

(3)B E →→与垂直,传播方向相同,∴0By Bz ==814610[210()]z Bx CEy t ππ===⨯⨯-+解:(1)215cos[2()]10cos[10()]0.65z zE A t t ccπνϕπ=-+=- ∴1514210510v Hz πνπν=⇒=⨯72/2/0.65 3.910n k c m λππ-===⨯(2)8714310 1.543.910510n c c n v λν-⨯====⨯⨯⨯ 3.在与一平行光束垂直的方向上插入一片透明薄片,薄片的厚度0.01h mm =,折射率n=1.5,若光波的波长为500nm λ=,试计算透明薄片插入前后所引起的光程和相位的变化。

解:光程变化为 (1)0.005n h mm ∆=-=相位变化为)(20250010005.026rad πππλδ=⨯⨯=∆= 4. 地球表面每平方米接收到来自太阳光的功率为 1.33kw,试计算投射到地球表面的太阳光的电场强度的大小。

假设太阳光发出波长为600nm λ=的单色光。

解:∵22012I cA ε== ∴13202()10/I A v m c ε=B5. 写出平面波8100exp{[(234)1610]}E i x y z t =++-⨯的传播方向上的单位矢量0k 。

解:∵°exp[()]E A i k r t ω=-u r r r gx y z k r k x k y k z ⋅=⋅+⋅+⋅r r00000000002,3,4234x y z x y z k k k k k x k y k z x y z k x y z ===∴=⋅+⋅+⋅=++=+r u u r u u r u u r u u r u u r u u r u u r u u r u u r u u r 6. 一束线偏振光以45度角从空气入射到玻璃的界面,线偏振光的电矢量垂直于入射面,试求反射系数和透射系数。

设玻璃折射率为1.5。

解:由折射定律12211221122111122sin sin cos 1.5cos cos 0.3034cos cos 2322cos 0.6966cos cos s s n n n r n n n t n n θθθθθθθθθθ==∴=-∴==-+===+ 7. 太阳光(自然光)以60度角入射到窗玻璃(n=1.5)上,试求太阳光的透射比。

解:2222212111222222122111212sin sin 212111.54cos 4sin cos 30.8231cos sin ()(22323cos 4sin cos 0.998cos sin ()cos ()()0.912s p s p n n ocs n n n n θθθθθθτθθθθθθτθθθθθτττ==∴=⨯⨯=⋅==+=⋅=+-+∴==8. 光波以入射角1θ从折射率为1n 介质入射到折射率为2n 的介质,在两介质的表面上发生反射和折射(折射角为2θ,见图10-39),s 波和p 波的振幅反射系数和投射系数分别为s r 、p r 和s t 、p t 。

若光波从2n 介质入射到1n 介质(见图10-39b )中,入射角为2θ,折射角为1θ,s 波和p 波的反射系数和透射系数分别为's r 、'p r 和's t 、'p t 。

试利用菲涅耳公式证明(1)'s s r r =-;(2)'p p r r =-;(3)'s s s t t τ=;(4)'p p p t t τ=(p τ为p 波的透射比,s τ为s波的透射比)。

解:112211221122221111222211121221121212cos cos (1)cos cos 'cos''cos'cos cos ''cos''cos'cos cos (2)12cos sin 2cos'sin'2cos sin 3,'sin()sin('')sin()s s ss s n n r n n n n n n r r n n n n t t θθθθθθθθθθθθθθθθθθθθθθθθ-=+--===-++===+++∴同()()221122122122122112222221211124sin cos sin cos sin cos 4sin cos 'sin ()sin cos sin ()cos 4sin cos cos sin ()(4)3s s st t n t n θθθθθθθθθθθθθθθθθθθθ⋅==⋅++=⋅=+同()略9. 电矢量方向与入射面成45度角的一束线偏振光入射到两介质的界面上,两介质的折射率分别为121, 1.5n n ==,问:入射角150θ=度时,反射光电矢量的方位角(与入射面所成)b图10-39 习题8图的角)?若160θ=度,反射光的方位角又为多少? 解:11112212121212sin 150sin ()30.7sin()()0.335,0.057sin()()'0.3350.335,'0.057'80.33'(2)0s p s p s s s s p p p s p s n n tg r r tg A A AA r A A A A r A A A tg A r θθθθθθθθθθθαα-=︒==︒--∴=-=-==++==∴==-=-==∴=⇒=-︒=-Q (),由折射定律入射光由反射系数有合振幅与入射面的夹角同理.421,0.042''()84.3'p s p r A arctg A α=-∴==︒10. 光束入射到平行平面玻璃板上,如果在上表面反射时发生全偏振,试证明折射光在下表面反射时亦发生全偏振。

证明:当入射角为布儒斯特角时,发生全偏振,反射光中只有s 波 第一次反射时,11312,90,,B n n tg n θθθθθ=+=︒==玻空n 第二次反射时,212',''90,''B nn n θθθθθ=+=︒=空B 玻,tg =n 得证。

亦可由,s p r r 求证.11. 光束垂直入射到45度直角棱镜的一个侧面,并经斜面反射后由底二个侧面射出(见图10-40),若入射光强为0I ,求从棱镜透过的出射光强I ?设棱镜的折射率为1.52,且不考虑棱镜的吸收。

图10-40 习题11图解:221223122212300010.52()()0.04261 2.5211 1.52()()0.042611 1.52,sin 1.52sin 4590110.0426110.04260.917n n n n I I I I ρρθθθρτρτ-===+--===++︒=⨯︒⇒>︒∴=∴==-⨯⨯-=经过第一面时,反射比为经过第三面时,反射比为经过第二面时,=45在此面发生全反射,即出射光强为()()12. 一个光学系统由两片分离透镜组成,两透镜的折射率分别为1.5和1.7,求此系统的反射光能损失。

如透镜表面镀上曾透膜,使表面反射比降为0.01,问此系统的光能损失又为多少?设光束以接近正入射通过各反射面。

解()()()()()222223412344)()0.04()()0.040.06711110.80220%0.01'10.010.96,4%R R R R R R R ττ=======∴=----==-=111220此系统有4个反射面,设光束正入射条件下,各面反射率为n -1 1.5-1R =(n +1 1.5+11-1n -1 1.51n +1+11.5光能损失为(初始为I ),损失若反射比降为,则损失13. 一半导体砷化镓发光管(见图10-41),管芯AB 为发光区,其直径3d mm ≈。

为了避免全反射,发光管上部磨成半球形,以使内部发的光能够以最大投射比向外输送。

要使发光区边缘两点A 和B 的光不发生全反射,半球的半径至少应取多少?(已知对发射的0.9nm λ=的光,砷化镓的折射率为3.4) 。

解:sin sin sin 1sin sin 1sin 3.41sin sin sin 3.43.4 3.4 5.12C R rRrRrAB Rr c c R dR r mmθαθαθθθθθθ=⋅∴≤≤==∴<⇒<=>=⨯=Q 设半球半径为,由正弦定理,管芯边缘发光的入射角有最大为,最小为0,0若时仍不能发生全反射,则内所有光均不会发生全反射全反射角14. 线偏振光在玻璃-空气界面上发生全反射,线偏振光的方位角45α=度,问线偏振光以多大角度入射才能使反射光的s 波和p 波的相位差等于45度,设玻璃折射率 1.5n =。

解:()12222114124222112112cos (sin )2sin 1sin 1sin 021,45sin 0.64830.58421.5153.6349.85arcsin 41.811.5C S P tg n tg tg n n n δδθθδθδθθδθθθ=-=⎛⎫+-++= ⎪⎝⎭==︒=∴=︒︒==︒∴全反射时,波与波相位差为,且将代入有或或,而上述答案均可15. 线偏振光在1n 和2n 介质的界面发生全反射,线偏振光的方位角45α=度,证明当cos θ= 时(θ是入射角),反射光波和波的相位差有最大植。

式中21/n n n =。

证明:()()()()()()()()()()221222222222222cos cos2sin1cos,cos22112]12210,11[12]122S Ptgtg tg y xyx x n x x xdydx xdydxx x n x x x x n xxδθθδδδθ-==-==∴=--⋅----=-=---+-=--⋅-=全反射时,波与波相位差为若最大,则最大,令令则有221222111cos(),1nnnnθδ-+-∴=+当时取最大16. 圆柱形光纤(图10-42)其纤芯和包层的折射率分别为1n和2n,且1n>2n。

(1)证明入射光的最大孔径角2u满足关系式sin u=2)若121.62, 1.52,n n==求孔径角?解:()()2211121sin,sin cossinsin21 1.62,2 1.52268.2c cnnnunn nuθθθθ=∴==∴======︒Q若17. 已知硅试样的相对介电常数12εε=,电导率112.cmσ--=Ω,证明当电磁波的频率图10-42 习题16图910HZ ν<时,硅试样具有良导体作用。

相关文档
最新文档