新的罗丹明荧光探针

合集下载

分子荧光探针在细胞成像中的应用

分子荧光探针在细胞成像中的应用

分子荧光探针在细胞成像中的应用作为现代医学领域的重要技术,分子荧光探针的应用范围已经远远超越了传统医学成像技术,成为了细胞成像的重要手段。

分子荧光探针拥有许多特点,包括高灵敏度、高分辨率、操作灵活性和高生化特异性,这使得它已成为研究生物学和细胞学问题、疾病治疗和药物筛选的重要工具。

本文重点介绍分子荧光探针在细胞成像中的应用。

一、分子荧光探针的分类1. 小分子荧光探针小分子荧光探针是指直径小于1纳米的分子,通常是有机分子。

它们最常用于活细胞成像,因为它们可以透过细胞膜进入细胞。

应用最广泛的小分子荧光探针包括:荧光素、罗丹明B、吡啶、硫脲和光合色素等。

2. 蛋白质标记荧光探针蛋白质标记荧光探针是针对蛋白质的荧光探针,适用于在细胞或动物模型中观察蛋白质定量和空间分布。

利用该类探针可以得到许多有用的信息,例如蛋白质交互作用和分子迁移等。

最常用的蛋白质标记物包括绿色荧光蛋白(GFP)、黄色荧光蛋白(YFP)、紫色荧光蛋白(CFP)和细胞色素C等。

3. 量子点荧光探针量子点荧光探针是一组纳米级的半导体颗粒,具有独特的光物理和化学特性。

由于其窄的发射频率和高荧光量子产率,量子点成为生物成像领域中最受关注的材料之一。

量子点荧光探针可以通过共价结构或磷酸酯键等化学成分与蛋白质或其他小分子结合起来,并在暴露于激发光下时发出荧光信号。

二、荧光探针在生物标记中的应用荧光探针已被广泛应用于细胞成像中,这些成像方法包括:古典显微镜技术、流式细胞术和扫描电子显微镜技术等。

此外,荧光探针还可以用于分子动力学研究、分子迁移和组织工程学等方面。

1. 荧光探针用于活细胞成像在活细胞成像中,荧光探针用于研究各种生物学事件,例如细胞分化、蛋白质定位、细胞周期、凋亡、外单元素的吸收和对细胞功能的影响等。

其中,用于标记细胞核的荧光探针nuclear green 和DAPI是已经广泛使用的应用荧光探针。

此外,BODIPY、FLIPR、FM1-43等荧光探针也被广泛应用于对活细胞成像。

一种新型罗丹明类荧光分子探针及其对Fe(Ⅲ)的选择性识别

一种新型罗丹明类荧光分子探针及其对Fe(Ⅲ)的选择性识别

一种新型罗丹明类荧光分子探针及其对Fe(Ⅲ)的选择性识别成春文;王风贺;段伦超;雷武;夏明珠;王风云【摘要】以罗丹明B、乙二胺和乙二醛为反应原料,合成了一种新型的荧光增强型识别Fe3+的分子探针(fluorescent probe,FP).用核磁和质谱对其分子结构进行了表征,并通过荧光光谱研究了FP对A13+、pb2、Ca2+、Cd2+、Mn2+、Hg2、Mg2+、Ca2、K+、Na+等不同金属离子的识别性能.研究结果表明:在纯甲醇溶剂中,探针FP对Fe3+的识别具有较好的选择性,且基本不受其他金属离子的干扰;通过Job's曲线可知,探针FP与Fe3+的络合比为1∶3;Fe3+浓度在4×10-4~5×10-3 mol/L范围内时,探针FP的荧光强度与Fe3+浓度具有良好的线性关系,线性相关系数为0.995 3.【期刊名称】《发光学报》【年(卷),期】2014(035)001【总页数】6页(P125-130)【关键词】荧光探针;罗丹明B;乙二醛;希夫碱;Fe3+【作者】成春文;王风贺;段伦超;雷武;夏明珠;王风云【作者单位】南京师范大学环境科学与工程系,江苏南京210023;南京理工大学工业化学研究所,江苏南京210094;南京师范大学环境科学与工程系,江苏南京210023;南京师范大学环境科学与工程系,江苏南京210023;南京理工大学工业化学研究所,江苏南京210094;南京理工大学工业化学研究所,江苏南京210094;南京理工大学工业化学研究所,江苏南京210094【正文语种】中文【中图分类】O482.31;O657荧光分子探针,是指一定体系内,当体系的某一物理、化学性质发生变化时,该分子的荧光信号能发生相应改变,从而根据荧光信号反映被分析体系的浓度、性质等。

目前,根据荧光母体结构可将荧光分子探针分为罗丹明类[1]、1,8萘酰亚胺类[2]、BODIPY类[3]以及香豆素类[4]等类型。

荧光探针 ppt课件

荧光探针 ppt课件

实验结论
RA荧光探针有如下优点:

灵敏度高、 选择性好

其荧光发射 波长在可见 区,用在细 胞中可避免 细胞自身荧 光和背景散 射的影响。

激发波长所 需的能量较 低,避免了高 能量的激发 波长对细胞 造成的潜在 伤害


在水溶液中 检测Cu2+的 有效pH范围 宽。

迎 提

Thyoaunk
End
0 1
研究背景
检测原理
0 2
0 3
实验部分
实验结论
0
4
研究背景
Cu2 +
Cu2 + 生物体中基本的微量元素一; 生物体内过量摄入的铜也会产 生毒性; 采用荧光探针的方法检测铜离 子,尤其是跟踪其在化学反应 和生命活动中的作用过程具有 重要的意义.
检测原理
背景知识---荧光探针
• 典型的荧光探针由识别基团(受体),荧光团和连接二者的 连接基团所组成。受体和底物结合后,导致受体分子光物理性 质的变化,具体表现为荧光团部分发生突光猝灭或增强。
实验部分
二、溶剂体系对RA和Cu2+反应的影响
可见,纯水或在纯乙腈中,Cu2+和探 针RA之间相互作用不明显,体系的荧 光强度很弱。当CH3CN/H2O的体积比 在1B9~9B1之间时,探针RA可对Cu2+ 进行很好地识别。其中,CH3CN/H2O 的体积比为1:1时,荧光强度已接近 最大;再增加乙腈的含量,虽然体系 的荧光强度未降低,但增加有机试剂 的用量对环境和生物体系的测试均不 利,因此选择V(CH3CN) /V(H2O)=1: 1进行测试。
Cu2+浓度逐渐增大,RA的荧光 强度大幅度增加,最大发射波长 由565 nm红移到571 nm,也证 明了探针分子发生了开环,形成 了共轭体系较大的荧光体系。

1.3.2 荧光探针

1.3.2 荧光探针

荧光探针1 荧光探针所谓探针(probe ),在生物、化学学科中是指生物化学实验室中用于指示特定物质(如离子、生物小分子、核酸、蛋白质、细胞结构等)的性质或物理状态的一类标记分子,或者一些仪器的探测器。

目前所说的荧光探针通常是指生物分析与化学分析中用于荧光信号输出的各类标记物,它可以为人们提供待测生物分子在生物体内或体外的存在、表达、分布等各种信息,对于整个生物个体中物质代谢过程的研究具有重要意义。

基于荧光标记物的荧光分析法具有快速、简便、灵敏度高等优点,在分析化学、生命科学、医学等领域受到研究者的广泛关注。

然而对于大多数被分析物来说,其本身可能没有荧光或者荧光很弱,这就需要将一些发荧光的物质与其偶联,从而对其进行分析和示踪。

目前荧光探针根据荧光来源主要包括三大类:第一类是有机小分子染料;第二类是以绿色荧光蛋白为代表的荧光蛋白;第三类是荧光纳米材料。

1.1 有机小分子染料早在1871年,德国科学家Adolph V on Bayer就合成了荧光素,这是科学家首次合成荧光探针。

目前,基于有机小分子的荧光探针在分析化学、生命科学领域中己经得到广泛应用,可用于离子和小分子的检测、蛋白质的标记、细胞成像等。

常见的有机荧光探针包括荧光素类、罗丹明类、花菁类、香豆素类和稠环芳烃类染料等。

这些染料大多含有发射荧光基团(如拨基、氮氮双键、碳氢双键等)和助色基团(经基、伯胺基、仲氨基、酞胺基、醚键等)。

其中仅吲哚菁绿和荧光素两种荧光染料被美国食品和药品监督管理局(FDA)批准在人体中使用。

基于有机小分子探针的生化分析应用主要分为直接法和间接法。

直接法是指利用探针本身与靶标的相互作用,使其荧光发生变化(荧光减弱、荧光增强、荧光蓝移、荧光红移等)(图1.1)。

如Yin课题组运用BODIPY ( 4,4-difluoro-4-bora-3a, 4a-diaza-s-indacene)作为原料,合成了可以快速高灵敏地响应铜离子的近红外荧光探针,且铜离子熄灭的荧光又能被重新加入的硫离子竞争得到恢复,因而构建了一个新颖的铜离子和硫离子逻辑门传感器;Li等以罗丹明B为原料,经过改性得到了高灵敏、专一性强且快速响应Fe3+的“off-on”型荧光探针。

常见的小分子荧光探针种类

常见的小分子荧光探针种类

常见的小分子荧光探针种类1.引言1.1 概述小分子荧光探针是一类被广泛应用于生物领域的化学工具,通过其具有的荧光性质,可以用于生物成像、药物传递、疾病诊断等方面。

小分子荧光探针具有分子结构简单、稳定性好、探测灵敏度高等特点,在生物学研究中起着重要的作用。

小分子荧光探针的种类繁多,根据其不同的结构和功能特点,可以分为许多不同的类别。

常见的小分子荧光探针包括有机荧光探针、金属配合物荧光探针、聚合物荧光探针等。

有机荧光探针是指由有机化合物构成的荧光探针,其分子结构多样,可以通过调整结构来实现特定的探测目标。

常见的有机荧光探针包括荧光染料、荧光蛋白等。

荧光染料具有较强的荧光强度和良好的化学稳定性,可以用于细胞成像、生物传感等领域。

荧光蛋白是一类来源于特定生物体的蛋白质,其具有自身天然的荧光性质,可以通过基因工程技术进行改造和调整,广泛应用于生物研究中。

金属配合物荧光探针是指由金属离子与配体形成的荧光探针,其具有较强的荧光性能和较长的寿命。

金属配合物荧光探针具有选择性较高的特点,可以用于特定金属离子的探测和诊断。

常见的金属配合物荧光探针包括铜离子、锌离子、铁离子等的配合物。

聚合物荧光探针是指由高分子聚合物构成的荧光探针,其具有较好的溶解性和稳定性。

聚合物荧光探针可以通过调整聚合物的结构和链长来实现特定的探测需求。

常见的聚合物荧光探针包括聚合物分子探针、聚合物纳米探针等。

总之,常见的小分子荧光探针种类繁多,具有不同的结构和功能特点,可以根据具体的研究需求选择适合的荧光探针进行应用。

这些小分子荧光探针为生物学研究提供了有力的工具,有助于深入理解生命的基本过程和疾病的发生机制。

未来,随着技术的不断发展和突破,相信小分子荧光探针在生物领域的应用会得到更广泛的推广和应用。

1.2文章结构1.2 文章结构本文主要围绕"常见的小分子荧光探针种类"展开讨论。

文章分为引言、正文和结论三个部分。

在引言部分,将进行概述、文章结构和目的的介绍。

荧光探针的合成及自由基检测研究要点

荧光探针的合成及自由基检测研究要点

荧光探针的合成及自由基检测研究摘要荧光分析法在生物化学、医学、工业和化学研究中的应用与日俱增,其原因在于荧光分析法具有高灵敏度的优点,且荧光现象具有有利的时间表度。

由于物质分子结构不同,其所吸收光的波长和发射的荧光波长也不同,利用这一特性可以定性鉴别物质。

荧光探针技术是一种利用探针化合物的光物理和光化学特性,在分子水平上研究某些体系的物理、化学过程和检测某种特殊环境材料的结构及物理性质的方法。

该技术不仅可用于对某些体系的稳态性质进行研究,而且还可对某些体系的快速动态过程如对某种新物种的产生和衰变等进行监测。

这种技术具备极高的灵敏性和极宽的动态时间响应范围的基本特点。

羟基自由基(HO·)和超氧阴离子自由基(O2-·)是生物体内活性氧代谢产生的物质,当体内蓄积过量自由基时,它能损伤细胞,进而引起慢性疾病及衰老效应。

因此,近些年来人们为了预防这类疾病的发生,自由基的研究已逐渐成为热点。

而快速、灵敏和实用的自由基检测方法就显得十分重要。

荧光探针检测自由基具有操作简便、响应迅速、选择性高等多种优点,我们将着重研究一类苯并噻唑结构荧光探针的合成及其对超氧阴离子自由基(O2-·)的检测。

关键词:荧光探针,苯并噻唑,超氧阴离子自由基,自由基检测SYNTHESIS OF FLUORESCENT PROBES AND DETECTION OF FREE RADICALSABSTRACTApplications of fluorescence analysis method in biochemistry, medicine, industry and chemical research grow with each passing day, the reason is that fluorescence analysis method has the advantages of high sensitivity, and the flurescence phenomenon has a favorable time characterization. Since the molecular structure of different materials, the absorption wavelength and fluorescence wavelength of the emitted light is different, this feature can be characterized using differential substances. Fluorescent probe technology is a method using photophysical and photochemical properties for researching some systems’physical and chemical process at the molecular level and detecting a particular structure and physical property of the special environment material. This technology not only can be used for steady-state nature of certain system, but also can monitore fast dynamic processes of a certain system such as the production and decay of a new species. This technology has the basic characteristics of a high degree of sensitivity and very wide dynamic range response time. Hydroxyl radical(HO-·)and superoxide anion radical(O2-·) is a substance produced in vivo metabolism of reactive oxygen species. When the body accumulates excess free radicals that will damage cells thereby causing chronic diseases and aging effects. Thus, in recent years people in order to prevent the occurrence of such diseases, the study of free radicals has become a hot spot. And fast, sensitive and practical method for the detection is very important. Using the fluorescent probes for the detection of free radicals is a simple, quick response, high selectivity variety of advantages. We will focus on the study of a classof synthetic fluorescent probes of benzothiazole structure and detection of superoxide anion radical.Key words:Fluorescent probes, Benzothiazole, Superoxide anion radical, Detection of free radicals目录1 绪论 (1)1.1 引言 (1)1.2 荧光 (1)1.2.1 荧光的产生 (1)1.2.2 荧光探针结构特点 (2)1.2.3 荧光探针传感机理 (3)1.2.4 常见荧光团 (3)1.2.5 荧光探针的性能 (5)1.2.6 影响荧光探针性能的因素 (5)1.2.7 荧光淬灭 (5)1.3 自由基 (6)1.3.1 自由基的间接检测技术 (6)1.3.2 自由基的直接检测技术 (7)1.4 研究现状 (8)1.4.1 超氧化物歧化酶(SOD)的检测 (8)1.4.2 2-(2-吡啶)-苯并噻唑啉荧光探针 (8)1.4.3 PF-1和PNF-1 (8)1.4.4 香草醛缩苯胺 (8)1.4.5 Hydroethidine类荧光探针 (9)1.4.6 二(2,4-二硝基苯磺酰基)二氟荧光素 (9)1.5 选题背景和意义 (10)1.6 课题研究内容 (10)2 荧光探针的合成 (11)2.1 引言 (11)2.2 还原文献 (11)2.3 新探针合成 (11)2.3.1 2-(4-二甲氨基苯)-苯并噻唑 (11)2.3.2 2-(4-氰基苯)-苯并噻唑 (12)2.3.3 2-(苯)-苯并噻唑 (12)2.3.4 2-(4-甲基苯)-苯并噻唑 (12)2.3.5 2-(4-硝基苯)-苯并噻唑 (13)2.3.6 2-(水杨醛)-苯并噻唑 (13)2.4 合成小结 (14)2.5 实验药品及规格 (14)2.6 实验仪器及型号 (15)3 实验结果与讨论 (16)3.1 引言 (16)3.2 荧光性能测试 (16)3.2.1 荧光性能待测溶液配制 (16)3.2.2 荧光性能测试结果 (16)3.2.3 测试谱图 (17)3.3 1H NMR数据 (21)3.3.1 2-(2-吡啶)-苯并噻唑 (21)3.3.2 2-(4-二甲氨基苯)-苯并噻唑 (22)3.3.3 2-(4-氰基苯)-苯并噻唑 (23)3.3.4 2-(苯)-苯并噻唑 (24)3.3.5 2-(4-甲基苯)-苯并噻唑 (25)3.3.6 2-(水杨醛)-苯并噻唑 (25)3.3.7 2-(2-噻吩)-苯并噻唑 (26)3.4 反应条件控制及处理 (27)3.5 结论与展望 (27)参考文献 (28)致谢 (30)译文及原文 (31)1 绪论1.1 引言荧光分析法在生物化学、医学、工业和化学研究中的应用与日俱增, 其原因在于荧光分析法具有高灵敏度的优点, 且荧光现象具有有利的时间表度。

常用荧光探针小结


-
4
视频:The Use of Carboxyfluorescein Diacetate Succinimidyl Ester (CFSE) to Monitor Lymphocyte Proliferation
-
5
三、异硫氰酸罗丹明(TMRITC)
四甲基异硫氰酸罗达明,它是一种紫红色粉末,较稳定。其最 大吸收光谱为550nm,最大发射光谱620nm,呈橙红色荧光,与FITC 的黄绿色荧光对比清晰,与蛋白质结合方式同TITC。它可用于双标记 示踪研究。
-
13
Endothelial cells under the microscope. Nuclei are stained blue with DAPI, microtubles are marked green by an antibody and actin filaments are labelled red with phalloidin.
性状多年不变,室温下也能保存两年以上。异构体I、II均 能与蛋白质良好结合,但异构体I的荧光效率更高,与蛋白 质的结合也更稳定。 FITC的最大吸收光谱为490----495纳 米,最大发射光谱为520-530nm,呈明亮的黄绿色荧光。 FITC含有异硫氰基 , 在碱性条件下能与IgG的自由氨基 (主要是赖氨酸的-氨基)形成荧光抗体结合物。
-
9
五、溴化乙锭
详见第四节“应用于核酸检测的荧光探针技术”
-
10
六、DAPI ( 4‘,6-diamidino-2-phenylindole)
DAPI was first synthesised in as part of a search for drugs to treat trypanosomiasis. Although it was unsuccessful as a drug, further investigation indicated it bound strongly to DNA and became more fluorescent when bound.

荧光探针汇总

1.Fluo-3 AM (钙离子荧光探针)原理 Fluo-3 AM是一种可以穿透细胞膜的荧光染料。

Fluo-3 AM的荧光非常弱,进入细胞后可以被细胞内的酯酶剪切形成Fluo-3,从而被滞留在细胞内,和细胞内游离的钙离子结合,结合钙离子后可以产生较强的荧光。

生理意义细胞内钙离子增多是细胞损伤的结果,因此此探针能表征细胞损伤程度激发波长506nm 发射波长 526nm (绿色)备注推荐使用2.Mag-fura-2 AM(钙离子荧光探针)原理Fura-2 AM是一种可以穿透细胞膜的荧光染料。

Fura-2?AM进入细胞后可以被细胞内的酯酶剪切形成Fura-2,从而被滞留在细胞内。

Fura-2可以和钙离子结合,结合钙离子后在330-350nm激发光下可以备注3原理F,Fluo 3备注4.原理。

而DCFH 的备注5.原理123备注氧化后成罗丹明123,荧光强度可能受到线粒体膜电位的影响6.RhodamineI23 (线粒体膜电位荧光探针)原理细胞膜通透的阴离子绿色荧光染料, 能够迅速被活线粒体摄取, 而无细胞毒性。

生理意义标记线粒体膜电位激发波长488nm 发射波长515 ~ 575nm (绿色)生理意义检测线粒体膜电位备注正在使用7.Hoechst 33342 (DNA荧光探针)原理 Hoechst 33342是一种可对DNA 染色的细胞核染色试剂,常用于细胞凋亡检测。

Hoechst染料可透过细胞膜在聚AT序列的富集区域的小沟处与DNA结合并对DNA染色而发出强烈的蓝色荧光。

生理意义标记双链DNA激发波长355nm 发射波长465nm (蓝色)备注正在使用8.FDA原理FDA可透过细胞膜并作为荧光素积蓄在活细胞内。

生理意义反映细胞膜完整性和细胞活力激发波长495nm 发射波长520nm (绿色)备注正在使用9.PI (DNA荧光探针)原理它不能透过完整的细胞膜,但能透过凋亡中晚期的细胞和死细胞的膜而将细胞核染红,与细胞核中的DNA结合的PI发出的荧光,与未结合的PI相比,强度会增强20-30倍。

罗丹明B衍生物pH探针在强酸性条件下的生物成像

罗丹明B衍生物pH探针在强酸性条件下的生物成像作者:唐林林,肖思玉,左华来源:《江苏科技信息》 2018年第10期唐林林,肖思玉,左华 *(西南大学药学院,重庆 400716)摘要:基于罗丹明B在低pH值条件下会使得荧光增强,一种含有罗丹明B的骨架与对羟基苯乙酮基团的新型荧光探针被成功地合成。

文章通过实验发现此探针可以作为在活细胞中检测强酸环境的pH指示剂,揭示了当pH 在2.7~4.8范围内与其对应的荧光强度有着非常好的线性关系(R 2 = 0.996)。

此外,该探针不受普通金属离子的干扰,对酸性pH具有较高的选择性和敏感性。

探针通过大肠杆菌荧光成像证明具有超滤膜通透性,表明此探针具有良好的生物学应用潜力,可以作为理想的pH指示剂。

关键词:罗丹明B;荧光探针;强酸性;大肠杆菌; pH指示剂中图分类号: Q26 文献标识码: A0 引言细胞内pH值在细胞生命活动中起重要作用,如细胞代谢,细胞的生长、增殖[1-2]。

异常的细胞内pH值就意味着细胞出现了某些功能障碍,因为大多数细胞在中性或接近中性的情况下都能很好地发挥作用。

因此,监测活细胞内的pH变化对于探索细胞功能和了解生理和病理过程是非常重要的。

本文深入研究了自主合成的新型罗丹明B [3] 类探针在强酸条件下的生物成像。

1 仪器与试剂1.1 仪器所用仪器如表1所示。

1.2 试剂罗丹明B、水合肼、对羟基苯乙酮均采购自于上海阿拉丁试剂公司。

2 方法与结果2.1 探针合成路线探针合成路线如图1所示[4]。

2.2 探针合成步骤合成罗丹明酰肼。

将罗丹明B (50.0 mmol)放入装有50 mL无水乙醇的反应瓶中,常温下缓慢搅拌并同时逐滴加入水合肼(100.0 mmol),升高温度至60 ℃后,回流加热反应,通过薄层色谱检测反应进度,后续加入对羟基苯乙酮(200.0 mmol),继续回流反应10 h,通过薄层色谱检测反应进度。

反应结束后,旋干溶剂,加水和乙酸乙酯萃取,然后将萃取液用乙酸乙酯重结晶处理得到纯的探针L。

罗丹明型荧光探针的合成及对Hg(2+)的识别


和发射 波长 长 等优 点 , 独 特 的螺 环 结 构 和荧 光 其 性 质在 金 属 离 子 探 针 的设 计 过 程 中具 有 重 要 作
【引 l

ቤተ መጻሕፍቲ ባይዱ
当人体通过皮肤或 口摄人汞离子后 , 会造
成脑 、 肾脏 及 内分 泌系 统 的损 害 J 。因此 , 汞 离 对 子 的检测 和识 别在 环境 分 析 和生命 科 学 中具 有 重 大意 义 。 由于 自旋 轨 道 耦 合效 应 , 离 子 往 往 对 汞 荧 光团具 有 猝 灭 作 用 , 因此 基 于荧 光 猝 灭 原 理 而
明: 目标 物 3可作为荧 光探 针选择性识别 H 2 , g 识别过程是不可逆的。
关键词 : 罗丹明衍生物 ; 荧光探针 ; g 识别 H 2;
中 图分 类 号 :6 7 3 0 5 . 文 献标 识 码 : A
S n h sso h d m i - a e fuo e c n r be a d y t e i fr o a ne b s d l r s e tp o n
第2 4卷第 5期 21 0 2年 5月
化 学 研 究 与 应 用
Ch mia e e r h a d Ap l ai n e c l sac n pi t R c o
Vo . 4 , . 12 No 5 Ma 2 2 y, 01
文章编 号 :0415 (02 0 -700 10 —6 6 2 1 )50 1-5
t p o o t . h s l h we a h o p u d3 a, u r s e t r b x i i d s lc ier c g i o f “ a d ti c g i r h tmer T e r u t s o d t t e c m o n sf o e c n o e hb t ee t e o n t n o o y e s h t l p e e v i Hg n h sr o n . e t n w s ir v ri l . i a n e e sb e o
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

New heterocyclic analogues of rhodaminesM.P.Shandura,Ye.M.Poronik,Yu.P.Kovtun *Institute of Organic Chemistry,National Academy of Sciences of Ukraine,Murmanska Str.5,02094Kyiv,UkraineReceived 23June 2005;received in revised form 19August 2005;accepted 16September 2005Available online 21November 2005AbstractDouble formylation of 9-methylpyronine yielded the corresponding 9-diformylmethinexanthene which was heterocyclized to furnish 9-hetarylpyronines.The chemical and spectral behaviour of the rhodamine analogues thus obtained was studied.Ó2005Elsevier Ltd.All rights reserved.Keywords:Pyronine;Rhodamine;Visible spectra;Fluorescence spectra;Fluorescence quantum yield1.IntroductionThe measurement of fluorescence has become a very useful tool in medical and biological diagnostics as well as in environmental analysis and material sciences due to high sen-sitivity of fluorescence spectroscopy.Many techniques and analytical concepts use fluorescent dyes,in particular rhod-amines,for the labeling of biological compounds,e.g.antibod-ies or DNA [1].Rhodamines are particularly useful as laser dyes [2].The above-mentioned applications as well as other practical uses call for the possibility of modifying an initial lumino-phore structure so as to adjust its spectral and chemical prop-erties for a specific requirement.Although rhodamines are widely used as luminophores for almost all of the last century,nevertheless synthetic approaches to these compounds remain unchanged:they are mostly prepared by condensation of aro-matic aldehydes with m -aminophenols followed by oxidation of the intermediate product.There are very few other synthetic routes to rhodamine-like structures,with two noteworthy methods based on the substi-tution of the benzene ring by a thiazole ring (yielding A type compounds)[3]and the exchange of the oxygen bridge fora methylene bridge (yielding B type compounds,carbopyro-nines)[4].We have recently shown that the 9-methylpyronine nucleus 1can be employed in cyanine condensations [5].In the present work,we involved the highly reactive methyl group of com-pound 1in other conversions leading to a number of 9-hetarylpyronines.2.Results and discussionDuring formylating 9-methylpyronine 1with the Vilsmeier reagent,an intensely fluorescing red dye was formed.The 1H NMR spectra,along with the data of elemental analysis (see Section 3),suggested that the Vilsmeier double formylation occurred to give the iminium salt 2.Formation of similar de-rivatives (or free dialdehydes very readily produced by hydro-lysis)was previously reported for other compounds containing an active methyl group (such as quaternary salts of quinoline,benzothiazole,etc.)[6].However,the reaction of compound 1is remarkable for its selectivity (no monoformylated productS NO N+NN+NAB*Corresponding author.Tel.:þ380445510682;fax:þ380445732643.E-mail address:yu_kovtun@ (Yu.P.Kovtun).0143-7208/$-see front matter Ó2005Elsevier Ltd.All rights reserved.doi:10.1016/j.dyepig.2005.09.026/locate/dyepigwas detected),high rate,and a good product yield.Bis-quater-nary ammonium salt2is stable to water and acids.When trea-ted with alkali under mild conditions,it is partially hydrolyzed to provide the dimethylaminoacrolein derivative3whereas short boiling in aqueous alcoholic alkali furnishes dialdehyde 4in high yield(see Scheme1).The hetarylidene malonaldehyde derivative4is a rather deeply coloured substance exhibiting an intermediate type of solvatochromism(l max is515nm in toluene,547nm in etha-nol,and537nm in acetonitrile or DMF).It can be condensed with various ing reagents with two nucleo-philic centres,one can obtain the corresponding heterocyclic analogues of rhodamine dyes.For instance,condensation of 4with phenylhydrazines leads to pyrazoles5and6,and the reaction with hydroxylamine hydrochloride yields isoxazole 7which undergoes ring opening in a weakly alkaline medium to give cyanoaldehyde8.The isoxazole-ring openings are known to proceed under severe conditions but the reaction is facilitated in the case under study due to a strong electron-acceptor substituent at position4of the isoxazole ring.The ring opening takes place even on treating isoxazole7with an aqueous Na2CO3or K2CO3solutions and also occurs on heat-ing7above100 C(an absorption band with l max464nm ap-pears in the electronic spectra indicating the aldehyde8 formation).This bielectrophilic reagent can serve as a substrate in the synthesis of new heterocyclic derivatives.In particular, aminopyrazole9was thus obtained(see Scheme2).The attempted synthesis of the mercaptopyrimidine deriva-tive by the reaction of dialdehyde4with thiourea has demon-strated that the cyclization takes another route under basic catalysis.Only one aldehyde group and the double bond of compound4are involved in the reaction to provide spiro com-pound10(see Scheme3).The absorption spectra maximum of this substance is found at320nm(in EtOH),the observed hypsochromic shift arises because of breaking conjugation system in the xanthene chromophore.The1H NMR spectrum registered in DMSO-d6exhibits the singlet signals of the pro-ton at position4of the pyrimidine ring at7.31ppm and the aldehyde proton at9.02ppm as well as two broad singlets caused by the NH protons at9.66and10.4ppm.Another example of the high reactivity of the methyl group in compound1was the reaction with pyridinium bromide per-bromide carried out in pyridine.As an intermediate,the bro-momethyl derivative is formed which alkylates pyridine and finally yields11(see Scheme4).The spectral luminescent characteristics of the compounds synthesized are listed in Table1.As can be seen from the table,all products absorption maxima are at15e57nm longer wavelengths than in the starting pyronine1.This effect is in-duced by the electron-acceptor substituents at position9of the dye molecule.The most red-shifted absorption is observed for dicationic dyes2and11.In the presence of acid dialdehyde4 switches from the merocyanine to cationic form,the latter also absorbing at longer wavelengths than pyronine1.Thefluores-cence spectra of the obtained substances appear as mirror images of their absorption spectra,with the Stokes shifts of 20e25nm,which is typical to rhodamines.Fluorescence quan-tum yields are comparable to that of the starting pyronine1.Though aminopyrazole9is almost nonfluorescent,it starts emitting light on adding an equivalent amount of acid.The origin of the effect is thatfluorescence quenching in amines requires the free pair of electrons localized on the nitrogen. If this electron pair is bound to proton,then electron transfer is inhibited,andfluorescence is not quenched.Such molecules are said to undergo photoinduced electron transfer(PET), which is light-induced transfer of electron from the nitrogen into thefluorophore system.At low pH,the amino group is protonated and does not quench the pyronine system.As the434Scheme1.26M.P.Shandura et al./Dyes and Pigments73(2007)25e30Scheme 2.Scheme 3.X A (non fluorescent) B (fluorescent)27M.P.Shandura et al./Dyes and Pigments 73(2007)25e 30pH is increased,the amino group becomes unprotonated and thefluorescence decreases due to PET[7].Such a dye is there-fore applicable as afluorescent acid e base indicator.3.ExperimentalElectronic absorption spectra were recorded on a spectro-photometer Shimadzu UV-3100in acetonitrile.Emission spec-tra were recorded on a spectrofluorimeter Varian‘‘Cary Eclipse’’in acetonitrile.1H NMR spectra were recorded on a Varian VXR-300instrument at300MHz.Thefluorescence quantum yields were determined by comparison with rhoda-mine6G according to[8](excitation at530nm).3.1.2-(3,6-Bis-diethylaminoxanthylo-9-yl)-3-dimethylaminopropenylidene-dimethylammonium diperchlorate(2)To a stirred solution of salt1(4.37g,10mmol)in dry DMF (20ml),phosphorus oxychloride(4.59g,2.74ml,30mmol) was added dropwise so that the temperature of the reaction mixture did not rise above50 C.After dropping addition was complete,the mixture was heated at70 C for15min, cooled,diluted with water(100ml)containing NaClO4$H2O (4g),and allowed to stand at room temperature for several hours.The resulting precipitate wasfiltered off and recrystallized from aqueous alcohol.Yield 5.16g(80%); m.p.247e248 C.1H NMR(CD3CN/TMS),d:1.28(12H,t,CH3),2.47(6H,s, NCH3),3.29(6H,s,NCH3),3.66(8H,q,NCH2),6.83(2H,d, J¼2.4Hz,H4þH5),7.14(2H,dd,J¼9.9Hz,H2þH7),7.63 (2H,d,J¼9.9Hz,H1þH8),7.82(1H,c,CH).Anal. (C28H40Cl2N4O6);calcd.C,51.9;H,6.2;N,8.7;Cl,10.9; found C,51.7;H,6.3;N,8.7;Cl,10.8.3.2.3,6-Bis-diethylamino-9-(2-dimethylamino-1-formylvinyl)xanthylium perchlorate(3)It was synthesized in analogical way to2.After cooling and diluting with water,the reaction mixture was neutralized with 20%aqueous NaOH and stirred for30min.The product was filtered off and dried in air.Yield4.9g(95%);m.p.244e 245 C.1H NMR(CD3CN/TMS),d:1.31(12H,t,CH3),2.51(3H,s, NCH3),3.26(3H,s,NCH3),3.69(8H,q,NCH2),6.81(2H,d, J¼2.1Hz,H4þH5),7.1(2H,dd,J¼9.6Hz,H2þH7),7.65 (3H,d,H1þH8þCH),9.23(1H,s,CHO).Anal. (C26H34ClN3O6);calcd.C,60.1;H,6.6;N,8.1;Cl,6.8;found C,60.0;H,6.6;N,8.3;Cl,6.9.3.3.2-(3,6-Bis-diethylamino-9H-xanthen-9-ylidene)malonaldehyde(4)Compound3(5.2g,10mmol)was added to a solution of NaOH(1.0g,25mmol)in20%aqueous ethanol(30ml)and the mixture was boiled until the starting reagent had dissolved (ca.5e10min).After cooling and diluting the mixture with water(50ml),the product wasfiltered off,dried in air,and recrystallized from chloroform e hexane mixture.Yield3.4g (87%);m.p.237e238 C.1H NMR(DMSO-d6/TMS),d:1.26(12H,t,CH3),3.49 (8H,q,NCH2),6.49(2H,d,J¼2.4Hz,H4þH5),6.67(2H, dd,J¼9.6Hz,H2þH7),8.24(2H,d,J¼9.6Hz,H1þH8), 9.16(2H,s,CHO).Anal.(C24H28N2O3);calcd.C,73.4;H, 7.2;N,7.1;found C,73.7;H,7.1;N,7.0.3.4.3,6-Bis-diethylamino-9-(1-phenyl-1H-pyrazol-4-yl)xanthylium perchlorate(5)Dialdehyde4(0.39g,1mmol)and phenylhydrazine hydro-chloride(0.145g,1mmol)were boiled in isopropanol(3ml) for10min.The solvent was evaporated and the residue was1211 Scheme4.Table1Spectral luminescent characteristics of compounds1e11in acetonitrileN l a abs(nm)3aÂ10ÿ4(l/(molÂsm))l a em(nm)D S a(nm)4a154311.0566230.272308 4.658212.3604220.20356011.5580200.1545379.0b4þHCl56511.2555911.4584250.30655810.0580220.2775708.5596260.198464 5.1b955310.2572190.0059þHCl57610.3595190.20116007.3ba lmax:Absorption maximum;3,extinction coefficient;l em,emission maxi-mum;D S,Stokes shift;4,quantum yield.b Fluorescence spectrum was not recorded.28M.P.Shandura et al./Dyes and Pigments73(2007)25e30dissolved in ethanol(3ml).After adding NaClO4$H2O(0.1g) to the solution,it was boiled for2e3min and separated NaCl wasfiltered off.After cooling thefiltrate,the product precip-itated.Yield0.26g(46%);m.p.139 C.1H NMR(CDCl3/TMS),d:1.33(12H,t,CH3),3.64(8H,q, NCH2), 6.78(2H,d,J¼2.4Hz,H4þH5),7.05(2H,dd, J¼9.6Hz,H2þH7),7.36(1H,t,A rH4),7.53(2H,t, ArH3þH5),7.86(2H,d,J¼9.6Hz,H1þH8),7.94(3H,m, ArHþH5hetaryl),8.58(1H,s,H3hetaryl).Anal.(C30H33ClN4O5); calcd.C,63.8;H,5.9;N,9.9;Cl,6.3;found C,63.4;H, 5.8;N,9.8;Cl,6.5.3.5.3,6-Bis-diethylamino-9-[1-(3-sulfonatophenyl)-1H-pyrazol-4-yl]xanthylium(6)A suspension of dialdehyde4(0.39g,1mmol)and m-hydrazinobenzenesulfonic acid(0.188g,1mmol)in ethanol (5ml)was boiled for6h until the starting reagents had dis-solved.After cooling,the reaction mixture was left overnight at room temperature.The precipitate formed wasfiltered off. Yield0.39g(72%);m.p.258e259 C.1H NMR(CDCl3/TMS),d:1.34(12H,t,CH3),3.62(8H,q, NCH2), 6.75(2H,d,J¼2.7Hz,H4þH5),7.02(2H,dd, J¼9.6Hz,H2þH7),7.39(1H,t,ArH5),7.81(2H,d, J¼9.6Hz,H1þH8),7.8e8.0(3H,m,ArH6þArH4þH5hetaryl),8.29(1H,s,ArH2),8.48(1H,s,H3hetaryl).Anal. (C30H32N4O4S);calcd.C,66.2;H,5.9;N,10.3;found C, 66.5;H,6.0;N,10.3.3.6.(3,6-Bis-diethylamino-9-isoxazol-4-yl)xanthylium chloride(7)Dialdehyde4(0.39g,1mmol)and hydroxylamine hydro-chloride(0.14g,2mmol)were boiled in isopropanol(3ml) for20min.The hot reaction mixture wasfiltered and cooled. The precipitate formed wasfiltered off.Yield0.2g(47%); m.p.243 C.1H NMR(CDCl3/TMS),d:1.36(12H,t,CH3),3.7(8H,q, NCH2), 6.89(2H,s,H4þH5),7.07(2H,d,J¼9.3Hz, H2þH7),7.59(2H,d,J¼9.3Hz,H1þH8),8.57(1H,s, H3hetaryl),9.37(1H,s,H5hetaryl).Anal.(C24H28ClN3O2);calcd. C,67.7;H,6.6;N,9.9;Cl,8.3;found C,67.4;H,6.6;N, 10.1;Cl,8.3.3.7.2-(3,6-Bis-diethylamino-9H-xanthen-9-ylidene)-3-oxopropionitrile(8)Isoxazole7(0.43g,1mmol)and NaOH(0.1g,2.5mmol) were boiled in ethanol(5ml)for5min.On cooling,the reac-tion mixture was diluted with water(20ml).The product was filtered off and recrystallized from isopropanol.Yield0.18g (46%);m.p.198 C.1H NMR(CDCl3/TMS),d:1.26(12H,t,CH3),3.49(8H,q, NCH2), 6.49(2H,d,J¼2.4Hz,H4þH5), 6.66(2H,dd, J¼9.6Hz,H2þH7),8.25(2H,d,J¼9.6Hz,H1þH8), 9.53(1H,s,CHO).Anal.(C24H27N3O2);calcd.C,74.0;H, 7.0;N,10.8;found C,74.2;H,7.1;N,10.7.3.8.9-(5-Amino-1-phenyl-1H-pyrazol-4-yl)-3,6-bis-diethylaminoxanthylium perchlorate(9)Cyanoaldehyde8(0.3g,0.771mmol)and phenylhydrazine hydrochloride(0.23g,1.59mmol)were boiled in isopropanol (4ml)for1h.The solution was cooled,filtered,and diluted with an aqueous solution(20ml)of NaClO4(0.3g).The prod-uct wasfiltered off and recrystallized from isopropanol.Yield 0.2g(51%);m.p.172 C.1H NMR(CDCl3/TMS),d:1.34(12H,t,J¼7Hz,CH3), 3.62(8H,d,J¼7Hz,NCH2),6.74(2H,s,H4þH5),7.02 (2H,d,J¼9Hz,H2þH7),7.44(1H,t,J¼7.5Hz,H4phenyl),7.56(2H,t,J¼7.5Hz,H3phenylþH5phenyl),7.68(3H,m,H pyrazoleþH2phenylþH6phenyl),7.92(2H,d,J¼9.9Hz, H1þH8).Anal.(C30H34ClN5O5);calcd.C,62.1;H,5.9;N, 12.1;Cl,6.1;found C,62.0;H,5.8;N,12.0;Cl,6.2.3.9.Spiro[1H-2-mercapto-5-formyl-1,4-dihydropyrimidine-4,9#-3#,6#-bis(diethylamino)xanthene](10)Sodium(0.08g,3.5mmol)was dissolved in absolute etha-nol(8ml).After adding thiourea(0.1g,1.3mmol)and dialde-hyde4(0.39g,1mmol)to the reaction mixture,it was boiled for2h,cooled,and diluted with water(30ml).One hour later, the product wasfiltered off and recrystallized from aqueous DMF.Yield0.18g(40%);m.p.230e231 C.1H NMR(DMSO-d6/TMS),d:1.12(12H,t,CH3),3.37 (8H,NCH2þH2O), 6.23(2H,s,H4þH5), 6.45(2H,d, J¼9Hz,H2þH7),6.94(2H,d,J¼9Hz,H1þH8),7.31 (1H,s,H5hetaryl),9.02(1H,s,CHO),9.66(1H,br s,NH), 10.41(1H,br s,NH).Anal.(C25H30N4O2S);calcd.C,66.6; H,6.7;N,12.4;found C,66.7;H,6.7;N,12.2.3.10.Perchlorate(3,6-bis-diethylaminoxanthylo-9-yl)-N-methylpyridinium bromide(11)To a solution of salt1(0.42g,0.96mmol)in pyridine (2ml),pyridinium bromide perbromide(0.32g,1mmol)in pyridine(2ml)was added.Twenty minutes later,acetic acid (5ml)was added and the reaction mixture was diluted with water(50ml).The precipitate formed wasfiltered off and recrystallized from acetic acid.Yield0.36g(62%);m.p. 265e266 C.1H NMR(DMSO-d6/TMS),d:1.23(12H,t,CH3),3.72 (8H,q,NCH2),6.61(2H,s,CH2),6.96(2H,s,H4þH5), 7.26(2H,d,J¼9.6Hz,H2þH7),8.06(2H,d,J¼9.6Hz, H1þH7),8.17(2H,t,J¼7.5Hz,H Py3þH Py5),8.65(1H,t, J¼7.5Hz,H Py4),9.02(2H,d,J¼6.3Hz,H Py2þH Py6).Anal. (C27H33BrClN3O5);calcd.C,54.5;H,5.6;N,7.1;Cl,6.0; found C,54.8;H,5.7;N,7.0;Cl,6.0.References[1]Handbook offluorescent probes and research chemicals.In:Haugland RP,editor.Molecular probes.8th ed.2001.[2]Drexhage KH.Dye lasers.In:SchaferFP,editor.Berlin:Springer-V erlag;1990.29M.P.Shandura et al./Dyes and Pigments73(2007)25e30[3]Griffiths J,Lee Won Jae.Dyes and Pigments2003;57:107.[4]Arden-Jacob J,Frantzeskos J,Kemnitzer NU,Zilles A,Drexhage KH.Spectrochimica Acta A2001;57:2271.[5]Shandura MP,Poronik YeM,Kovtun YuP.Dyes and Pigments2005;66:215.[6]Cˇiernik J.Collection of Czechoslovak Chemical Communications1972;37:2273.[7]Lakowicz JP.Principles offluorescence spectroscopy.2nd ed.KluwerAcademic/Plenum Publishers;1999.p.551.[8]Fery-Forgues S,Lavabre D.Journal of Chemical Education1999;76(9):1260.30M.P.Shandura et al./Dyes and Pigments73(2007)25e30。

相关文档
最新文档