数据中心空调系统节能技术白皮书
数据中心供配电系统白皮书[1]
![数据中心供配电系统白皮书[1]](https://img.taocdn.com/s3/m/66d25f0828ea81c759f57831.png)
数据中心供配电系统应用白皮书一引言任何现代化的IT设备都离不开电源系统,数据中心供配电系统是为机房内所有需要动力电源的设备提供稳定、可靠的动力电源支持的系统。
供配电系统于整个数据中心系统来说有如人体的心脏-血液系统。
1.1 编制范围考虑到数据中心供配电系统内容的复杂性和多样性以及叙述的方便,本白皮书所阐述的“数据中心供配电系统”是从电源线路进用户起经过高/低压供配电设备到负载止的整个电路系统,将主要包括:高压变配电系统、柴油发电机系统、自动转换开关系统(ATSE,Automatic Transfer Switching Equipment)、输入低压配电系统、不间断电源系统(UPS,Uninterruptible Power System)系统、UPS列头配电系统和机架配电系统、电气照明、防雷及接地系统。
如下图:图1 数据中心供配电系统示意方框图高压变配电系统:主要是将市电(6kV/10kV/35kV,3相)市电通过该变压器转换成(380V/400V,3相),供后级低压设备用电。
柴油发电机系统:主要是作为后备电源,一旦市电失电,迅速启动为后级低压设备提供备用电源。
自动转换开关系统:主要是自动完成市电与市电或者市电与柴油发电机之间的备用切换。
输入低压配电系统:主要作用是电能分配,将前级的电能按照要求、标准与规范分配给各种类型的用电设备,如UPS、空调、照明设备等。
UPS系统:主要作用是电能净化、电能后备,为IT负载提供纯净、可靠的用电保护。
UPS输出列头配电系统:主要作用是UPS输出电能分配,将电能按照要求与标准分配给各种类型的IT设备。
机架配电系统:主要作用是机架内的电能分配。
此外,数据中心的供配电系统负责为空调系统、照明系统及其他系统提供电能的分配与输入,从而保证数据中心正常运营。
电气照明:包括一般要求,照明方案、光源及灯具选择。
防雷及接地系统:包括数据中心防雷与接地的一般要求与具体措施。
1.2 编制依据《电子信息系统机房设计规范》GB 50174—2008《电子信息机房施工及检验规范》GB50462—20081.3 编制原则1.具有适应性、覆盖性、全面性的特征。
连载1期数据中心蓄冷白皮书

连载1期数据中心蓄冷白皮书NO.011.1数据中心持续供冷的必要性数据中心是为电子信息设备提供运行环境的场所,在数据中心中需要安装数据处理、数据传输和网络通讯等多种IT 设备。
为保障IT 设备正常有效的运转,保障业务顺畅的进行和服务及时的提供,还需要安装为IT 设备服务的电力、空调等相关设备及传输管路。
图1-1 数据中心常用能源示意图数据中心的电力供应,从市电经过变压器,给不间断电源(UPS)供电,UPS后备电池给机柜内的IT设备提供不间断的高品质电力供应。
服务器的散热量,通过机房空调和空调水系统,最终通过室外的冷却塔将室内的电力消耗转化的热量排至室外。
为了应付电力和供水中断,在园区设置一定数量的存水和存油设备,保证整个园区的电力和制冷不间断供应。
2018年,国际正常运行时间协会(Uptime Institute ,UI)发布了《国际正常运行时间协会全球数据中心调查》报告,报告中给出了2016年1月至2018年6月这些数据中心宕机的原因。
其中停电是数据中心宕机的最主要原因,占比高达36%。
导致停电的主要原因是:市电故障、柴油发电机故障、操作失误、飓风、雷击、转换开关间歇性故障、不间断电源(UPS)故障、电涌,以及人为破坏等。
表1-1 数据中心宕机原因尽管数据中心按照UI的等级标准来设计,但依旧存在服务器宕机的风险。
数据中心每次宕机的平均成本损失约为7908美元/分钟。
在所有引起服务器宕机的原因中,由于冷却系统失效造成的宕机占33%,并且有逐年增长的趋势。
冷却系统失效的一个主要原因是故障性停电,当供电出现故障时时,可能会导致冷却系统出现暂时停机。
与此同时,服务器及其它 IT 设备由于采用 UPS,在一段时间内仍保持运转,并继续产生热量。
而冷却系统虽然有柴油发电机作为后备电源,但由于柴油发电机启动需要时间,因此在停电后冷却系统会失效一段时间。
在冷却系统失效的时间内,数据中心的温度会急剧上升,在一段时间后会达到服务器运行的极限温度。
数据中心制冷技术白皮书

空调机的工作原理
第 57 号白皮书《IT 设备空调系统的基本原理》提供了关于 IT 环境的热学特性,制冷循环的运行, 精密制冷以及室外散热设备基本功能的相关信息。
资源链接
第 55 号白皮书 用于 IT 环境不同类型的气流 分配方案
资源链接
第 130 号白皮书 数据中心行级和机柜级制冷 架构的优势
目录
点击内容即可跳转至具体章节
简介
2
各种排热方式
2
制冷系统各种选项
14
结论
15
资源
16
用于数据中心的各种制冷技术
简介
资源链接
第 11 号白皮书 IT 环境中制冷和空调术语解释
数据中心排热是所有关键 IT 环境处理中最为基本而又最少为人所了解的内容之一。由于最新的 计算设备变得越来越小,而耗电量则与其所替代的设备相同甚至更高,数据中心会有更多的热量 产生。精密制冷和排热设备用于收集热量并将其输送至室外大气中。
各种排热方式
有 13 种基本的排热方法可以用于冷却 IT 设备并将这些废热排至室外大气。几乎所有关键任务机 房和数据中心进行冷却都是用这些方法中的一个或者多个。其中一些排热方法将制冷循环的组件 迁往远离 IT 环境的地方,另一些排热方法则增加一些额外的水与其它流体环路(自封闭管道) 来帮助排热。
我们可以认为排热是一个将热量从 IT 环境“迁移”至室外环境的一个过程。这个“迁移动作” 可以简单看成是利用风管将热量“输送”至位于室外环境的制冷系统。然而,这个“迁移动作” 通常是通过使用一个热交换器将热量从一种流体传递到另一种流体(比如从空气传递到水)来完 成的。图 1 简化说明了这 13 种排热方法,利用室内与室外作为两个主要热量“迁移”点。位于 室内与室外两点间的“热传递流体介质”表示的是用于两点之间携带热量的流体(液体或气体)。
绿色数据中心和虚拟化技术降低功率50%白皮书说明书

WHITE PAPERGreen Data Center and Virtualisation Reducing power by up to 50%CONTENTSExecutive summary 3 Blade for Blade, power is the same 5 PAN lowers power by reducing server/CPU count by 50% 8 PRIMERGY BladeFrame’s Data Centre Virtualisation Architecture 9 CoolFrame Technology reduces Data Centre air cooling load up to 83% 10 Summary 12The evolution of distributed computing has led to an explosion in data center complexity as the number of servers, storage devices, and local and wide area networks has grownexponentially. At the same time, processors continue to get more powerful but applications remain rigidly tied to specific servers, leading to low server utilisation across the data center. This makes today’s environment extremely complex and difficult to manage, yielding high costs for:H ardware and software to meet peak loads, high availability and disaster recoveryOperational expenses for space, power and cooling P ersonnel-intensive administration of redundant power, LAN, SAN and management networksAs a result of these industry trends, businesses are spending an increasingly large portion of their IT budgets on maintenance and power and cooling. According to IDC, in 2006 businesses world-wide spent about $55.4 billion on new servers and approximately $29 billion to power and cool those machines. That is almost half the cost of the equipment itself – for every $1 spent on the server, $0.5 is spent on energy to power and cool it! The amount of money that businesses will spend to power and cool the data center is only going up, so it is critical for IT departments to get control over its computing, storage and network resources.Executive summaryFor every $1 spent on new server spend, $0.50 is spent on energy to power and cool it.(Figure 1: IDC) Worldwide Server Installed Base, New Server Spending, and Power and Cooling Expense12010080604020050403545302520151050S p e n d i n g (U S $ i n b i l l i o n s )Installed base (units in thousands)199619971998199920002001200220032004200520062007200820092010Worldwide Server Installed Base, New Server Spending, and Power Cooling ExpenseNew Server Spending Power and CoolingSource: IDC 2007IDC March 2007 "CIO Strategies to Build the Next-Generation Data Center" by Vernon TurnerData centre complexity and the large number of servers in the data centre are the primary drivers of increased energy consumption for power and cooling. An increasing number of enterprises have hit the limits of their data centre’s power, cooling and space capacity.IT leaders need to consider the following questions:1) H ow can I most efficiently use only the processing powerI need within each server?1) H ow can I eliminate a majority of the components that are drawing power and generating heat (servers, switches, disk drives, etc.) while maintaining high levels of service to my customer?1) H ow can I efficiently remove heat from my data centre?Data centre virtualisation is key to achieving these goals, and alone could reduce energy costs in the data centre by up to 50%. Data centre virtualisation creates dynamic pools of processing, storage and networking resources that can be applied as needed, when needed, to applications. PRIMERGY BladeFrame’s data centre virtualisation architecture is called the PAN (Processing Area Network). The PAN transforms many common hardware components into software, thus dramatically reducing the overall cost and complexity in the data centre. The PAN architecture allows IT to 1) deliver power efficiently by supplying only the power needed at the right time; 2) reduce data centre complexity by up to 80% and the number of servers/ CPUs that need to be cooled by up to 50%; and 3) provide an additional 25% reduction in data centre cooling with advanced system-level cooling technologies, such as the CoolFrame™ solution.The majority of power in blade servers is consumed by the CPU and memory. Therefore, chip manufacturers are focused ondeveloping processors that provide better performance-per-watt, and the ability to dynamically adjust performance, based on CPU utilisation (e.g. optimise the performance-per-watt for each CPU). The remaining 30–40% of the power is consumed by disk drives, networking, I/O, peripherals and power.Hardware vendors are using the same components in their servers, so there are very few differences from a power perspective when comparing a “blade to a blade.” The real impact on power and cooling occurs with data centrevirtualisation, which reduces server/CPU count and powerthe data centre.Blade for Blade, power is the same –BladeFrame allows you to power only what you need50% CPU30-40% Disk, network, I/O, peripherals, power 10% MemorySource: “Full-System Power Analysis and Modelling for Server Environments,” by Dimitris Economou, Suzanne Rivoire, Christos Kozyrakis, and Partha RanganathanComparing PRIMERGY BladeFrame Processing Blade™ (pBlade™) modules to traditional blades, highlights some of the advantages of the PRIMERGY BladeFrame PAN architecture.P ower requirements are the samefor PRIMERGY BladeFrame pBlademodules as competitive blades.On average, power requirements arethe same for each blade configurationbecause each hardware vendor usesthe same components. Figure 3 and 4illustrate that performance/power andpower/blade only slightly vary for avariety of server configurations.R eduction in physical complexitylowers data centre power requirements.PRIMERGY BladeFrame requires~15–20% less power/blade in someconfigurations compared to traditionalbladed architectures (e.g. 4-socketconfigurations). Through the PANarchitecture, many common hardwarecomponents are eliminated (NICs,HBAs, disk drives, CDROMS, externalswitch port consolidation) andcontrolled in software. The PANdramatically reduces the number ofphysical components that exist in thedata centre, and therefore, reducesthe amount of power drawn andheat emitted.S hared-nothing architectures allowyou to only power what you need.PRIMERGY BladeFrame appears torequire ~15–20% more power/bladein some configurations compared totraditional bladed architectures(e.g. higher density 2-socketconfigurations). However, sharedarchitectures power and cool theentire system whether you have twoor 16 blades installed. PRIMERGYBladeFrame has a “shared-nothing”architecture, so you only power whatyou need. Figure 5 illustrates how ashared-nothing architecture is moreefficient regardless of whether thesystem is partially or fully utilised.P RIMERGY BladeFrame pBlademodules are optimised for thehighest efficiency. Each PRIMERGYBladeFrame pBlade has its own powersupply and fan; right-sized to operateat peak efficiency at the maximumrated output power. Power/cooling isnot oversized for larger memory orCPU configurations. Efficiencies inshared architectures are lower whenthe system is not fully loaded or isoperating above the maximumrated power.(Figure 5: Vendor Power CalCulators)0.5P e r f o r m a n c e /W a t t (S p e c /W )AMD-2216,2-socket/4GBIntel 5160,2-socket/16GBAMD-8216,4-socket/32GBIntel-x53552-socket/32GBBladeFrame HP cClass IBM BCH*HP RackBladeFrame HP cClass IBM BCH*HP Rack8006005007004003002001000W a t t s /b l a d eAMD-2216,2-socket/4GBIntel 5160,2-socket/16GBAMD-8216,4-socket/32GBIntel-x53552-socket/32GB2000140012001000180016008006004002000W a t t s /b l a d e0%20%40%60%Traditional Blades: Shared Power/Cooling80%100%System Utilisation with AMD-2216, 2-socket/4GBBladeFrame: Shared Nothing Traditional Blades: Shared Power/Cool Power measurements are based on power sizing tools, which do not reflect application environments (e.g. configuration, application,ambient temperature, and other factors). A more realistic value under typical conditions is assumed to be 80% of the maximum provided, which is assumed for IBM’s power calculator results.Servers/CPUs that you don’t have are the best kind, because they don’t need to be powered or cooled. The PAN architecture reduces the number of servers/CPUs in the data centre by up to 50%. Data centres typically buy enough servers to support an application at its peak demand while ensuring high availability and disaster recovery with additional servers. This environment is often replicated for test, development, QA, production and disaster recovery. That capacity is trapped and cannot be shared between applications or departments as business demands change. The end result is data centres are filled with hundreds to thousands of servers and all the supporting infrastructure includingnetwork switches, storage networks,cables and cooling systems. Each of these components requires power, cooling and real estate, which drive up operational costs for organisations.The best way to reduce the amount of power and cooling required in the data centre is to eliminate servers, which also eliminates the resulting surrounding infrastructure. PRIMERGY BladeFrame’s data centre virtualisation architecture, simplifies the data centre and eliminates the complexity causing most of today's power and cooling challenges.This architecture enables the ability to dynamically provision resources based on business demands, provide costeffective high availability and disaster recovery. This eliminates up to 50% of the servers/CPUs supporting an application and dramatically reduces data centre complexity in the data centre by up to 80%.One BladeFrame customer has anenvironment that requires 70 production servers, of which 50% is highly available. Traditional server architectures would require 105 servers to support production with high availability. PRIMERGYBladeFrame lowers power requirements by 35% by eliminating the need for 33 of these servers.PAN lowers power by reducing server/CPU count by 50%- Servers that you don’t have, don’t need to be powered or cooled60,00050,00040,00030,00020,00010,000HP cClass BladeFrame105 ServersPRIMERGY BladeFrame's Processing Area Network (PAN) architecture combines stateless, diskless processing blades with unique virtualisation software (PAN Manager™ software) to dramatically reduce data centre complexity and deliver an agile, highly-available infrastructure. PAN Manager replaces hardware infrastructure with software and eliminates manual, resource-intensive systems administration tasks through integrated automation. Rather thantie specific operating systems and applications to a server, PAN Manager creates pools of computer storage and network resources that can be dynamically allocated as needed.In conjunction with the BladeFrame system, PAN Manager software delivers a fully virtualised computing infrastructure in an integrated, highly-available system.Through virtualisation, the PAN can repurpose servers when needed, as needed (on the fly). This reduces the need to have servers:S pecified for the intended peak capacity plus some extra overhead for comfort.C onfigured as passive standby servers or overly clustered active machines. This capability eliminates the need for servers that were provisioning only for high availability.D edicated development or UAT servers without sharing computing resources across applications.S itting idle in a DR mode and not used for development or QA environments. One system can serve as backup to production systems at multiple production data centers (N+1 DR).The role of virtual machine technologyFor less mission-critical applications –those that don’t require HA/DR or the fullcapacity of a single processing resource– consolidation using virtual machinetechnologies is often used to reducepower and cooling requirements.For example, one server hosting fourvirtual machines might draw 600 W(operating at 60% utilisation) comparedto four dedicated physical resourcesdrawing 1200 W (400W for each server,operating at 15% utilisation).PRIMERGY BladeFrame’s PANarchitecture provides the ideal platformfor managing a virtual machineenvironment. The PAN provides a singlemanagement domain for configuring,allocating, repurposing and managingboth physical and virtual servers.In addition, the PAN provides a flexiblepool of resources for delivering costeffective high availability, N+1 failover,disaster recovery, dynamic repurposingand other critical services availablethrough PAN Manager software. Whetherconsolidating hundreds of servers ontovirtual blades or deploying the mostmission-critical applications on physicalblades, the PAN provides managementand physical simplicity. Managinghypervisors within the PAN allows forservers to be right-sized, eliminating idleCPU cycles that are being cooled for noreason.in PAN SANNetworkPRIMERGY BladeFrame’s Data Centre Virtualisation ArchitectureCurrent data centers are designed for power densities of550 W/m2 to 1380 W/m2. With the rapid adoption of blades and hypervisors, rack power densities may be exceeding the data centre’s ability to cool effectively with standard HV AC systems. Increases in temperature associated with larger power consumption have been shown to reduce the reliability and efficiency of systems. Every 10 degree temperature increase over 21C can decrease the reliability of electronics by 50% (Source: Uptime Institute).Given these challenges, reducing data centre complexity in order to lower power requirements and increase the efficiency of cooling dense systems is critical. Rack-level cooling solutions can dissipate heat generated from the rack to reduce the overall room temperature and load on HV AC systems. The CoolFrame solution integrates Emerson Network Power's Liebert XD® cooling technology with the BladeFrame 400 S2 system. Adding CoolFrame to a BladeFrame 400 S2 reduces the heat dissipation of the rack to the room from as much as 20,000 watts to a maximum of 1,500 watts. Each additional server that is added to the BladeFrame results in zero watts emitted into the data centre.Business Benefits of CoolFrame23% reduction in data centre cooling energy costs of a BladeFrame 400 S2 environment83% reduction in data centre cooling load (eliminating1.5 kW of fan load per rack)D ecrease real estate requirements from 23,4 m2 to 11,9 m2 (based on quad-core 4-socket servers). Estimates for “provisioned data centre floor space” is approximately 11.000 €/m2 according to industry analysts Operational Benefits of CoolFrameN ot W ATER − refrigerants − safe and reliableN o additional power requirementsN o impact on cable management and serviceabilityN o additional footprint required − no initial planning required today for cooling requirements, changes can be made in future with no impact on real estate ordata centre operationsC ool only the servers that need additional heat dissipation − avoid overcooling the whole data centre with inefficient air cooling mechanismsCoolFrame Technology reduces Data Centre air cooling load up to 83%The Liebert XD is a waterless cooling solution that delivers focused cooling through an infrastructure that includesa pumping unit or chiller and overhead piping system with quick-connect fixtures. Flexible piping connects Liebert XD cooling modules to the infrastructure, making it easy to add modules or reconfigure the system. With the CoolFrame solution, Liebert XD cooling modules become integral to the rear of the BladeFrame 400 S2 system. A single pumping unit or chiller provides 160 kW liquid cooling capacity for up to eight BladeFrame 400 S2 systems. same footprintas BladeFrame9,250 wattsreduced to0 watts1,500 watts9,250 wattsreduced to0 wattsliebert XdCoolFramemodulesexisting building chillersliebert XdP/XdC160kw liquid coolingpump unitCan support8 BladeFramesComparing power requirements for blade configurations whereprocessor utilisation is high, demonstrates near equivalence in power consumption for similar processors.PRIMERGY BladeFrame offers a dramatic advantage of lower overall power consumption based on:P AN architecture that reduces the number of required servers/CPUs by up to 50%S hared-nothing environment that allows you to power only what you need, lowering power consumption over the typical usage period with high and low server utilisation P owerful virtualisation software that eliminates NICs, HBAs, local disks and external switch ports that contribute to power consumption.SummaryFluid Based Cooling SolutionsPAN architecture provide significant architectural and density advantages Published byFujitsu technology solutions Domagkstr. 28, 80807 Munich, GermanyCopyright: © 2009 Fujitsu Technology SolutionsContact: /contactAll rights reserved, including rights created by patent grant or registration of a utility model. All designations used in this document may be trademarks, the use of which by third parties for their own purposes could violate the rights of their owners. We reserve the right。
【数据中心能源白皮书】数据中心常见的供配电接地系统

Huawei Confidential
第5页,共6页
3、总结
数据中心能源白皮书
数据中心常见的供配电接地系统
L1 L2 L3 PEN
设备
设备
电源端接地 图五: TN-C-S系统接地图示
TN-C-S系统由于供电线路上使用了PEN线,当N线上有电流通过时,在PEN线 上一定有产生一定的对地电位差,将会使整个电气装置对地之间产生这个对地 电位差,但对于电气装置内部,由于PE线和N线是分离的,PE线上并无电流通 过,因此整个电气装置对地电位是相等的,电气装置内部并无电位差,因此不 会出现类似TN-C系统的电击风险; 当出现N线断开的情况,如果是PE线断开,和TN-C系统一样会导致整个回路断 开,也会出现外壳带电的问题,因此TN-C-S系统和其他TN系统一样也要对设 备外壳PE端进行重复接地,但不要对PEN线进行重复接地,如果是N线断开, PE线不会带电,外壳也就不会带电,和TN-S情况类似,不会出现触电风险 当出现相线碰壳的情况是,相当于L线直接对PE线短路,短路电流很大,前端的 空开会断开保护,因此和TN-S系统一样,无需增加漏电保护开关。 总体来看TN-C-S系统综合了TN-S的安全性和TN-C的成本优势,又避免了TNC系统的系列安全问题。
数据中心能源白皮书
Huawei Confidential
第2页,共6页
数据中心常见的供配电接地系统
L1 L2 L3
设备
设备
电源端不接地或通过高阻抗接地
设备外露可导电部分接地
图一: IT系统接地图示
统对用电设备的耐压要求较高。地下矿井内供电条件比较差,电缆易受潮。运 用 IT 方式供电系统,即使电源中性点不接地,一旦设备漏电,单相对地漏电流 仍小,不会破坏电源电压的平衡,所以比电源中性点接地的系统还安全。 但是,如果用在供电距离很长时,供电线路对大地的分布电容就不能忽视了。 在负载发生短路故障或漏电使设备外壳带电时,漏电电流经大地形成架路,保 护设备不一定动作,这是危险的。只有在供电距离不太长时才比较安全。这种 供电方式在工地上很少见。
数据中心机房空调系统技术白皮书发布

数据中心机房空调系统技术白皮书发布为推广数据中心空调系统技术、贯彻执行国家标准,由中国工程建设标准化协会信息通信专业委员会(CECS)数据中心工作组牵头组织业内专家编写的《数据中心机房空调系统技术白皮书》日前正式发布。
该白皮书总结了数据中心空调系统的理论和实践经验,阐述了数据中心的环境要求、数据中心的机柜和空调设备布局、数据中心空调方案设计、数据中心高热密度解决方案、数据中心制冷系统发展趋势及机房环境评估和优化等。
数据中心工作组组长、《数据中心机房空调系统技术白皮书》课题技术负责人钟景华表示,此白皮书可用于指导数据中心空调系统的规划和设计。
白皮书正式发布制冷系统是数据中心的耗电大户,约占整个数据中心能耗的30%~45%。
随着绿色数据中心概念的不断深入,制冷系统的节能也逐渐获得业内人士的关注。
编制技术白皮书,有助于推广成熟的空调技术,对相关的热点问题开展探讨和解释。
《数据中心机房空调系统技术白皮书》课题技术负责人钟景华在发布会上表示,经过多次集中讨论和交流,编写组针对白皮书的整体架构和内容做了反复沟通和探讨,根据国内外相关技术标准规范的要求,开展了多次专题研究和调查分析,广泛征求各方面的意见,总结归纳国内外数据中心空调系统在工程应用中的实践经验,经反复修改和专家审查,最终定稿发布。
白皮书的编制原则主要包括三个方面。
一是考虑内容的适应性、覆盖性和全面性。
白皮书要适应当前数据中心的技术发展状况以及未来新技术、新产品的发展情况。
有关数据和资料要与新设备、新材料、新技术、新工艺的发展水平相适应;要覆盖国内各种数据中心的空调系统工程设计、施工和检验环节;纳入成熟的、经过验证的应用方案、方法和设备等;内容体系要完整。
二是以数据中心空调系统方案设计为中心。
侧重设计方案和原则、重要技术方案确实定、参数计算和确定、设备选型与布置等方面的内容,同时防止内容冗杂,通过分类提供相关标准、规范、参考资料的索引,提供深入学习和研究的途径。
数据中心供配电应用白皮书

数据中心供配电系统应用白皮书核心提示:任何现代化的IT设备都离不开电源系统,数据中心供配电系统是为机房内所有需要动力电源的设备提供稳定、可靠的动力电源支持的系统。
供配电系统于整个数据中心系统来说有如人体的心脏-血液系统。
一引言任何现代化的IT设备都离不开电源系统,数据中心供配电系统是为机房内所有需要动力电源的设备提供稳定、可靠的动力电源支持的系统。
供配电系统于整个数据中心系统来说有如人体的心脏-血液系统。
1.1编制范围考虑到数据中心供配电系统内容的复杂性和多样性以及叙述的方便,本白皮书所阐述的"数据中心供配电系统"是从电源线路进用户起经过高/低压供配电设备到负载止的整个电路系统,将主要包括:高压变配电系统、柴油发电机系统、自动转换开关系统(ATSE,Automatic Transfer Switching Equipment)、输入低压配电系统、不间断电源系统(UPS,Uninterruptible Power System)系统、UPS列头配电系统和机架配电系统、电气照明、防雷及接地系统。
如下图:高压变配电系统:主要是将市电(6kV/10kV/35kV,3相)市电通过该变压器转换成(380V/400V,3相),供后级低压设备用电。
柴油发电机系统:主要是作为后备电源,一旦市电失电,迅速启动为后级低压设备提供备用电源。
自动转换开关系统:主要是自动完成市电与市电或者市电与柴油发电机之间的备用切换。
输入低压配电系统:主要作用是电能分配,将前级的电能按照要求、标准与规范分配给各种类型的用电设备,如UPS、空调、照明设备等。
UPS系统:主要作用是电能净化、电能后备,为IT负载提供纯净、可靠的用电保护。
UPS输出列头配电系统:主要作用是UPS输出电能分配,将电能按照要求与标准分配给各种类型的IT设备。
机架配电系统:主要作用是机架内的电能分配。
此外,数据中心的供配电系统负责为空调系统、照明系统及其他系统提供电能的分配与输入,从而保证数据中心正常运营。
数据中心空调系统节能技术分析

数据中心空调系统节能技术分析摘要:降低暖通空调运行能耗对降低数据中心能源需求的作用明显。
针对数据中心空调系统能耗比例过高的现状,分析空调系统的特点和高能耗的原因,并对建筑布局与围护结构优化、自然冷却技术、冷热通道封闭、高效冷源和提高冷冻水温度等5种常用的暖通空调节能技术进行分析,从而为数据中心空调系统的综合节能建设与改造提供参考和依据。
关键词:数据中心;暖通空调;高能耗;建筑布局;围护结构优化;自然冷却技术;前言:近年来,随着各个行业信息化发展的不断深入和信息量的爆炸式增长,数据中心建设呈现快速增长趋势,运营商、互联网企业、金融、政府、制造业等各个行业都在规划、建设和改造各自的数据中心。
数据中心建设在负荷密度和可靠性方面面临着极高的要求,研究表明,一般商业建筑能耗为50~110W/㎡,而数据中心的能耗为120~940W/㎡。
并且,数据机房的建设涉及金融、通讯、政府等行业均对数据机房运行时的可靠性、安全性要很高的要求,其中包括环境的温湿度、洁净度的稳定性。
所以,制冷系统设计与选择在数据中心建设中十分重要。
通常,空调系统自身能耗占数据中心总能耗约1/3,是降低能源消耗的关键,具有很大的节能潜力。
因此,研究和优选合理的空调系统节能技术可有效降低数据中心的整体能耗。
1.数据中心空调系统特点分析1.1供冷时间长,送风参数相对稳定。
数据机房负荷主要来自IT设备发热量,IT设备需要全年运行,即使在冬季室外温度较低时,机房模块内仍有制冷需求,要求空调设备长时间供冷。
数据中心围护结构散热量、人员等负荷相对较小,设备全年冷负荷变化不大,因此数据中心空调送风参数比较稳定。
1.2显热大,潜热小。
大部分数据机房为无人值守,室内无散湿源,且新风比例低。
空调设备主要作用为控制室内显热,除湿负荷小,热湿比趋于+∞。
为满足机房室内温湿度要求,空调系统具有送风温差小、送风量大的特点。
2.数据中心空调系统节能技术2.1自然冷却技术数据中心通常都需要常年不间断供冷,常规的制冷系统,室外温度即使是低于或远低于其循环冷冻水温的情况下冷水机组也需要照常运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据中心空调系统节能技术白皮书目录1. 自然冷却节能应用31.1 概述31。
2 直接自然冷却31。
2。
1简易新风自然冷却系统31。
2。
2新风直接自然冷却51。
2。
3 中国一些城市可用于直接自然冷却的气候数据: 8 1.3 间接自然冷却81.3.1间接自然冷却型机房精密空调解决方案81。
3。
2风冷冷水机组间接自然冷却解决方案121。
3.3水冷冷水机组间接自然冷却解决方案151。
3.4 中国一些城市可用于间接自然冷却的气候数据:16 2。
机房空调节能设计172。
1 动态部件172.1。
1 压缩机172.1。
2 风机182.1.3 节流部件192.1.4 加湿器192.2 结构设计212.2.1 冷冻水下送风机组超大面积盘管设计212.2。
2 DX型下送风机组高效后背板设计222。
3 控制节能222。
3.1 主备智能管理222.3。
2 EC风机转速控制232。
3。
3 压差控制管理232.3.4 冷水机组节能控制管理261。
自然冷却节能应用1.1概述随着数据中心规模的不断扩大,服务器热密度的不断增大,数据中心的能耗在能源消耗中所占的比例不断增加。
制冷系统在数据中心的能耗高达40%,而制冷系统中压缩机能耗的比例高达50%。
因此将自然冷却技术引入到数据中心应用,可大幅降低制冷能耗。
自然冷却技术根据应用冷源的方式有可以分为直接自然冷却和间接自然冷却。
直接自然冷却又称为新风自然冷却,直接利用室外低温冷风,作为冷源,引入室内,为数据中心提供免费的冷量;间接自然冷却,利用水(乙二醇水溶液)为媒介,用水泵作为动力,利用水的循环,将数据中心的热量带出到室外侧。
自然冷却技术科根据数据中心规模、所在地理位置、气候条件、周围环境、建筑结构等选择自然冷却方式。
1。
2直接自然冷却直接自然冷却系统根据风箱的结构,一般可分为简易新风自然冷却新风系统和新风自然冷却系统.1.2.1简易新风自然冷却系统1.2。
1。
1简易新风自然冷却系统原理简易新风直接自然冷却系统主要由普通下送风室内机组和新风自然冷却节能风帽模块组成。
节能风帽配置有外部空气过滤器,过滤器上应装配有压差开关,并可以传递信号至控制器,当过滤器发生阻塞时,开关会提示过滤器报警.该节能风帽应具备新风阀及回风阀,可比例调节风阀开度,调节新风比例。
该系统根据检测到的室外温度、室内温度以及系统设定等控制自然冷却的启动与停止。
1。
2。
1。
2简易新风自然冷却系统控制进入自然冷却运行模式的条件:主要根据室外温度及室内设定温度作为进入自然冷却模式的依据。
ASHRAE TC 9。
9—2008建议数据机房温度范围18-27℃,可将机房温度设定为27℃,甚至更高些。
设定的室内温度越高越利于空调机组能效的提高,利用室外新风自然冷却的时间也越长。
简易新风自然冷却系统运行主要有以下模式:1.压缩机模式室外温度不满足自然冷却条件时,系统运行模式为压缩机运行模式。
通过压缩机循环制冷来冷却机房.压缩机模式下,新风阀关闭,排风阀关闭,回风阀打开,仅室内侧气流进行循环。
2.混合运行模式在自然冷却可启动的温度范围内,如果自然冷却提供的冷量不能满足室内需求,机组将通过压缩机循环间歇性工作保证室内温度,此时系统运行模式为混合模式。
混合模式下,新风阀打开,排风阀打开,回风阀关闭,压缩机间歇性工作,室内气流为全新风。
3。
自然冷却模式室外新风风阀打开,排风阀打开,压缩机停止运行。
室内所需的冷量,完全由新风提供.新风风阀及回风风阀的开度在0-100%范围内自动调整.为防止结霜,室外温度低于结霜温度时应停止室外新风直接自然冷却运行模式。
因此,该系统应该设置一个停止自然冷却运行的一个下限温度.1。
2.1。
3简易新风自然冷却系统优势简易新风自然冷却系统,结构简单,控制及操作方便,具有以下优势:1 更加高效节能:利用新风制冷,减少压缩机运行时间,可大幅减少制冷系统能耗;2改造成本低:新风系统简单,只需增加一个风帽组件,并引入新风即可,改造费用低;3 运行成本降低:压缩机能耗在制冷系统中的能耗约占50%,压缩机运行时间减少,能耗降低,运行成本降低;4 适用机型广泛:可使用于风冷、水冷、CW及双冷源等下送风型所有机组;5 要求精密空调机组必须为EC风机,进一步降低机房空调能耗;6 可以一组机组共享一个外部传感器,减少设备配置投资.1.2.1.4简易新风自然冷却系统应用区域简易新风自然冷却适用于中国绝大部分区域。
引入新风环境应避免太阳直射,应考虑灰尘、烟雾、湿度范围、安全、楼层高度等因素。
以应用规模来讲,简易型新风自然冷却系统适用于中小型数据机房。
1。
2。
2新风直接自然冷却1。
2.2。
1新风直接自然冷却系统原理新风直接自然冷却系统主要由室内机组,含新风阀、回风阀及防霜风阀的节能混风箱模块及排风口组成。
当室外新风温度达到启动自然冷却启动设定温度,系统将进入自然冷却运行模式或混合运行模式。
系统根据室外温度及室内回风温度,调节新风阀、回风阀及防霜风阀进行比例调节.直接自然冷却系统可以根据室外温度和机房热负荷的变化自动动态调节,设定的室内回风温度越高,利用室外新风自然冷却的时间越长,由机组的控制器来自动选择控制不同模式的运行(以室内回风温度设定为24℃为例).1。
2.2.2新风直接自然冷却系统控制1。
压缩机制冷模式当室外温度高于24℃时,机组运行方式为:压缩机运行+室内侧风循环室内回风阀完全打开,排风阀关闭,新风阀关闭,此时通过压缩机运行,室内风循环来为机房提供冷量。
2.混合运转模式当室外温度在18℃~24℃范围内时,机组运行方式为:压缩机运行+全新风室内回风阀完全关闭,排风阀打开,新风阀打开,室外此时压缩机间歇运行,降低新风温度,为机房提供冷量。
3.新风自然冷却模式室外温度不高于18℃则系统可以启动自然冷却。
此时压缩机不工作。
室外新风风阀及排风风阀开启,依据室外温度最大可至全开。
回风风阀依据需要的混合的风量调整至相应开度.此时节能效果最显著。
在该模式下,当室外温度达到结霜温度时,防霜风阀开启,进入室内新风先与部分室内回风进行一次混合,将室外冷空气预热,然后再与室内回风进行二次混合,精确控制送风温度。
1。
2。
2.3新风直接自然冷却系统优势但与简易型新风自然冷却系统比起来,新风自然冷却系统初投资更大,但也具备以下优势:1 适用温度范围更加广泛:新风结构增加防霜混风箱等,可以适应更低的室外温度;2 运行成本进一步降低:运行新风自然冷却的时间更长,进一步减少压缩机能耗.3 自然冷却节能效果更佳:相对于间接自然冷却,新风自然冷却无需冷液作为媒介,无需水泵及室外风机的功耗,节能效果更佳显著.1.2。
2.4新风直接自然冷却系统应用区域新风自然冷却适用于中国大部分区域。
新风自然冷却系统应该在数据中心建设之前就考虑该方案,并围绕该制冷解决方案进行数据中心的选址、设计。
选址及设计应考虑灰尘、烟雾、湿度范围、安全、楼层高度等因素。
以应用规模来讲,新风自然冷却系统适用于中大型以及超大型数据机房。
1。
2.3 中国一些城市可用于直接自然冷却的气候数据:1.3。
1。
1间接自然冷却型机房精密空调原理机房空调间接自然冷却系统由室内机组,室外干冷器(或冷却塔)和水泵等组成。
室内机组是在水冷型机组的蒸发盘管上面增加了一套自然冷却冷水盘管。
室外温度较高时,压缩机制冷运转,冷却水在板式换热器内吸热,通过干冷器,(或冷却塔)散热,;在室外温度相对低时,水温达到一定要求时,控制水阀,让部分或全部冷水流经自然冷却冷水盘管,冷却室内部分或全部负荷。
因为制冷剂循环独立于自然冷却水循环,所以该系统具有混合运行模式,即在使用自然冷却的同时,压缩机间歇性运行来保证制冷量的要求。
这样一来提高了使用自然冷却的室外温度范围,产生更大的节能效果。
其实物示意如下图所示:其系统原理示意如下图所示:1。
3。
1。
2间接自然冷却机房精密空调控制该系统跟据室外温度和负载,有机房空调控制器自动进行模式切换,设定的室内回风温度越高利用室外新风自然冷却的时间越长,以室内回风温度设定为27℃为例,在室外气温低于24℃就可以启动自然制冷,进入混合模式运行。
该系统运行模式如下:1。
压缩机模式室外温度高于24℃时,自然冷却水阀关闭,冷凝器水阀开启,机组以压缩机模式运行,为机房提供冷量。
该模式下制冷系统能耗最高.2.混合模式当室外温度在13℃至24℃范围内,机组在混合模式下运行。
此模式,自然冷却盘管水阀开启,冷凝器水阀开启,压缩机循环间隙性工作,干冷器提供的冷水继续为机房提供部分冷量,此时耗电量约在压缩机满载运行时的42~90%之间.混合模式在全年中所占比例较大,可最大程度减少压缩机运行时间。
3.自然冷却模式室外温度低于12℃系统可以实现自然冷却。
此模式下压缩机循环不工作。
通过干冷器来制取冷冻水,为机房提供制冷量,此时节能效果最显著,耗电量是仅为压缩机模式下的21%~37%左右。
1.3。
1。
3间接自然冷却机房精密空调优势间接自然冷却机房空调机组的应用,具备以下优势:1.环境适用性更好:由于无新风制冷,间接自然冷却对室外空气的质量要求降低,适用范围更广;2.节能效果显著:在北方地区,全年可以节约40%的制冷能耗,在广州地区也可以节约12%以上的制冷能耗;3。
安装、设计更加灵活方便:采用水冷方式冷却,管道距离没有限制,干冷器可放在屋顶或地面均可,应用更加方便;4。
解决方案更加可靠:每个机组都有自己的压缩机系统,单个机组的故障不影响其他机组的运行;5。
冗余配置更加经济:室内机组及干冷器采取N+1冗余配置即可,相对于冷水主机系统的1+1或N+1配置,冗余配置成本更低;6。
过滤器维护成本降低:无新风制冷,省去新风过滤器维护成本.1。
3。
1。
4间接自然冷却机房精密空调应用区域间接自然冷却适用于中国大部分区域。
间接自然冷却对室外空气要求降低,适合更复杂的安装环境.以应用规模来讲,机房空调间接自然冷却系统适用于各种规模的数据机房。
1.3。
2风冷冷水机组间接自然冷却解决方案1.3。
2.1风冷冷水机组间接自然冷却原理风冷冷水机组+冷冻水型机房精密空调应用解决方案中,间接自然冷却主要体现在带自然冷却盘管的冷水主机上。
风冷冷水主机利用自然冷却盘管承担部分或者全部室内热负荷.自然冷却盘管同冷凝盘管并排放置合用同一风机.系统运行示意图夏季:采用风冷冷水机组制冷模式运行过渡时期,当环境温度比冷冻水温度低时,可以启动自然冷却系统,自然冷却系统制冷量不足时,风冷冷冻水机组作为补偿冷源运行,从而降低机房能耗。
过渡季节风冷冷水机组运行部分或者停止运行。
冬季:当室外温度低于回水温度,差值到一定程度,风冷冷水机组压缩机可以停止运行,完全采用室外冷空气直接冷却循环冷冻水,对室内机房空调机组供冷。
此时,仅有风机水泵的循环动力耗能,很大程度地达到节能的效果.1.3.2.2风冷冷水机组间接自然冷却控制该系统跟据室外温度和负载,由风冷冷水机组控制器自动进行运行模式的切换,具体运转模式如下:1。