年山东省滨州市中考数学试卷含答案解析(Word版)
2021年山东省滨州市中考数学试卷(a卷)(word版,含解析)

2021年山东省滨州市中考数学试卷(a卷)(word版,含解析) 2021年山东省滨州市中考数学试卷(A卷)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑。
每小题涂对得3分,满分36分。
1.(3分)下列各数中,负数是() A.��(��2)B.��|��2|C.(��2)2D.(��2)02.(3分)下列计算正确的是() A.x2+x3=x5B.x2?x3=x6C.x3÷x2=xD.(2x2)3=6x63.(3分)如图,AB∥CD,∠FGB=154°,FG平分∠EFD,则∠AEF的度数等于()A.26°B.52°C.54°D.77°4.(3分)如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是()A.主视图的面积为4 C.俯视图的面积为3B.左视图的面积为4D.三种视图的面积都是45.(3分)在平面直角坐标系中,将点A(1,��2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,则点B的坐标是() A.(��1,1)B.(3,1)C.(4,��4)D.(4,0)6.(3分)如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD 的大小为()A.60°B.50°C.40°D.20°7.(3分)若8xmy与6x3yn的和是单项式,则(m+n)3的平方根为() A.4B.8C.±4D.±88.(3分)用配方法解一元二次方程x2��4x+1=0时,下列变形正确的是()A.(x��2)2=1B.(x��2)2=5C.(x+2)2=3D.(x��2)2=39.(3分)已知点P(a��3,2��a)关于原点对称的点在第四象限,则a的取值范围在数轴上表示正确的是() A.C.B.D.10.(3分)满足下列条件时,△ABC不是直角三角形的为() A.AB=,BC=4,AC=5B.AB:BC:AC=3:4:5 D.|cosA��|+(tanB��)2=0C.∠A:∠B:∠C=3:4:511.(3分)如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO平分∠BMC.其中正确的个数为()A.4B.3C.2D.112.(3分)如图,在平面直角坐标系中,菱形OABC的边OA在x轴的正半轴上,反比例函数y=(x>0)的图象经过对角线OB的中点D和顶点C.若菱形OABC的面积为12,则k的值为()A.6B.5C.4D.3二、填空题:本大题共8个小题,每小题5分,满分40分。
2023年山东省滨州市中考数学真题(答案解析)

滨州市二〇二三年初中学业水平考试数学试题一、选择题1.【答案】D【解析】根据相反数的定义可得:-3的相反数是3,故选D .2.【答案】A【解析】解:235a a a ⋅=,运算正确,故A 符合题意;()326a a =,原运算错误,故B 不符合题意;333()ab a b =,原运算错误,故C 不符合题意;231a a a÷=,原运算错误,故D 不符合题意;故选A .3.【答案】D 【解析】解:俯视图是从上面看到的图形,应该是:故选:D .4.【答案】A【解析】解:∵一元二次方程2320x x +-=中,1,3,2a b c -==-,∴2498170b ac ∆=-=+=>,∴一元二次方程2320x x +-=有两个不相等的实数根,故选:A .5.【答案】B【解析】解:∵NaOH 溶液呈碱性,则pH 7>,随着加入水的体积的增加,溶液的浓度越来越低,pH 的值则接近7,故选:B .6.【答案】D【解析】解:这组数据中,10出现了4次,故众数为4,平均数为:()178293104910+⨯+⨯+⨯=,方差为()2222121214110S =+⨯+⨯=,故选:D .7.【答案】C【解析】解:根据圆的对称性可知:图中三个阴影部分的面积相等;如图,连接1212,,AO AO O O ,则1212AO AO O O ==,12AO O △是等边三角形,∴1260AO O ∠=︒,弓形1212,,AO AO O O 的面积相等,∴阴影12AO O 的面积=扇形12AO O 的面积21cm 6π=,∴图中三个阴影部分的面积之和2113cm 62ππ=⨯=;故选:C .8.【答案】B【解析】解:如图所示,将ABP 绕点A 逆时针旋转60︒得到ACQ ,∴,60AP AQ PAQ =∠=︒,BP CQ =,AQC APB ∠=∠,∴APQ △是等边三角形,∴PQ AP =,∴以线段,,AP BP CP 为边的三角形,即PCQ △,最小的锐角为PQC ∠,∵104APC ∠=︒,∴76APB ∠=︒∴76AQC APB ∠=∠=︒∴PQC ∠766016=︒-︒=︒,故选:B .二、填空题9.【答案】1-【解析】23231--=-=-,故答案为:1-.10.【解析】解:一块面积为25m的正方形桌布,其边长为,11.【答案】35x ≤<【解析】解:242378x x -≥⎧⎨-<⎩①②,由①得:3x ≥,由②得:5x <,∴不等式组的解集为:35x ≤<;故答案为:35x ≤<12.【答案】()3,3【解析】将ABO 向左平移3个单位长度得到CDE ,()6,3A ,()3,3C ∴,故答案为:()3,3.13.【答案】16【解析】所有可能结果如下表,所有结果共有36种,其中,点数之和等于7的结果有6种,概率为61366=故答案为:16.14.【答案】62︒或118︒【解析】解:如图所示,连接,AC BC ,当点C 在优弧 AB 上时,∵,PA PB 分别与O 相切于,A B 两点∴90∠=∠=︒PAO PBO ,∵56APB ∠=︒.∴360909056124AOB ∠=︒-︒-︒-︒=︒∵ AB AB=,∴1622ACB AOB ∠=∠=︒,当点C '在 AB 上时,∵四边形AC BC '是圆内接四边形,∴180118C C '∠=︒-∠=︒,故答案为:62︒或118︒.15.【答案】2.25m ##2.25米##124米##124m##94米##94m 【解析】解:以池中心为原点,竖直安装的水管为y 轴,与水管垂直的为x 轴建立直角坐标系.由于在距池中心的水平距离为1m 时达到最高,高度为3m ,则设抛物线的解析式为:()()21303y a x x =-+≤≤,代入()3,0求得:34a =-.将a 值代入得到抛物线的解析式为:()()2313034y x x =--+≤≤,令0x =,则9 2.254y ==.故水管长为2.25m .故答案为:2.25m .16.【解析】解:如图所示,过点,A B 分别作,BD AC 的垂线,垂足分别为,N M ,∵四边形ABCD 是矩形,∴BC AD =,∵11,22ABC ABD S AB BC S AB AD =⨯=⨯ ,∴=ABC ABD S S ,∴1122AC BN BD AM ⨯=⨯,∴AM BN =,∵BF AE =,∴Rt Rt AME BNF≌∴ME FN=设ME FN =x=在Rt ,Rt AMB BNA 中,AB BA AM BN=⎧⎨=⎩∴Rt Rt AMB BNA≌∴BM AN =,∴BE ME AF FN-=+∴31x x-=+解得:1x =∴2BM AN ==在Rt ABM 中,AM ==,在Rt AME △中,AE ==∴BF AE ==.三、解答题17.【答案】(1)8人(2)43.2︒(3)9600人(4)见解析【解析】(1)解:此次调查的总人数是2424%100÷=人,所以选项A 中的学生人数是1005624128---=(人);(2)1236043.2100︒⨯=︒,选项D 所对应的扇形圆心角的大小为43.2︒;(3)856150009600100+⨯=;所以估算该县“每天完成书面作业的时间不超过90分钟”的初中学生约有9600人;(4)我的作业时间属于B 选项;从调查结果来看:仅有64%的学生符合“初中书面作业平均完成时间不超过90分钟”,还有36%的学生每天完成书面作业的时间超过了90分钟,所以布置的作业应该精简量少.(答案不唯一,合理即可).18.【答案】244a a -+;1【解析】解:22421244a a a a a a a a -+-⎛⎫÷- ⎪--+⎝⎭()()()()()22221422a a a a a a a a a a ⎡⎤+---=÷-⎢⎥--⎢⎥⎣⎦()()()()222142a a a a a a a a +----=÷-()222244a a a a a a a--=⨯--+()22a =-244a a =-+;∵1216cos6004a a -⎛⎫-⋅+ ⎪⎭︒=⎝,即2430a a -+=,∴原式2=431011a a -++=+=.19.【答案】(1)1y x =-+(2)当120x x <<或120x x <<时,12y y <;当120x x <<时,12y y >(3)1x <-或02x <<【解析】(1)解:将点()1,2B -代入反比例函数m y x =,∴2m =-,∴2y x=-将点()2,A a 代入2y x=-∴()2,1A -,将()2,1A -,()1,2B -代入y kx b =+,得212k b k b +=-⎧⎨-+=⎩解得:11k b =-⎧⎨=⎩,∴1y x =-+(2)∵2y x=-,0k <,∴反比例函数在第二四象限,在每个象限内,y 随x 的增大而增大,∴当120x x <<或120x x <<时,12y y <,当120x x <<时,根据图象可得12y y >,综上所述,当120x x <<或120x x <<时,12y y <;当120x x <<时,12y y >,(3)根据图象可知,()2,1A -,()1,2B -,当m kx b x +>时,1x <-或02x <<.20.【答案】(1)见解析;(2)见解析【解析】(1)如图所示,Rt ABC △即为所求;(2)已知:如图,CD 为Rt ABC △中斜边AB 上的中线,90ACB ∠=︒,求证:12CD AB =.证明:延长CD 并截取DE CD =.∵CD 为AB 边中线,∴BD AD =,∴四边形ACBE 为平行四边形.∵90ACB ∠=︒,∴平行四边形ACBE 为矩形,∴2AB CE CD ==,∴12CD AB =21.【答案】(1)22S x =-+(2)当2x =时,S 的最大值为【解析】(1)解:如图所示,过点A 作AG OC ⊥于点G ,连接AC ,∵顶点A 的坐标为(2,,∴4OA ==,2OG =,AG =∴1cos 2AOG AO ∠==,∴60AOG ∠=︒∵四边形OABC 是菱形,∴30BOC AOB ∠=∠=︒,AC BD ⊥,AO OC =,∴AOC 是等边三角形,∴60ACO ∠=︒,∵DE OB ⊥,∴DE AC ∥,∴60EDO ACO ∠=∠=︒∴EOD △是等边三角形,∴ED OD x==∵DF OB ∥,∴CDF COB ∽,∴DF CD OB CO=∵A (2,,4AO =,则(B ,∴OB ==44x-=∴)4DF x =-∴)213422S x x x =-=-+∴()23042S x x =-+≤≤(2)解:∵()2233222S x x =-+=--+∵302-<,∴当2x =时,S 的值最大,最大值为22.【答案】(1)见解析(2)见解析(3)见解析(4)2DE DF AD =⋅【解析】(1)证明:如图所示,过点D 作,DH AC DG AB ⊥⊥垂足分别为,H G ,∵点E 是ABC 的内心,∴AD 是BAC ∠的角平分线,∵,DH AC DG AB ⊥⊥,∴DG DH =,∵1122ABF ACF S AB DG S AC DH =⋅=⋅ ,,∴::ABF ACF S S AB AC =△△,(2)证明:如图所示,过点A 作AM BC ⊥于点M ,∵1122ABF ACF S BF AM S FC AM =⋅=⋅ ,,∴::ABF ACF S S BF FC =△△,由(1)可得::ABF ACF S S AB AC =△△,∴::AB AC BF CF =;(3)证明:连接,DB DC ,∵ ,AB ABDC DC ==∴,ACF BDF FAC FBD∠=∠∠=∠∴BFD AFC∽∴BF DF AF CF=,∴BF CF AF DF⋅=⋅∵ AC AC=,∴FBA ADC ∠=∠,又BAD DAC ∠=∠,∴ABF ADC △∽△,∴AB AF AD AC=,∴AB AC AD AF ⋅=⋅;∴()2·AB AC AF DF AF AF AF DF ⋅=+⋅=+,∴2AF AB AC BF CF =⋅-⋅,(4)解:如图所示,连接BE ,∵点E 是ABC 的内心,∴BE 是BAC ∠的角平分线,∴ABE FBE ∠=∠,∵CBD CAD BAD ∠=∠=∠,ADB BDF∠=∠∴ABD BFD ∽,∴DB DA DF DB=,∴DB DA DF =⋅,∵1122BED BAE ABE BAC ABC ∠=∠+∠=∠+∠,1122DBE DBC FBE DAC FBE BAC ABC ∠=∠+∠=∠+∠=∠+∠,∴BED DBE ∠=∠,∴DB DE =,∴2DE DA DF =⋅.。
2022年山东省滨州市中考数学试卷(解析版)

2022年山东省滨州市中考数学试卷一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分.1.(3分)(2022•滨州)某市冬季中的一天,中午12时的气温是﹣3℃,经过6小时气温下降了7℃,那么当天18时的气温是()A.10℃B.﹣10℃C.4℃D.﹣4℃2.(3分)(2022•滨州)在物理学中,导体中的电流I跟导体两端的电压U、导体的电阻R 之间有以下关系:I=,去分母得IR=U,那么其变形的依据是()A.等式的性质1B.等式的性质2C.分式的基本性质D.不等式的性质23.(3分)(2022•滨州)如图,在弯形管道ABCD中,若AB∥CD,拐角∠ABC=122°,则∠BCD的大小为()A.58°B.68°C.78°D.122°4.(3分)(2022•滨州)下列计算结果,正确的是()A.(a2)3=a5B.=3C.=2D.cos30°=5.(3分)(2022•滨州)把不等式组中每个不等式的解集在一条数轴上表示出来,正确的为()A.B.C.D.6.(3分)(2022•滨州)一元二次方程2x2﹣5x+6=0的根的情况为()A.无实数根B.有两个不等的实数根C.有两个相等的实数根D.不能判定7.(3分)(2022•滨州)如图,在⊙O中,弦AB、CD相交于点P.若∠A=48°,∠APD =80°,则∠B的大小为()A.32°B.42°C.52°D.62°8.(3分)(2022•滨州)下列命题,其中是真命题的是()A.对角线互相垂直的四边形是平行四边形B.有一个角是直角的四边形是矩形C.对角线互相平分的四边形是菱形D.对角线互相垂直的矩形是正方形9.(3分)(2022•滨州)在同一平面直角坐标系中,函数y=kx+1与y=﹣(k为常数且k ≠0)的图象大致是()A.B.C.D.10.(3分)(2022•滨州)今年我国小麦大丰收,农业专家在某种植片区随机抽取了10株小麦,测得其麦穗长(单位:cm)分别为8,8,6,7,9,9,7,8,10,8,那么这一组数据的方差为()A.1.5B.1.4C.1.3D.1.211.(3分)(2022•滨州)如图,抛物线y=ax2+bx+c与x轴相交于点A(﹣2,0)、B(6,0),与y轴相交于点C,小红同学得出了以下结论:①b2﹣4ac>0;②4a+b=0;③当y>0时,﹣2<x<6;④a+b+c<0.其中正确的个数为()A.4B.3C.2D.112.(3分)(2022•滨州)正方形ABCD的对角线相交于点O(如图1),如果∠BOC绕点O 按顺时针方向旋转,其两边分别与边AB、BC相交于点E、F(如图2),连接EF,那么在点E由B到A的过程中,线段EF的中点G经过的路线是()A.线段B.圆弧C.折线D.波浪线二、填空题:本大题共6个小题,每小题4分,满分24分.13.(4分)(2022•滨州)若二次根式在实数范围内有意义,则x的取值范围为.14.(4分)(2022•滨州)如图,屋顶钢架外框是等腰三角形,其中AB=AC,立柱AD⊥BC,且顶角∠BAC=120°,则∠C的大小为.15.(4分)(2022•滨州)在Rt△ABC中,若∠C=90°,AC=5,BC=12,则sin A的值为.16.(4分)(2022•滨州)若点A(1,y1)、B(﹣2,y2)、C(﹣3,y3)都在反比例函数y =的图象上,则y1、y2、y3的大小关系为.17.(4分)(2022•滨州)若m+n=10,mn=5,则m2+n2的值为.18.(4分)(2022•滨州)如图,在矩形ABCD中,AB=5,AD=10.若点E是边AD上的一个动点,过点E作EF⊥AC且分别交对角线AC、直线BC于点O、F,则在点E移动的过程中,AF+FE+EC的最小值为.三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.19.(8分)(2022•滨州)先化简,再求值:(a+1﹣)÷,其中a=tan45°+()﹣1﹣π0.20.(9分)(2022•滨州)某校为满足学生课外活动的需求,准备开设五类运动项目,分别为A:篮球,B:足球,C:乒乓球,D:羽毛球,E:跳绳.为了解学生的报名情况,现随机抽取八年级部分学生进行调查,并根据调查结果绘制了如下两幅不完整的统计图.请根据以上图文信息回答下列问题:(1)此次调查共抽取了多少名学生?(2)请将此条形统计图补充完整;(3)在此扇形统计图中,项目D所对应的扇形圆心角的大小为;(4)学生小聪和小明各自从以上五类运动项目中任选一项参加活动,请利用画树状图或列表的方法求他俩选择相同项目的概率.21.(9分)(2022•滨州)如图,已知AC为⊙O的直径,直线P A与⊙O相切于点A,直线PD经过⊙O上的点B且∠CBD=∠CAB,连接OP交AB于点M.求证:(1)PD是⊙O的切线;(2)AM2=OM•PM.22.(10分)(2022•滨州)某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y是销售价格x(单位:元)的一次函数.(1)求y关于x的一次函数解析式;(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.23.(10分)(2022•滨州)如图,菱形ABCD的边长为10,∠ABC=60°,对角线AC、BD 相交于点O,点E在对角线BD上,连接AE,作∠AEF=120°且边EF与直线DC相交于点F.(1)求菱形ABCD的面积;(2)求证AE=EF.24.(14分)(2022•滨州)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,连接AC、BC.(1)求线段AC的长;(2)若点P为该抛物线对称轴上的一个动点,当P A=PC时,求点P的坐标;(3)若点M为该抛物线上的一个动点,当△BCM为直角三角形时,求点M的坐标.2022年山东省滨州市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分.1.(3分)(2022•滨州)某市冬季中的一天,中午12时的气温是﹣3℃,经过6小时气温下降了7℃,那么当天18时的气温是()A.10℃B.﹣10℃C.4℃D.﹣4℃【分析】有理数减法法则:减去一个数,等于加上这个数的相反数.【解答】解:﹣3﹣7=﹣10(℃),故选:B.【点评】本题考查了有理数的减法,掌握有理数的减法法则是解答本题的关键.2.(3分)(2022•滨州)在物理学中,导体中的电流I跟导体两端的电压U、导体的电阻R 之间有以下关系:I=,去分母得IR=U,那么其变形的依据是()A.等式的性质1B.等式的性质2C.分式的基本性质D.不等式的性质2【分析】根据等式的基本性质,对原式进行分析即可.【解答】解:将等式I=,去分母得IR=U,实质上是在等式的两边同时乘R,用到的是等式的基本性质2.故选:B.【点评】本题主要考查了等式的基本性质,等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.3.(3分)(2022•滨州)如图,在弯形管道ABCD中,若AB∥CD,拐角∠ABC=122°,则∠BCD的大小为()A.58°B.68°C.78°D.122°【分析】根据平行线的性质得出∠ABC+∠BCD=180°,代入求出即可.【解答】解:∵AB∥CD,∴∠ABC+∠BCD=180°,∵∠ABC=122°,∴∠BCD=180°﹣122°=58°,故选:A.【点评】本题考查了平行线的性质,能熟练地运用平行线的性质定理进行推理是解此题的关键,注意:两直线平行,同旁内角互补.4.(3分)(2022•滨州)下列计算结果,正确的是()A.(a2)3=a5B.=3C.=2D.cos30°=【分析】根据幂的乘方的运算法则对A选项进行判断;利用二次根式的乘法法则对B选项进行判断;根据立方根对C选项进行判断;根据特殊角的三角函数值对D选项进行判断.【解答】解:A.(a2)=a6,所以A选项不符合题意;B.==2,所以B选项不符合题意;C.=2,所以C选项符合题意;D.cos30°=,所以D选项不符合题意;故选:C.【点评】本题考查了特殊角的三角函数值:记住特殊角的三角函数值是解决问题的关键.也考查了幂的乘方与积的乘方.5.(3分)(2022•滨州)把不等式组中每个不等式的解集在一条数轴上表示出来,正确的为()A.B.C.D.【分析】先解出不等式组中的每一个不等式的解集,然后即可写出不等式组的解集,再在数轴上表示出每一个不等式的解集即可.【解答】解:解不等式x﹣3<2x,得x>﹣3,解不等式,得x≤5,故原不等式组的解集是﹣3<x≤5,其解集在数轴上表示如下:故选:C.【点评】本题考查解一元一次不等式组、在数轴上表示不等式组的解集,解答本题的关键是明确解一元一次不等式组的方法,会在数轴上表示不等式组的解集.6.(3分)(2022•滨州)一元二次方程2x2﹣5x+6=0的根的情况为()A.无实数根B.有两个不等的实数根C.有两个相等的实数根D.不能判定【分析】求出判别式Δ=b2﹣4ac,判断其的符号就即可得出结论.【解答】解:∵Δ=(﹣5)2﹣4×2×6=25﹣48=﹣23<0,∴2x2﹣5x+6=0无实数根,故选:A.【点评】本题主要考查了一元二次方程根的判别式,掌握一元二次方程根的判别式Δ<0时,方程无实数根是解决问题的关键.7.(3分)(2022•滨州)如图,在⊙O中,弦AB、CD相交于点P.若∠A=48°,∠APD =80°,则∠B的大小为()A.32°B.42°C.52°D.62°【分析】根据圆周角定理,可以得到∠D的度数,再根据三角形外角的性质,可以求出∠B的度数.【解答】解:∵∠A=∠D,∠A=48°,∴∠D=48°,∵∠APD=80°,∠APD=∠B+∠D,∴∠B=∠APD﹣∠D=80°﹣48°=32°,故选:A.【点评】本题考查圆周角定理、三角形外角的性质,解答本题的关键是求出∠D的度数.8.(3分)(2022•滨州)下列命题,其中是真命题的是()A.对角线互相垂直的四边形是平行四边形B.有一个角是直角的四边形是矩形C.对角线互相平分的四边形是菱形D.对角线互相垂直的矩形是正方形【分析】根据,平行四边形,矩形,菱形,正方形的判定方法一一判断即可.【解答】解:A、对角线互相垂直的四边形是平行四边形,是假命题,本选项不符合题意;B、有一个角是直角的四边形是矩形,是假命题,本选项不符合题意;C、对角线互相平分的四边形是菱形,是假命题,本选项不符合题意;D、对角线互相垂直的矩形是正方形,是真命题,本选项符合题意.故选:D.【点评】本题考查正方形的判定,平行四边形的判定,菱形的判定,矩形的判定等知识,解题的关键是熟练掌握特殊四边形的判定方法,属于中考常考题型.9.(3分)(2022•滨州)在同一平面直角坐标系中,函数y=kx+1与y=﹣(k为常数且k ≠0)的图象大致是()A.B.C.D.【分析】根据一次函数和反比例函数的性质即可判断.【解答】解:当k>0时,则﹣k<0,一次函数y=kx+1图象经过第一、二、三象限,反比例函数图象在第二、四象限,所以A选项正确,C选项错误;当k<0时,一次函数y=kx+1图象经过第一、二,四象限,所以B、D选项错误.故选:A.【点评】本题考查了反比例函数图象:反比例函数y=(k≠0)为双曲线,当k>0时,图象分布在第一、三象限;当k<0时,图象分布在第二、四象限.也考查了一次函数图象.10.(3分)(2022•滨州)今年我国小麦大丰收,农业专家在某种植片区随机抽取了10株小麦,测得其麦穗长(单位:cm)分别为8,8,6,7,9,9,7,8,10,8,那么这一组数据的方差为()A.1.5B.1.4C.1.3D.1.2【分析】先根据算术平均数的定义求出平均数,再根据方差的定义列式计算即可.【解答】解:这一组数据的平均数为×(8+8+6+7+9+9+7+8+10+8)=8,故这一组数据的方差为×[4×(8﹣8)2+(6﹣8)2+2×(7﹣8)2+2×(9﹣8)2+(10﹣8)2]=1.2,故选:D.【点评】本题主要考查方差,解题的关键是掌握算术平均数与方差的定义.11.(3分)(2022•滨州)如图,抛物线y=ax2+bx+c与x轴相交于点A(﹣2,0)、B(6,0),与y轴相交于点C,小红同学得出了以下结论:①b2﹣4ac>0;②4a+b=0;③当y>0时,﹣2<x<6;④a+b+c<0.其中正确的个数为()A.4B.3C.2D.1【分析】根据二次函数的性质和图象中的数据,可以分别判断出各个小题中的结论是否正确,从而可以解答本题.【解答】解:由图象可得,该抛物线与x轴有两个交点,则b2﹣4ac>0,故①正确;∵抛物线y=ax2+bx+c与x轴相交于点A(﹣2,0)、B(6,0),∴该抛物线的对称轴是直线x==2,∴﹣=2,∴b+4a=0,故②正确;由图象可得,当y>0时,x<﹣2或x>6,故③错误;当x=1时,y=a+b+c<0,故④正确;故选:B.【点评】本题考查二次函数图象与系数的关系、二次函数的性质,解答本题的关键是明确题意,利用数形结合的思想解答.12.(3分)(2022•滨州)正方形ABCD的对角线相交于点O(如图1),如果∠BOC绕点O 按顺时针方向旋转,其两边分别与边AB、BC相交于点E、F(如图2),连接EF,那么在点E由B到A的过程中,线段EF的中点G经过的路线是()A.线段B.圆弧C.折线D.波浪线【分析】建立如图平面直角坐标系,设正方形ABCD的边长为1,证明△AOE≌△BOF (ASA),推出AE=BF,设AE=BF=a,则F(a,0),E(0,1﹣a),由题意G(a,﹣a),推出点G在直线y=﹣x+上运动,可得结论.【解答】解:建立如图平面直角坐标系,设正方形ABCD的边长为1,∵四边形ABCD是正方形,∴OAE=∠OBF=45°,OA=OB,∵∠AOB=∠EOF=90°,∴∠AOE=∠BOF,∴△AOE≌△BOF(ASA),∴AE=BF,设AE=BF=a,则F(a,0),E(0,1﹣a),∵EG=FG,∴G(a,﹣a),∴点G在直线y=﹣x+上运动,∴点G的运动轨迹是线段,故选:A.【点评】本题考查正方形的性质,全等三角形的判定和性质等知识,解题的关键是学会构建平面直角坐标系,利用一次函数解决轨迹问题,属于中考选择题中的压轴题.二、填空题:本大题共6个小题,每小题4分,满分24分.13.(4分)(2022•滨州)若二次根式在实数范围内有意义,则x的取值范围为x≥5.【分析】根据二次根式有意义的条件得出x﹣5≥0,求出即可.【解答】解:要使二次根式在实数范围内有意义,必须x﹣5≥0,解得:x≥5,故答案为:x≥5.【点评】本题考查了二次根式有意义的条件和解一元一次不等式,能得出关于x的不等式是解此题的关键.14.(4分)(2022•滨州)如图,屋顶钢架外框是等腰三角形,其中AB=AC,立柱AD⊥BC,且顶角∠BAC=120°,则∠C的大小为30°.【分析】根据等腰三角形的性质和三角形内角和得到∠B=∠C=30°.【解答】解:∵AB=AC且∠BAC=120°,∴∠B=∠C=(180°﹣∠BAC)=×60°=30°.故答案为:30°.【点评】本题考查了等腰三角形的性质,熟练掌握等腰三角形的两个底角相等的性质是解题的关键.15.(4分)(2022•滨州)在Rt△ABC中,若∠C=90°,AC=5,BC=12,则sin A的值为.【分析】根据题意画出图形,进而利用勾股定理得出AB的长,再利用锐角三角函数关系,即可得出答案.【解答】解:如图所示:∵∠C=90°,AC=5,BC=12,∴AB==13,∴sin A=.故答案为:.【点评】此题主要考查了锐角三角三角函数关系以及勾股定理,得出AB的长是解题关键.16.(4分)(2022•滨州)若点A(1,y1)、B(﹣2,y2)、C(﹣3,y3)都在反比例函数y =的图象上,则y1、y2、y3的大小关系为y2<y3<y1.【分析】根据题目中的函数解析式和反比例函数的性质,可以得到y1、y2、y3的大小关系.【解答】解:∵反比例函数y=,∴该函数图象在第一、三象限,在每个象限内,y随x的增大而减小,∵点A(1,y1)、B(﹣2,y2)、C(﹣3,y3)都在反比例函数y=的图象上,∴y2<y3<0<y1,即y2<y3<y1,故答案为:y2<y3<y1.【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数中k>0时,图象在第一、三象限,在每个象限内,y随x的增大而减小,第一象限内的y>0,第三象限内的y<0.17.(4分)(2022•滨州)若m+n=10,mn=5,则m2+n2的值为90.【分析】根据完全平方公式计算即可.【解答】解:∵m+n=10,mn=5,∴m2+n2=(m+n)2﹣2mn=102﹣2×5=100﹣10=90.故答案为:90.【点评】本题考查了完全平方公式以及代数式求值,掌握完全平方公式是解答本题的关键.18.(4分)(2022•滨州)如图,在矩形ABCD中,AB=5,AD=10.若点E是边AD上的一个动点,过点E作EF⊥AC且分别交对角线AC、直线BC于点O、F,则在点E移动的过程中,AF+FE+EC的最小值为+.【分析】如图,过点E作EH⊥BC于点H.利用相似三角形的性质求出FH,EF,设BF =x,则DE=10﹣x﹣=﹣x,因为EF是定值,所以AF+CE的值最小时,AF+EF+CE的值最小,由AF+CE=+,可知欲求AF+CE的最小值相当于在x轴上找一点P(x,0),使得P到A(0,5),B(,5)的距离和最小,如图1中,作点A关于x轴的对称点A′,连接BA′交xz轴于点P,连接AP,此时P A+PB的值最小,最小值为线段A′B的长,由此即可解决问题.【解答】解:如图,过点E作EH⊥BC于点H.∵四边形ABCD是矩形,∴∠B=∠BAD=∠BHE=90°,∴四边形ABHE是矩形,∴EH=AB=5,∵BC=AD=10,∴AC===5,∵EF⊥AC,∴∠COF=90°,∴∠EFH+∠ACB=90°,∵∠BAC+∠ACB=90°,∴∠EFH=∠BAC,∴△EHF∽△CBA,∴==,∴==,∴FH=,EF=,设BF=x,则DE=10﹣x﹣=﹣x,∵EF是定值,∴AF+CE的值最小时,AF+EF+CE的值最小,∵AF+CE=+,∴欲求AF+CE的最小值相当于在x轴上找一点P(x,0),使得P到A(0,5),B(,5)的距离和最小,如图1中,作点A关于x轴的对称点A′,连接BA′交xz轴于点P,连接AP,此时P A+PB的值最小,最小值为线段A′B的长,∵A′(0,﹣5),B(,5),∴A′B==,∴AF+CE的最小值为,∴AF+EF+CE的最小值为+.解法二:过点C作CC′∥EF,使得CC′=EF,连接C′F.∵EF=CC′,EF∥CC′,∴四边形EFC′C是平行四边形,∴EC=FC′,∴AF+EC=AF+FC′≥AC′=,∴AF+EF+CE的最小值为+.故答案为:+.【点评】本题考查轴对称最短问题,相似三角形的判定和性质,勾股定理等知识,解题关键是学会用转化的思想思考问题,属于中考填空题中的压轴题.三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.19.(8分)(2022•滨州)先化简,再求值:(a+1﹣)÷,其中a=tan45°+()﹣1﹣π0.【分析】先将小括号内的式子进行通分计算,然后算括号外面的除法,再利用特殊角的三角函数值,负整数指数幂和零指数幂的运算求出a的值,代入进行计算即可;【解答】解:原式==•=•=,∵a=tan45°+()﹣1﹣π0=1+2﹣1=2,∴当a=2时,原式==0.【点评】本题考查的是分式的化简求值,在解答此类题目时要注意通分及约分的灵活应用.20.(9分)(2022•滨州)某校为满足学生课外活动的需求,准备开设五类运动项目,分别为A:篮球,B:足球,C:乒乓球,D:羽毛球,E:跳绳.为了解学生的报名情况,现随机抽取八年级部分学生进行调查,并根据调查结果绘制了如下两幅不完整的统计图.请根据以上图文信息回答下列问题:(1)此次调查共抽取了多少名学生?(2)请将此条形统计图补充完整;(3)在此扇形统计图中,项目D所对应的扇形圆心角的大小为54°;(4)学生小聪和小明各自从以上五类运动项目中任选一项参加活动,请利用画树状图或列表的方法求他俩选择相同项目的概率.【分析】(1)用D项目的人数除以它所占的百分比得到调查的总人数;(2)先计算出C项目的人数,然后补全条形统计图;(3)用360°乘以D项目人数所占的百分比得到项目D所对应的扇形圆心角的大小;(4)画树状图展示所有25种等可能的结果,找出相同项目的结果数,然后根据概率公式求解.【解答】解:(1)10÷10%=100(名),所以此次调查共抽取了100名学生;(2)C项目的人数为:100﹣20﹣30﹣15﹣10=25(名),条形统计图补充为:(3)在此扇形统计图中,项目D所对应的扇形圆心角为:360°×=54°;故答案为:54°;(4)画树状图为:共有25种等可能的结果,其中相同项目的结果数为5,所以他俩选择相同项目的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.也考查了统计图.21.(9分)(2022•滨州)如图,已知AC为⊙O的直径,直线P A与⊙O相切于点A,直线PD经过⊙O上的点B且∠CBD=∠CAB,连接OP交AB于点M.求证:(1)PD是⊙O的切线;(2)AM2=OM•PM.【分析】(1)先连接OB,然后根据题目中的条件可以得到∠OBD=90°,从而可以证明结论成立;(2)根据题目中的条件和(1)中的结论,可以证明△OAM∽△APM,然后即可得到结论成立.【解答】证明:(1)连接OB,如图所示,∵OB=OC,∴∠OCB=∠OBC,∵AC是⊙O的直径,∴∠CBA=90°,∴∠CAB+∠OCB=90°,∵∠CBD=∠CAB,∴∠CBD+∠OCB=90°,∴∠OBD=90°,∴PD是⊙O的切线;(2)由(1)知PD是⊙O的切线,直线P A与⊙O相切,∴PO垂直平分AB,∴∠AMP=∠ANO=90°,∴∠APM+∠P AM=90°,∵∠OAP=90°,∴∠P AM+∠OAM=90°,∴∠APM=∠OAM,∴△OAM∽△APM,∴,∴AM2=OM•PM.【点评】本题考查相似三角形的判定与性质、切线的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件.22.(10分)(2022•滨州)某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y是销售价格x(单位:元)的一次函数.(1)求y关于x的一次函数解析式;(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.【分析】(1)根据题意利用待定系数法可求得y与x之间的关系;(2)写出利润和x之间的关系是可发现是二次函数,求二次函数的最值问题即.【解答】解:(1)设y=kx+b,把x=20,y=360,和x=30,y=60代入,可得,解得:,∴y=﹣30x+960(10≤x≤32);(2)设每月所获的利润为W元,∴W=(﹣30x+960)(x﹣10)=﹣30(x﹣32)(x﹣10)=﹣30(x2﹣42x+320)=﹣30(x﹣21)2+3630.∴当x=21时,W有最大值,最大值为3630.【点评】主要考查利用函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.注意:数学应用题来源于实践用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,然后再利用二次函数求最值.23.(10分)(2022•滨州)如图,菱形ABCD的边长为10,∠ABC=60°,对角线AC、BD 相交于点O,点E在对角线BD上,连接AE,作∠AEF=120°且边EF与直线DC相交于点F.(1)求菱形ABCD的面积;(2)求证AE=EF.【分析】(1)根据锐角三角函数可以求得BC边上的高,然后根据菱形的面积=底×高,即可求得相应的面积;(2)连接EC,然后可以得到AE=EC,再根据四边形内角和,可以求得∠ECF=∠EFC,然后通过等量代换,即可证明结论成立.【解答】(1)解:作AG⊥BC交BC于点G,如图所示,∵四边形ABCD是菱形,边长为10,∠ABC=60°,∴BC=10,AG=AB•sin60°=10×=5,∴菱形ABCD的面积是:BC•AG=10×5=50,即菱形ABCD的面积是50;(2)证明:连接EC,∵四边形ABCD是菱形,∠ABC=60°,∴EO垂直平分AC,∠BCD=120°,∴EA=EC,∠DCA=60°,∴∠EAC=∠ECA,∠ACF=120°,∵∠AEF=120°,∴∠EAC+∠EFC=360°﹣∠AEF﹣∠ACF=360°﹣120°﹣120°=120°,∵∠ECA+∠ECF=120°,∴∠EFC=∠ECF,∴EC=EF,∴AE=EF.【点评】本题考查菱形的性质、四边形内角和,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.(14分)(2022•滨州)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,连接AC、BC.(1)求线段AC的长;(2)若点P为该抛物线对称轴上的一个动点,当P A=PC时,求点P的坐标;(3)若点M为该抛物线上的一个动点,当△BCM为直角三角形时,求点M的坐标.【分析】(1)根据坐标轴上点的特点求出点A,C的坐标,即可求出答案;(2)设出点P的坐标,利用P A=PC建立方程求解,即可求出答案;(3)分三种情况,利用等腰直角三角形的性质求出前两种情况,利用三垂线构造出相似三角形,得出比例式,建立方程求解,即可求出答案.【解答】解:(1)针对于抛物线y=x2﹣2x﹣3,令x=0,则y=﹣3,∴C(0,﹣3);令y=0,则x2﹣2x﹣3=0,∴x=3或x=﹣1,∵点A在点B的左侧,∴A(﹣1,0),B(3,0),∴AC==;(2)∵抛物线y=x2﹣2x﹣3的对称轴为直线x=﹣=1,∵点P为该抛物线对称轴上,∴设P(1,p),∴P A==,PC==,∵P A=PC,∴=,∴p=﹣1,∴P(1,﹣1);(3)由(1)知,B(3,0),C(0,﹣3),∴OB=OC=3,设M(m,m2﹣2m﹣3),∵△BCM为直角三角形,∴①当∠BCM=90°时,如图1,过点M作MH⊥y轴于H,则HM=m,∵OB=OC,∴∠OCB=∠OBC=45°,∴∠HCM=90°﹣∠OCB=45°,∴∠HMC=45°=∠HCM,∴CH=MH,∵CH=﹣3﹣(m2﹣2m﹣3)=﹣m2+2m,∴﹣m2+2m=m,∴m=0(不符合题意,舍去)或m=1,∴M(1,﹣4);②当∠CBM=90°时,过点M作M'H'⊥x轴,同①的方法得,M'(﹣2,3);③当∠BMC=90°时,如图2,过点M作MD⊥y轴于D,过点B作BE⊥DM,交DM的延长线于E,∴∠CDM=∠E=90°,∴∠DCM+∠DMC=90°,∵∠DMC+∠EMB=90°,∴∠DCM=∠EMB,∴△CDM∽△MEB,∴,∵M(m,m2﹣2m﹣3),B(3,0),C(0,﹣3),∴DM=m,CD=m2﹣2m﹣3+3=m2﹣2m,ME=3﹣m,BE=﹣(m2﹣2m﹣3)=﹣m2+2m+3,∴,∴m=0(舍去)或m=3(点B的横坐标,不符合题意,舍去)或m=(不符合题意,舍去)或m=,∴M(,﹣),即满足条件的M的坐标为(1,﹣4)或(﹣2,3)或(,﹣).【点评】此题是二次函数综合题,主要考查了坐标轴上点的特点,直角三角形的性质,利用方程的思想解决问题是解本题的关键.。
2020年山东省滨州市中考数学试题及参考答案(word解析版)

滨州市2020年初中学生学业水平考试数学试题(满分150分,考试用时120分钟)第Ⅰ卷(选择题共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来.每小题涂对得3分,满分36分.1.下列各式正确的是()A.﹣|﹣5|=5 B.﹣(﹣5)=﹣5 C.|﹣5|=﹣5 D.﹣(﹣5)=52.如图,AB∥CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD的大小为()A.60°B.70°C.80°D.100°3.冠状病毒的直径约为80~120纳米,1纳米=1.0×10﹣9米,若用科学记数法表示110纳米,则正确的结果是()A.1.1×10﹣9米B.1.1×10﹣8米C.1.1×10﹣7米D.1.1×10﹣6米4.在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(4,﹣5)D.(5,﹣4)5.下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为()A.1 B.2 C.3 D.46.如图,点A在双曲线y=上,点B在双曲线y=上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为()A.4 B.6 C.8 D.127.下列命题是假命题的是()A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直的矩形是正方形C.对角线相等的菱形是正方形D.对角线互相垂直且平分的四边形是正方形8.已知一组数据:5,4,3,4,9,关于这组数据的下列描述:①平均数是5,②中位数是4,③众数是4,④方差是4.4,其中正确的个数为()A.1 B.2 C.3 D.49.在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE的长为()A.6 B.9 C.12 D.1510.对于任意实数k,关于x的方程x2﹣(k+5)x+k2+2k+25=0的根的情况为()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法判定11.对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m(am+b)(m为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为()A.3 B.4 C.5 D.612.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,BM与EF相交于点N.若直线BA′交直线CD于点O,BC=5,EN=1,则OD的长为()A.B.C.D.第Ⅱ卷(非选择题共114分)二、填空题:本大题共8个小题.每小题5分,满分40分.13.若二次根式在实数范围内有意义,则x的取值范围为.14.在等腰△ABC中,AB=AC,∠B=50°,则∠A的大小为.15.若正比例函数y=2x的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为.16.如图,⊙O是正方形ABCD的内切圆,切点分别为E、F、G、H,ED与⊙O相交于点M,则sin∠MFG的值为.17.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为.18.若关于x的不等式组无解,则a的取值范围为.19.观察下列各式:a1=,a2=,a3=,a4=,a5=,…,根据其中的规律可得a n=(用含n的式子表示).20.如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为2、、4,则正方形ABCD的面积为.三、解答题:本大题共6个小题,满分74分,解答时请写出必要的演推过程.21.(10分)先化简,再求值:1﹣÷;其中x=cos30°×,y=(π﹣3)0﹣()﹣1.22.(12分)如图,在平面直角坐标系中,直线y=﹣x﹣1与直线y=﹣2x+2相交于点P,并分别与x轴相交于点A、B.(1)求交点P的坐标;(2)求△PAB的面积;(3)请把图象中直线y=﹣2x+2在直线y=﹣x﹣1上方的部分描黑加粗,并写出此时自变量x的取值范围.23.(12分)如图,过▱ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB、BC、CD、DA于点P、M、Q、N.(1)求证:△PBE≌△QDE;(2)顺次连接点P、M、Q、N,求证:四边形PMQN是菱形.24.(13分)某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?25.(13分)如图,AB是⊙O的直径,AM和BN是它的两条切线,过⊙O上一点E作直线DC,分别交AM、BN于点D、C,且DA=DE.(1)求证:直线CD是⊙O的切线;(2)求证:OA2=DE•CE.26.(14分)如图,抛物线的顶点为A(h,﹣1),与y轴交于点B(0,﹣),点F(2,1)为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,﹣3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标.答案与解析第Ⅰ卷(选择题共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来.每小题涂对得3分,满分36分.1.下列各式正确的是()A.﹣|﹣5|=5 B.﹣(﹣5)=﹣5 C.|﹣5|=﹣5 D.﹣(﹣5)=5【知识考点】相反数;绝对值.【思路分析】根据绝对值的性质和相反数的定义对各选项分析判断即可.【解题过程】解:A、∵﹣|﹣5|=﹣5,∴选项A不符合题意;B、∵﹣(﹣5)=5,∴选项B不符合题意;C、∵|﹣5|=5,∴选项C不符合题意;D、∵﹣(﹣5)=5,∴选项D符合题意.故选:D.【总结归纳】此题主要考查相反数的定义以及绝对值的含义和求法,解答此题的关键是要明确一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.如图,AB∥CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD的大小为()A.60°B.70°C.80°D.100°【知识考点】平行线的性质.【思路分析】根据平行线和角平分线的定义即可得到结论.【解题过程】解:∵AB∥CD,∴∠1=∠CPF=55°,∵PF是∠EPC的平分线,∴∠CPE=2∠CPF=110°,∴∠EPD=180°﹣110°=70°,故选:B.【总结归纳】本题考查了平行线的性质以及角平分线的定义,熟练掌握平行线的性质是解题的关键.3.冠状病毒的直径约为80~120纳米,1纳米=1.0×10﹣9米,若用科学记数法表示110纳米,则正确的结果是()A.1.1×10﹣9米B.1.1×10﹣8米C.1.1×10﹣7米D.1.1×10﹣6米【知识考点】科学记数法—表示较小的数.【思路分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解题过程】解:110纳米=110×10﹣9米=1.1×10﹣7米.故选:C.【总结归纳】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(4,﹣5)D.(5,﹣4)【知识考点】点的坐标.【思路分析】直接利用点的坐标特点进而分析得出答案.【解题过程】解:∵在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,∴点M的纵坐标为:﹣4,横坐标为:5,即点M的坐标为:(5,﹣4).故选:D.【总结归纳】此题主要考查了点的坐标,正确掌握第四象限点的坐标特点是解题关键.5.下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为()A.1 B.2 C.3 D.4【知识考点】轴对称图形;中心对称图形.【思路分析】根据轴对称图形与中心对称图形的概念求解.【解题过程】解:线段是轴对称图形,也是中心对称图形;等边三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;圆是轴对称图形,也是中心对称图形;则既是轴对称图形又是中心对称图形的有2个.故选:B.【总结归纳】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.如图,点A在双曲线y=上,点B在双曲线y=上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为()A.4 B.6 C.8 D.12【知识考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;矩形的性质.【思路分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.【解题过程】解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线y=上,∴四边形AEOD的面积为4,∵点B在双曲线线y=上,且AB∥x轴,∴四边形BEOC的面积为12,∴矩形ABCD的面积为12﹣4=8.故选:C.【总结归纳】本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.7.下列命题是假命题的是()A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直的矩形是正方形C.对角线相等的菱形是正方形D.对角线互相垂直且平分的四边形是正方形【知识考点】命题与定理.【思路分析】利用正方形的判定依次判断,可求解.【解题过程】解:A、对角线互相垂直且相等的平行四边形是正方形是真命题,故选项A不合题意;B、对角线互相垂直的矩形是正方形是真命题,故选项B不合题意;C、对角线相等的菱形是正方形是真命题,故选项C不合题意;D、对角线互相垂直且平分的四边形是菱形,即对角线互相垂直且平分的四边形是正方形是假命题,故选项D符合题意;故选:D.【总结归纳】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.已知一组数据:5,4,3,4,9,关于这组数据的下列描述:①平均数是5,②中位数是4,③众数是4,④方差是4.4,其中正确的个数为()A.1 B.2 C.3 D.4【知识考点】算术平均数;中位数;众数;方差.【思路分析】先把数据由小到大排列为3,4,4,5,9,然后根据算术平均数、中位数和众数的定义得到数据的平均数,中位数和众数,再根据方差公式计算数据的方差,然后利用计算结果对各选项进行判断.【解题过程】解:数据由小到大排列为3,4,4,5,9,它的平均数为=5,数据的中位数为4,众数为4,数据的方差=[(3﹣5)2+(4﹣5)2+(4﹣5)2+(5﹣5)2+(9﹣5)2]=4.4.所以A、B、C、D都正确.故选:D.【总结归纳】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,也考查了平均数,中位数和众数的定义.9.在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE的长为()A.6 B.9 C.12 D.15【知识考点】勾股定理;垂径定理.【思路分析】直接根据题意画出图形,再利用垂径定理以及勾股定理得出答案.【解题过程】解:如图所示:∵直径AB=15,∴BO=7.5,∵OC:OB=3:5,∴CO=4.5,∴DC==6,∴DE=2DC=12.故选:C.【总结归纳】此题主要考查了垂径定理和勾股定理,正确得出CO的长是解题关键.10.对于任意实数k,关于x的方程x2﹣(k+5)x+k2+2k+25=0的根的情况为()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法判定【知识考点】根的判别式.【思路分析】先根据根的判别式求出“△”的值,再根据根的判别式的内容判断即可.【解题过程】解:x2﹣(k+5)x+k2+2k+25=0,△=[﹣(k+5)]2﹣4××(k2+2k+25)=﹣k2+6k﹣25=﹣(k﹣3)2﹣16,不论k为何值,﹣(k﹣3)2≤0,即△=﹣(k﹣3)2﹣16<0,所以方程没有实数根,故选:B.【总结归纳】本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键,注意:一元二次方程ax2﹣bx+c=0(a、b、c为常数,a≠0),当△=b2﹣4ac>0时,方程有两个不相等的实数根,当△=b2﹣4ac=0时,方程有两个相等的实数根,当△=b2﹣4ac<0时,方程没有实数根.11.对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m(am+b)(m为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为()A.3 B.4 C.5 D.6【知识考点】二次函数图象与系数的关系.【思路分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解题过程】解:①由图象可知:a>0,c<0,∵﹣=1,∴b=﹣2a<0,∴abc<0,故①错误;②∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,故②正确;③当x=2时,y=4a+2b+c<0,故③错误;④当x=﹣1时,y=a﹣b+c>0,∴3a+c>0,故④正确;⑤当x=1时,y的值最小,此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c≤am2+bm+c,故a+b≤am2+bm,即a+b≤m(am+b),故⑤正确,⑥当x<﹣1时,y随x的增大而减小,故⑥错误,故选:A.【总结归纳】本题考查了二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.12.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,BM与EF相交于点N.若直线BA′交直线CD于点O,BC=5,EN=1,则OD的长为()A.B.C.D.【知识考点】矩形的性质;翻折变换(折叠问题).【思路分析】根据中位线定理可得AM=2,根据折叠的性质和等腰三角形的性质可得A′M=A′N=2,过M点作MG⊥EF于G,可求A′G,根据勾股定理可求MG,进一步得到BE,再根据平行线分线段成比例可求OF,从而得到OD.【解题过程】解:∵EN=1,∴由中位线定理得AM=2,由折叠的性质可得A′M=2,∵AD∥EF,∴∠AMB=∠A′NM,∵∠AMB=∠A′MB,∴∠A′NM=∠A′MB,∴A′N=2,∴A′E=3,A′F=2过M点作MG⊥EF于G,∴NG=EN=1,∴A′G=1,由勾股定理得MG==,∴BE=OF=MG=,∴OF:BE=2:3,解得OF=,∴OD=﹣=.故选:B.【总结归纳】考查了翻折变换(折叠问题),矩形的性质,勾股定理,关键是得到矩形的宽和A′E的长.第Ⅱ卷(非选择题共114分)二、填空题:本大题共8个小题.每小题5分,满分40分.13.若二次根式在实数范围内有意义,则x的取值范围为.【知识考点】二次根式有意义的条件.【思路分析】根据二次根式有意义的条件得出x﹣5≥0,求出即可.【解题过程】解:要使二次根式在实数范围内有意义,必须x﹣5≥0,解得:x≥5,故答案为:x≥5.【总结归纳】本题考查了二次根式有意义的条件和解一元一次不等式,能得出关于x的不等式是解此题的关键.14.在等腰△ABC中,AB=AC,∠B=50°,则∠A的大小为.【知识考点】等腰三角形的性质.【思路分析】根据等腰三角形两底角相等可求∠C,再根据三角形内角和为180°列式进行计算即可得解.【解题过程】解:∵AB=AC,∠B=50°,∴∠C=∠B=50°,∴∠A=180°﹣2×50°=80°.故答案为:80°.【总结归纳】本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等的性质.15.若正比例函数y=2x的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为.【知识考点】反比例函数与一次函数的交点问题.【思路分析】当y=2时,即y=2x=2,解得:x=1,故该点的坐标为(1,2),将(1,2)代入反比例函数表达式y=,即可求解.【解题过程】解:当y=2时,即y=2x=2,解得:x=1,故该点的坐标为(1,2),将(1,2)代入反比例函数表达式y=并解得:k=2,故答案为:y=.【总结归纳】本题考查的是反比例函数与一次函数的交点问题,解题的关键是通过正比例函数确定交点的坐标,进而求解.16.如图,⊙O是正方形ABCD的内切圆,切点分别为E、F、G、H,ED与⊙O相交于点M,则sin∠MFG的值为.【知识考点】正方形的性质;圆周角定理;切线长定理;正多边形和圆;解直角三角形.【思路分析】根据同弧所对的圆周角相等,可以把求三角函数的问题,转化为直角三角形的边的比的问题.【解题过程】解:∵⊙O是正方形ABCD的内切圆,∴AE=AB,EG=BC;根据圆周角的性质可得:∠MFG=∠MEG.∵sin∠MFG=sin∠MEG==,∴sin∠MFG=.故答案为:.【总结归纳】本题考查圆周角的性质及锐角三角函数的概念:在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.17.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为.【知识考点】三角形三边关系;列表法与树状图法.【思路分析】利用完全列举法展示所有可能的结果数,再利用三角形三边的关系得到组成三角形的结果数,然后根据概率公式计算.【解题过程】解:3,5,8,10,13,从中任取三根,所有情况为:3、5、8;3、5、10;3、5、13;3、8、10;3、8、13;3,10,13;5、8、10;5、8、13;5、10、13;8、10、13;共有10种等可能的结果数,其中可以组成三角形的结果数为4,所以可以组成三角形的概率==.故答案为.【总结归纳】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了三角形三边的关系.18.若关于x的不等式组无解,则a的取值范围为.【知识考点】解一元一次不等式组.【思路分析】分别求出每一个不等式的解集,根据口诀:大大小小无解了可得答案.【解题过程】解:解不等式x﹣a>0,得:x>2a,解不等式4﹣2x≥0,得:x≤2,∵不等式组无解,∴2a≥2,解得a≥1,故答案为:a≥1.【总结归纳】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.观察下列各式:a1=,a2=,a3=,a4=,a5=,…,根据其中的规律可得a n=(用含n的式子表示).【知识考点】列代数式;规律型:数字的变化类.【思路分析】观察发现,每一项都是一个分数,分母依次为3、5、7,…,那么第n项的分母是2n+1;分子依次为2,3,10,15,26,…,变化规律为:奇数项的分子是n2+1,偶数项的分子是n2﹣1,即第n项的分子是n2+(﹣1)n+1;依此即可求解.【解题过程】解:由分析可得a n=.故答案为:.【总结归纳】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.20.如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为2、、4,则正方形ABCD的面积为.【知识考点】全等三角形的判定与性质;勾股定理的逆定理;正方形的性质;旋转的性质.【思路分析】如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM于H.首先证明∠PMC=90°,推出∠CMB=∠APB=135°,推出A,P,M共线,利用勾股定理求出AB2即可.【解题过程】解:如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH ⊥PM于H.∵BP=BM=,∠PBM=90°,∴PM=PB=2,∵PC=4,PA=CM=2,∴PC2=CM2+PM2,∴∠PMC=90°,∵∠BPM=∠BMP=45°,∴∠CMB=∠APB=135°,∴∠APB+∠BPM=180°,∴A,P,M共线,∵BH⊥PM,∴PH=HM,∴BH=PH=HM=1,∴AH=2+1,∴AB2=AH2+BH2=(2+1)2+12=14+4,∴正方形ABCD的面积为14+4.故答案为14+4.【总结归纳】本题考查旋转的性质,全等三角形的判定和性质,正方形的性质,解直角三角形等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题.三、解答题:本大题共6个小题,满分74分,解答时请写出必要的演推过程.21.(10分)先化简,再求值:1﹣÷;其中x=cos30°×,y=(π﹣3)0﹣()﹣1.【知识考点】实数的运算;分式的化简求值;零指数幂;负整数指数幂;特殊角的三角函数值.【思路分析】直接利用分式的混合运算法则化简,再计算x,y的值,进而代入得出答案.【解题过程】解:原式=1﹣÷=1+•=1+==,∵x=cos30°×=×2=3,y=(π﹣3)0﹣()﹣1=1﹣3=﹣2,∴原式==0.【总结归纳】此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.22.(12分)如图,在平面直角坐标系中,直线y=﹣x﹣1与直线y=﹣2x+2相交于点P,并分别与x轴相交于点A、B.(1)求交点P的坐标;(2)求△PAB的面积;(3)请把图象中直线y=﹣2x+2在直线y=﹣x﹣1上方的部分描黑加粗,并写出此时自变量x的取值范围.【知识考点】一次函数的性质;两条直线相交或平行问题.【思路分析】(1)解析式联立,解方程组即可求得交点P的坐标;(2)求得A、B的坐标,然后根据三角形面积公式求得即可;(3)根据图象求得即可.【解题过程】解:(1)由解得,∴P(2,﹣2);(2)直线y=﹣x﹣1与直线y=﹣2x+2中,令y=0,则﹣x﹣1=0与﹣2x+2=0,解得x=﹣2与x=1,∴A(﹣2,0),B(1,0),∴AB=3,∴S△PAB===3;(3)如图所示:自变量x的取值范围是x<2.【总结归纳】本题考查了两条直线平行或相交问题,两条直线的交点坐标是两条直线的解析式构成的方程组的解.23.(12分)如图,过▱ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB、BC、CD、DA于点P、M、Q、N.(1)求证:△PBE≌△QDE;(2)顺次连接点P、M、Q、N,求证:四边形PMQN是菱形.【知识考点】全等三角形的判定与性质;平行四边形的性质;菱形的判定.【思路分析】(1)由ASA证△PBE≌△QDE即可;(2)由全等三角形的性质得出EP=EQ,同理△BME≌△DNE(ASA),得出EM=EN,证出四边形PMQN是平行四边形,由对角线PQ⊥MN,即可得出结论.【解题过程】(1)证明:∵四边形ABD是平行四边形,∴EB=ED,AB∥CD,∴∠EBP=∠EDQ,在△PBE和△QDE中,,∴△PBE≌△QDE(ASA);(2)证明:如图所示:∵△PBE≌△QDE,∴EP=EQ,同理:△BME≌△DNE(ASA),∴EM=EN,∴四边形PMQN是平行四边形,∵PQ⊥MN,∴四边形PMQN是菱形.【总结归纳】本题考查了平行四边形的判定与性质,菱形的判定,全等三角形的判定与性质;熟练掌握菱形的判定和平行四边形的判定与性质,证明三角形全等是解题的关键.24.(13分)某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?【知识考点】一元二次方程的应用;二次函数的应用.【思路分析】(1)由月销售量=500﹣(销售单价﹣50)×10,可求解;(2)设每千克水果售价为x元,由利润=每千克的利润×销售的数量,可列方程,即可求解;(3)设每千克水果售价为m元,获得的月利润为y元,由利润=每千克的利润×销售的数量,可得y与x的关系式,有二次函数的性质可求解.【解题过程】解:(1)当售价为55元/千克时,每月销售水果=500﹣10×(55﹣50)=450千克;(2)设每千克水果售价为x元,由题意可得:8750=(x﹣40)[500﹣10(x﹣50)],解得:x1=65,x2=75,答:每千克水果售价为65元或75元;(3)设每千克水果售价为m元,获得的月利润为y元,由题意可得:y=(m﹣40)[500﹣10(m﹣50)]=﹣10(m﹣70)2+9000,∴当m=70时,y有最大值为9000元,答:当每千克水果售价为70元时,获得的月利润最大值为9000元.【总结归纳】本题主要考查二次函数的应用,解题的关键是熟练掌握销售问题中关于销售总利润的相等关系,并据此列出函数解析式及熟练掌握二次函数的性质.25.(13分)如图,AB是⊙O的直径,AM和BN是它的两条切线,过⊙O上一点E作直线DC,分别交AM、BN于点D、C,且DA=DE.(1)求证:直线CD是⊙O的切线;(2)求证:OA2=DE•CE.【知识考点】圆周角定理;切线的判定与性质;相似三角形的判定与性质.【思路分析】(1)连接OD,OE,证明△OAD≌△OED,得∠OAD=∠OED=90°,进而得CD 是切线;(2)过D作DF⊥BC于点F,得四边形ABFD为矩形,得DF=20A,再证明CF=CE﹣DE,进而根据勾股定理得结论.【解题过程】解:(1)连接OD,OE,如图1,在△OAD和△OED中,,∴△OAD≌△OED(SSS),∴∠OAD=∠OED,∵AM是⊙O的切线,∴∠OAD=90°,∴∠OED=90°,∴直线CD是⊙O的切线;(2)过D作DF⊥BC于点F,如图2,则∠DFB=∠RFC=90°,∵AM、BN都是⊙O的切线,∴∠ABF=∠BAD=90°,∴四边形ABFD是矩形,∴DF=AB=2OA,AD=BF,∵CD是⊙O的切线,∴DE=DA,CE=CB,∴CF=CB﹣BF=CE﹣DE,∵DE2=CD2﹣CF2,∴4OA2=(CE+DE)2﹣(CE﹣DE)2,即4OA2=4DE•CE,∴OA2=DE•CE.【总结归纳】本题主要考查了圆的切线的性质与判定,勾股定理,矩形的性质与判定,全等三角形的性质与判定,关键是正确作辅助线构造全等三角形与直角三角形.26.(14分)如图,抛物线的顶点为A(h,﹣1),与y轴交于点B(0,﹣),点F(2,1)为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,﹣3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标.【知识考点】二次函数综合题.【思路分析】(1)由题意抛物线的顶点A(2,﹣1),可以假设抛物线的解析式为y=a(x﹣2)2﹣1,把点B坐标代入求出a即可.(2)由题意P(m,m2﹣m﹣),求出d2,PF2(用m表示)即可解决问题.(3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.因为△DFQ的周长=DF+DQ+FQ,DF是定值==2,推出DQ+QF的值最小时,△DFQ的周长最小,再根据垂线段最短解决问题即可.【解题过程】(1)解:由题意抛物线的顶点A(2,﹣1),可以假设抛物线的解析式为y=a(x ﹣2)2﹣1,∵抛物线经过B(0,﹣),∴﹣=4a﹣1,∴a=,∴抛物线的解析式为y=(x﹣2)2﹣1.(2)证明:∵P(m,n),∴n=(m﹣2)2﹣1=m2﹣m﹣,∴P(m,m2﹣m﹣),∴d=m2﹣m﹣﹣(﹣3)=m2﹣m+,∵F(2,1),∴PF==,∵d2=m4﹣m3+m2﹣m+,PF2=m4﹣m3+m2﹣m+,∴d2=PF2,∴PF=d.(3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.∵△DFQ的周长=DF+DQ+FQ,DF是定值==2,∴DQ+QF的值最小时,△DFQ的周长最小,∵QF=QH,∴DQ+DF=DQ+QH,根据垂线段最短可知,当D,Q,H共线时,DQ+QH的值最小,此时点H与N重合,点Q在线段DN上,∴DQ+QH的最小值为3,∴△DFQ的周长的最小值为2+3,此时Q(4,﹣)【总结归纳】本题属于二次函数综合题,考查了待定系数法,两点间距离公式,垂线段最短等知识,解题的关键是学会利用参数解决问题,学会用转化的思想思考问题,属于中考常考题型.。
山东省滨州市2022年中考数学真题试题(含解析)

C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等
答案:D,解析:∵AO,BO分别是∠BAC、∠ABD的平分线,∴∠BAO=∠CAO,∠ABO=∠DBO.∵AC∥BD,∴∠CAB+∠ABD=180°.因此∠BAO、∠CAO中的任一角与∠ABO、∠DBO中任一角的和都是90°.因此A、B、C正确,D项错误.
A.22x=16(27-x)B.16x=22(27-x)
C.2×16x=22(27-x)D.2×22x=16(27-x)
答案:D,解析:x名工人可生产螺栓22x个,(27-x)名工人可生产螺母16(27-x)个,由于螺栓数目的2倍与螺母数目相等,因此2×22x=16(27-x).
10.〔2022山东滨州〕假设点M(-7,m)、N(-8,n)都是函数y=-(k2+2k+4)x+1〔k为常数〕的图象上,那么m和n的大小关系是
4.〔2022山东滨州〕以下计算:〔1〕( )2=2,〔2〕 =2,〔3〕( )2=12,〔4〕 ,其中结果正确的个数为
A.1B.2C.3D.4
答案:D,解析:〔1〕根据“ 〞可知( )2=2成立;〔2〕根据“ 〞可知 =2成立;〔3〕根据“(ab)2=a2b2”可知,计算( )2,可将-2和 分别平方后,再相乘.所以这个结论正确;〔4〕根据“(a+b)(a-b)=a2-b2”, = =2-3=-1.
A.4B.3C.2D.1
答案:B,解析:①过点P分 别作OA、OB的垂线段,由于∠PEO=∠PFO=90°,因此∠AOB与∠EPF互补,由“∠MPN与∠AOB互补〞,可得∠MPN=∠EPF,可得∠MPE=∠NPF.②③根据“角平分线上一点到角两边距离相等〞,可证PE=PF.即可证得Rt△PME≌Rt△PNF;因此对于结论〔1〕,“PM=PN〞由全等即可证得是成立的;结论〔2〕,也可以有全等得到ME=NF,即可证得OM+ON=OE+OF,由于OE+OF保持不变,因此OM+ON的值也保持不变;结论〔3〕,由“Rt△PME≌Rt△PNF〞可得这两个三角形的面积相等,因此四边形PMON的面积与四边形PEOF的面积始终相等,因此结论〔3〕是正确的;结论〔4〕,对于△PMN与△PEF,这两个三角形都是 等腰三角形,且顶角相等,但由于腰长不等,因此这两个三角形不可能全等,所以底边MN与EF不可能相等.所以MN的长是变化的.
山东省滨州市中考数学真题及答案

山东省滨州市中考数学真题及答案一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分.1.(3分)下列各式正确的是()A.﹣|﹣5|=5 B.﹣(﹣5)=﹣5 C.|﹣5|=﹣5 D.﹣(﹣5)=5 2.(3分)如图,AB∥CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD的大小为()A.60°B.70°C.80°D.100°3.(3分)冠状病毒的直径约为80~120纳米,1纳米=1.0×10﹣9米,若用科学记数法表示110纳米,则正确的结果是()A.1.1×10﹣9米B.1.1×10﹣8米C.1.1×10﹣7米D.1.1×10﹣6米4.(3分)在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(4,﹣5)D.(5,﹣4)5.(3分)下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为()A.1 B.2 C.3 D.46.(3分)如图,点A在双曲线y=4x 上,点B在双曲线y=12x上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为()A.4 B.6 C.8 D.127.(3分)下列命题是假命题的是()A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直的矩形是正方形C.对角线相等的菱形是正方形D.对角线互相垂直且平分的四边形是正方形8.(3分)已知一组数据:5,4,3,4,9,关于这组数据的下列描述:①平均数是5,②中位数是4,③众数是4,④方差是4.4,其中正确的个数为()A.1 B.2 C.3 D.49.(3分)在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE的长为()A.6 B.9 C.12 D.15x2﹣(k+5)x+k2+2k+25=0的根的情况为()10.(3分)对于任意实数k,关于x的方程12A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法判定11.(3分)对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m (am+b)(m为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为()A.3 B.4 C.5 D.612.(3分)如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,BM与EF相交于点N.若直线BA′交直线CD 于点O,BC=5,EN=1,则OD的长为()A .12√3B .13√3C .14√3D .15√3二、填空题:本大题共8个小题.每小题5分,满分40分.13.(5分)若二次根式√x −5在实数范围内有意义,则x 的取值范围为 . 14.(5分)在等腰△ABC 中,AB =AC ,∠B =50°,则∠A 的大小为 .15.(5分)若正比例函数y =2x 的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为 .16.(5分)如图,⊙O 是正方形ABCD 的内切圆,切点分别为E 、F 、G 、H ,ED 与⊙O 相交于点M ,则sin ∠MFG 的值为 .17.(5分)现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为 .18.(5分)若关于x 的不等式组{12x −a >0,4−2x ≥0无解,则a 的取值范围为 .19.(5分)观察下列各式:a 1=23,a 2=35,a 3=107,a 4=159,a 5=2611,…,根据其中的规律可得a n= (用含n 的式子表示).20.(5分)如图,点P 是正方形ABCD 内一点,且点P 到点A 、B 、C 的距离分别为2√3、√2、4,则正方形ABCD 的面积为 .三、解答题:本大题共6个小题,满分74分,解答时请写出必要的演推过程.21.(10分)先化简,再求值:1−y−xx+2y ÷x2−y2x2+4xy+4y2;其中x=cos30°×√12,y=(π﹣3)0﹣(13)﹣1.22.(12分)如图,在平面直角坐标系中,直线y=−12x﹣1与直线y=﹣2x+2相交于点P,并分别与x轴相交于点A、B.(1)求交点P的坐标;(2)求△PAB的面积;(3)请把图象中直线y=﹣2x+2在直线y=−12x﹣1上方的部分描黑加粗,并写出此时自变量x的取值范围.23.(12分)如图,过▱ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB、BC、CD、DA于点P、M、Q、N.(1)求证:△PBE≌△QDE;(2)顺次连接点P、M、Q、N,求证:四边形PMQN是菱形.24.(13分)某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?25.(13分)如图,AB是⊙O的直径,AM和BN是它的两条切线,过⊙O上一点E作直线DC,分别交AM、BN于点D、C,且DA=DE.(1)求证:直线CD是⊙O的切线;(2)求证:OA2=DE•CE.),点F(2,1)为26.(14分)如图,抛物线的顶点为A(h,﹣1),与y轴交于点B(0,−12其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,﹣3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标.2020年山东省滨州市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分.1.(3分)下列各式正确的是()A.﹣|﹣5|=5 B.﹣(﹣5)=﹣5 C.|﹣5|=﹣5 D.﹣(﹣5)=5 【解答】解:A、∵﹣|﹣5|=﹣5,∴选项A不符合题意;B、∵﹣(﹣5)=5,∴选项B不符合题意;C、∵|﹣5|=5,∴选项C不符合题意;D、∵﹣(﹣5)=5,∴选项D符合题意.故选:D.2.(3分)如图,AB∥CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD的大小为()A.60°B.70°C.80°D.100°【解答】解:∵AB∥CD,∴∠1=∠CPF=55°,∵PF是∠EPC的平分线,∴∠CPE=2∠CPF=110°,∴∠EPD=180°﹣110°=70°,故选:B.3.(3分)冠状病毒的直径约为80~120纳米,1纳米=1.0×10﹣9米,若用科学记数法表示110纳米,则正确的结果是()A.1.1×10﹣9米B.1.1×10﹣8米C.1.1×10﹣7米D.1.1×10﹣6米【解答】解:110纳米=110×10﹣9米=1.1×10﹣7米.故选:C.4.(3分)在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(4,﹣5)D.(5,﹣4)【解答】解:∵在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,∴点M的纵坐标为:﹣4,横坐标为:5,即点M的坐标为:(5,﹣4).故选:D.5.(3分)下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为()A.1 B.2 C.3 D.4【解答】解:线段是轴对称图形,也是中心对称图形;等边三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;圆是轴对称图形,也是中心对称图形;则既是轴对称图形又是中心对称图形的有2个.故选:B.6.(3分)如图,点A在双曲线y=4x 上,点B在双曲线y=12x上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为()A.4 B.6 C.8 D.12【解答】解:过A点作AE⊥y轴,垂足为E,上,∵点A在双曲线y=4x∴四边形AEOD的面积为4,上,且AB∥x轴,∵点B在双曲线线y=12x∴四边形BEOC的面积为12,∴矩形ABCD的面积为12﹣4=8.故选:C.7.(3分)下列命题是假命题的是()A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直的矩形是正方形C.对角线相等的菱形是正方形D.对角线互相垂直且平分的四边形是正方形【解答】解:A、对角线互相垂直且相等的平行四边形是正方形是真命题,故选项A不合题意;B、对角线互相垂直的矩形是正方形是真命题,故选项B不合题意;C、对角线相等的菱形是正方形是真命题,故选项C不合题意;D、对角线互相垂直且平分的四边形是菱形,即对角线互相垂直且平分的四边形是正方形是假命题,故选项D符合题意;故选:D.8.(3分)已知一组数据:5,4,3,4,9,关于这组数据的下列描述:①平均数是5,②中位数是4,③众数是4,④方差是4.4,其中正确的个数为()A.1 B.2 C.3 D.4【解答】解:数据由小到大排列为3,4,4,5,9,=5,它的平均数为3+4+4+5+95数据的中位数为4,众数为4,数据的方差=1[(3﹣5)2+(4﹣5)2+(4﹣5)2+(5﹣5)2+(9﹣5)2]=4.4.5所以A、B、C、D都正确.故选:D.9.(3分)在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE的长为()A.6 B.9 C.12 D.15【解答】解:如图所示:∵直径AB=15,∴BO=7.5,∵OC:OB=3:5,∴CO=4.5,∴DC=√DO2−CO2=6,∴DE=2DC=12.故选:C.x2﹣(k+5)x+k2+2k+25=0的根的情况为()10.(3分)对于任意实数k,关于x的方程12A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法判定x2﹣(k+5)x+k2+2k+25=0,【解答】解:12×(k2+2k+25)=﹣k2+6k﹣25=﹣(k﹣3)2﹣16, △=[﹣(k+5)]2﹣4×12不论k为何值,﹣(k﹣3)2≤0,即△=﹣(k﹣3)2﹣16<0,所以方程没有实数根,故选:B.11.(3分)对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m (am+b)(m为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为()A.3 B.4 C.5 D.6【解答】解:①由图象可知:a>0,c<0,=1,∵−b2a∴b=﹣2a<0,∴abc<0,故①错误;②∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,故②正确;③当x=2时,y=4a+2b+c<0,故③错误;④当x=﹣1时,y=a﹣b+c>0,∴3a+c>0,故④正确;⑤当x=1时,y的值最小,此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c≤am2+bm+c,故a+b≤am2+bm,即a+b≤m(am+b),故⑤正确,⑥当x<﹣1时,y随x的增大而减小,故⑥错误,故选:A.12.(3分)如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,BM与EF相交于点N.若直线BA′交直线CD 于点O,BC=5,EN=1,则OD的长为()A.12√3B.13√3C.14√3D.15√3【解答】解:∵EN=1,∴由中位线定理得AM=2,由折叠的性质可得A′M=2,∵AD∥EF,∴∠AMB=∠A′NM,∵∠AMB=∠A′MB,∴∠A′NM=∠A′MB,∴A′N=2,∴A′E=3,A′F=2过M点作MG⊥EF于G,∴NG=EN=1,∴A′G=1,由勾股定理得MG=√22−12=√3, ∴BE=OF=MG=√3,∴OF:BE=2:3,解得OF=2√33,∴OD=√3−2√33=√33.故选:B.二、填空题:本大题共8个小题.每小题5分,满分40分.13.(5分)若二次根式√x−5在实数范围内有意义,则x的取值范围为x≥5 .【解答】解:要使二次根式√x−5在实数范围内有意义,必须x﹣5≥0,解得:x≥5,故答案为:x≥5.14.(5分)在等腰△ABC中,AB=AC,∠B=50°,则∠A的大小为80°.【解答】解:∵AB=AC,∠B=50°,∴∠C=∠B=50°,∴∠A=180°﹣2×50°=80°.故答案为:80°.15.(5分)若正比例函数y=2x的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为y=2x.【解答】解:当y=2时,即y=2x=2,解得:x=1,故该点的坐标为(1,2),将(1,2)代入反比例函数表达式y=kx并解得:k=2,故答案为:y=2x.16.(5分)如图,⊙O是正方形ABCD的内切圆,切点分别为E、F、G、H,ED与⊙O相交于点M,则sin∠MFG的值为√55.【解答】解:∵⊙O是正方形ABCD的内切圆,∴AE=12AB,EG=BC;根据圆周角的性质可得:∠MFG=∠MEG.∵sin∠MFG=sin∠MEG=DGDE =√55,∴sin∠MFG=√55.故答案为:√55.17.(5分)现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为 25 .【解答】解:3,5,8,10,13,从中任取三根,所有情况为:3、5、8;3、5、10;3、5、13;3、8、10;3、8、13;3,10,13;5、8、10;5、8、13;5、10、13;8、10、13; 共有10种等可能的结果数,其中可以组成三角形的结果数为4,所以可以组成三角形的概率=410=25. 故答案为25.18.(5分)若关于x 的不等式组{12x −a >0,4−2x ≥0无解,则a 的取值范围为 a ≥1 .【解答】解:解不等式12x ﹣a >0,得:x >2a , 解不等式4﹣2x ≥0,得:x ≤2, ∵不等式组无解, ∴2a ≥2, 解得a ≥1, 故答案为:a ≥1.19.(5分)观察下列各式:a 1=23,a 2=35,a 3=107,a 4=159,a 5=2611,…,根据其中的规律可得a n={n 2+12n+1(n 为奇数)n 2−12n+1(n 为偶数)(用含n 的式子表示).【解答】解:由分析可得a n ={n 2+12n+1(n 为奇数)n 2−12n+1(n 为偶数).故答案为:{n 2+12n+1(n 为奇数)n 2−12n+1(n 为偶数).20.(5分)如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为2√3、√2、4,则正方形ABCD的面积为14+4√3.【解答】解:如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM于H.∵BP=BM=√2,∠PBM=90°,∴PM=√2PB=2,∵PC=4,PA=CM=2√3,∴PC2=CM2+PM2,∴∠PMC=90°,∵∠BPM=∠BMP=45°,∴∠CMB=∠APB=135°,∴∠APB+∠BPM=180°,∴A,P,M共线,∵BH⊥PM,∴PH=HM,∴BH=PH=HM=1,∴AH=2√3+1,∴AB2=AH2+BH2=(2√3+1)2+12=14+4√3,∴正方形ABCD的面积为14+4√3.故答案为14+4√3.三、解答题:本大题共6个小题,满分74分,解答时请写出必要的演推过程.21.(10分)先化简,再求值:1−y−xx+2y ÷x 2−y 2x 2+4xy+4y 2;其中x =cos30°×√12,y =(π﹣3)﹣(13)﹣1.【解答】解:原式=1−y−x x+2y÷(x+y)(x−y)(x+2y)2=1+x−yx+2y •(x+2y)2(x+y)(x−y) =1+x+2y x+y =x+y+x+2yx+y=2x+3y x+y,∵x =cos30°×√12=√32×2√3=3,y =(π﹣3)0﹣(13)﹣1=1﹣3=﹣2,∴原式=2×3+3×(−2)3−2=0.22.(12分)如图,在平面直角坐标系中,直线y =−12x ﹣1与直线y =﹣2x +2相交于点P ,并分别与x 轴相交于点A 、B . (1)求交点P 的坐标; (2)求△PAB 的面积;(3)请把图象中直线y =﹣2x +2在直线y =−12x ﹣1上方的部分描黑加粗,并写出此时自变量x 的取值范围.【解答】解:(1)由{y =−12x −1y =−2x +2解得{x =2y =−2,∴P (2,﹣2);(2)直线y =−12x ﹣1与直线y =﹣2x +2中,令y =0,则−12x ﹣1=0与﹣2x +2=0, 解得x =﹣2与x =1,∴A (﹣2,0),B (1,0), ∴AB =3,∴S △PAB =12AB ⋅|y P |=12×3×2=3;(3)如图所示:自变量x 的取值范围是x <2.23.(12分)如图,过▱ABCD 对角线AC 与BD 的交点E 作两条互相垂直的直线,分别交边AB 、BC 、CD 、DA 于点P 、M 、Q 、N .(1)求证:△PBE ≌△QDE ;(2)顺次连接点P 、M 、Q 、N ,求证:四边形PMQN 是菱形.【解答】(1)证明:∵四边形ABD 是平行四边形, ∴EB =ED ,AB ∥CD , ∴∠EBP =∠EDQ ,在△PBE 和△QDE 中,{∠EBP =∠EDQEB =ED ∠BEP =∠DEQ ,∴△PBE ≌△QDE (ASA ); (2)证明:如图所示: ∵△PBE ≌△QDE , ∴EP =EQ ,同理:△BME ≌△DNE (ASA ), ∴EM =EN ,∴四边形PMQN是平行四边形,∵PQ⊥MN,∴四边形PMQN是菱形.24.(13分)某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?【解答】解:(1)当售价为55元/千克时,每月销售水果=500﹣10×(55﹣50)=450千克;(2)设每千克水果售价为x元,由题意可得:8750=(x﹣40)[500﹣10(x﹣50)],解得:x1=65,x2=75,答:每千克水果售价为65元或75元;(3)设每千克水果售价为m元,获得的月利润为y元,由题意可得:y=(m﹣40)[500﹣10(m﹣50)]=﹣10(m﹣70)2+9000,∴当m=70时,y有最大值为9000元,答:当每千克水果售价为70元时,获得的月利润最大值为9000元.25.(13分)如图,AB是⊙O的直径,AM和BN是它的两条切线,过⊙O上一点E作直线DC,分别交AM、BN于点D、C,且DA=DE.(1)求证:直线CD是⊙O的切线;(2)求证:OA2=DE•CE.【解答】解:(1)连接OD ,OE ,如图1, 在△OAD 和△OED 中, {OA =OE AD =ED OD =OD, ∴△OAD ≌△OED (SSS ), ∴∠OAD =∠OED , ∵AM 是⊙O 的切线, ∴∠OAD =90°, ∴∠OED =90°,∴直线CD 是⊙O 的切线;(2)过D 作DF ⊥BC 于点F ,如图2,则∠DFB =∠RFC =90°, ∵AM 、BN 都是⊙O 的切线, ∴∠ABF =∠BAD =90°, ∴四边形ABFD 是矩形, ∴DF =AB =2OA ,AD =BF , ∵CD 是⊙O 的切线, ∴DE =DA ,CE =CB , ∴CF =CB ﹣BF =CE ﹣DE ,∵DE2=CD2﹣CF2,∴4OA2=(CE+DE)2﹣(CE﹣DE)2,即4OA2=4DE•CE,∴OA2=DE•CE.),点F(2,1)为26.(14分)如图,抛物线的顶点为A(h,﹣1),与y轴交于点B(0,−12其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,﹣3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标.【解答】(1)解:由题意抛物线的顶点A(2,﹣1),可以假设抛物线的解析式为y=a(x ﹣2)2﹣1,),∵抛物线经过B(0,−12=4a﹣1,∴−12∴a=1,8(x﹣2)2﹣1.∴抛物线的解析式为y=18(2)证明:∵P (m ,n ), ∴n =18(m ﹣2)2﹣1=18m 2−12m −12, ∴P (m ,18m 2−12m −12),∴d =18m 2−12m −12−(﹣3)=18m 2−12m +52,∵F (2,1),∴PF =√(m −2)2+(18m 2−12m −12−1)2=√164m 4−18m 3+78m 2−52m +254,∵d 2=164m 4−18m 3+78m 2−52m +254,PF 2=164m 4−18m 3+78m 2−52m +254, ∴d 2=PF 2, ∴PF =d .(3)如图,过点Q 作QH ⊥直线l 于H ,过点D 作DN ⊥直线l 于N . ∵△DFQ 的周长=DF +DQ +FQ ,DF 是定值=√22+22=2√2, ∴DQ +QF 的值最小时,△DFQ 的周长最小, ∵QF =QH , ∴DQ +DF =DQ +QH ,根据垂线段最短可知,当D ,Q ,H 共线时,DQ +QH 的值最小,此时点H 与N 重合,点Q 在线段DN 上,∴DQ +QH 的最小值为3,∴△DFQ 的周长的最小值为2√2+3,此时Q (4,−12)。
2022年山东省滨州市中考数学试卷(解析版)

2022年山东省滨州市中考数学试卷(解析版)2022年山东省滨州市中考数学试卷(解析版)一、选择题〔本大题共12小题,每题3分,共36分〕 1.〔3分〕在直角三角形中,假设勾为3,股为4,那么弦为〔〕 A.5B.6C.7D.8【分析】直接根据勾股定理求解即可.【解答】解:∵在直角三角形中,勾为3,股为4,∴弦为应选:A.【点评】此题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.2.〔3分〕假设数轴上点A、B分别表示数2、﹣2,那么A、B两点之间的距离可表示为〔〕A.2+〔﹣2〕 B.2﹣〔﹣2〕 C.〔﹣2〕+2D.〔﹣2〕﹣2=5.【分析】根据数轴上两点间距离的定义进行解答即可.【解答】解:A、B两点之间的距离可表示为:2﹣〔﹣2〕.应选:B.【点评】此题考查的是数轴上两点间的距离、数轴等知识,熟知数轴上两点间的距离公式是解答此题的关键.3.〔3分〕如图,直线AB∥CD,那么以下结论正确的选项是〔〕A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°【分析】依据AB∥CD,可得∠3+∠5=180°,再根据∠5=∠4,即可得出∠3+∠4=180°.【解答】解:如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,应选:D.【点评】此题考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.4.〔3分〕以下运算:①a2?a3=a6,②〔a3〕2=a6,③a5÷a5=a,④〔ab〕3=a3b3,其中结果正确的个数为〔〕 A.1B.2C.3D.4【分析】根据同底数幂的除法法那么:底数不变,指数相减;同底数幂的乘法法那么:同底数幂相乘,底数不变,指数相加;幂的乘方法那么:底数不变,指数相乘;积的乘方法那么:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.【解答】解:①a2?a3=a5,故原题计算错误;②〔a3〕2=a6,故原题计算正确;③a5÷a5=1,故原题计算错误;④〔ab〕3=a3b3,故原题计算正确;正确的共2个,应选:B.【点评】此题主要考查了同底数幂的除法、乘法、幂的乘方、积的乘方,关键是熟练掌握各计算法那么.5.〔3分〕把不等式组正确的为〔〕 A.D.B.中每个不等式的解集在同一条数轴上表示出来,C.【分析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.【解答】解:解不等式x+1≥3,得:x≥2,解不等式﹣2x﹣6>﹣4,得:x<﹣1,将两不等式解集表示在数轴上如下:应选:B.【点评】此题考查了解一元一次不等式组,在数轴上表示不等式的解集解不等式组时要注意解集确实定原那么:同大取大,同小取小,大小小大取中间,大大小小无解了.6.〔3分〕在平面直角坐标系中,线段AB两个端点的坐标分别为A〔6,8〕,B〔10,2〕,假设以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,那么点A的对应点C的坐标为〔〕 A.〔5,1〕 B.〔4,3〕C.〔3,4〕 D.〔1,5〕【分析】利用位似图形的性质,结合两图形的位似比进而得出C点坐标.【解答】解:∵以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的横坐标和纵坐标的一半,又∵A〔6,8〕,∴端点C的坐标为〔3,4〕.应选:C.【点评】此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.7.〔3分〕以下命题,其中是真命题的为〔〕A.一组对边平行,另一组对边相等的四边形是平行四边形 B.对角线互相垂直的四边形是菱形 C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、例如等腰梯形,故本选项错误;B、根据菱形的判定,应是对角线互相垂直的平行四边形,故本选项错误;C、对角线相等且互相平分的平行四边形是矩形,故本选项错误;D、一组邻边相等的矩形是正方形,故本选项正确.应选:D.【点评】此题主要考查平行四边形的判定与命题的真假区别.正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理,难度适中.8.〔3分〕半径为5的⊙O是△ABC的外接圆,假设∠ABC=25°,那么劣弧长为〔〕 A.B.C.D.的【分析】根据圆周角定理和弧长公式解答即可.【解答】解:如图:连接AO,CO,∵∠ABC=25°,∴∠AOC=50°,∴劣弧的长=,应选:C.【点评】此题考查三角形的外接圆与外心,关键是根据圆周角定理和弧长公式解答.9.〔3分〕如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为〔〕 A.4B.3C.2D.1【分析】先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.【解答】解:根据题意,得:解得:x=3,那么这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为×[〔6﹣6〕2+〔7﹣6〕2+〔3﹣6〕2+〔9﹣6〕2+〔5﹣6〕2=2x,]=4,应选:A.【点评】此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.10.〔3分〕如图,假设二次函数y=ax2+bx+c〔a≠0〕图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B〔﹣1,0〕,那么①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是〔〕A.1 B.2 C.3 D.4【分析】直接利用二次函数的开口方向以及图象与x轴的交点,进而分别分析得出答案.【解答】解:①∵二次函数y=ax2+bx+c〔a≠0〕图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B〔﹣1,0〕,∴A〔3,0〕,故当y>0时,﹣1<x<3,故④正确.应选:B.【点评】此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.11.〔3分〕如图,∠AOB=60°,点P是∠AOB内的定点且OP=,假设点M、N分别是射线OA、OB上异于点O的动点,那么△PMN周长的最小值是〔〕A. B. C.6 D.3【分析】作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,利用轴对称的性质得MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN 周长最小,作OH⊥CD于H,那么CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.【解答】解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB 于M、N,如图,那么MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,那么CH=DH,∵∠OCH=30°,∴OH=OC=CH=OH=,,∴CD=2CH=3.应选:D.【点评】此题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.12.〔3分〕如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为〔〕A. B.C. D.【分析】根据定义可将函数进行化简.【解答】解:当﹣1≤x<0,[x]=﹣1,y=x+1 当0≤x<1时,[x]=0,y=x 当1≤x<2时,[x]=1,y=x﹣1 ……应选:A.【点评】此题考查函数的图象,解题的关键是正确理解[x]的定义,然后对函数进行化简,此题属于中等题型.二、填空题〔本大题共8小题,每题5分,总分值40分〕 13.〔5分〕在△ABC中,假设∠A=30°,∠B=50°,那么∠C= 100°.【分析】直接利用三角形内角和定理进而得出答案.【解答】解:∵在△ABC中,∠A=30°,∠B=50°,∴∠C=180°﹣30°﹣50°=100°.故答案为:100°【点评】此题主要考查了三角形内角和定理,正确把握定义是解题关键.14.〔5分〕假设分式的值为0,那么x的值为﹣3 .【分析】分式的值为0的条件是:〔1〕分子=0;〔2〕分母≠0.两个条件需同时具备,缺一不可.据此可以解答此题.【解答】解:因为分式化简得x2﹣9=0,即x2=9.解得x=±3因为x﹣3≠0,即x≠3 所以x=﹣3.故答案为﹣3.【点评】此题主要考查分式的值为0的条件,注意分母不为0.15.〔5分〕在△ABC中,∠C=90°,假设tanA=,那么sinB= .的值为0,所以=0,【分析】直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案.【解答】解:如下图:∵∠C=90°,tanA=,∴设BC=x,那么AC=2x,故AB=那么sinB===..x,故答案为:【点评】此题主要考查了锐角三角函数关系,正确表示各边长是解题关键. 16.〔5分〕假设从﹣1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,那么点M在第二象限的概率是.【分析】列表得出所有等可能结果,从中找到点M在第二象限的结果数,再根据概率公式计算可得.【解答】解:列表如下:由表可知,共有6种等可能结果,其中点M在第二象限的有2种结果,所以点M在第二象限的概率是=,故答案为:.【点评】此题考查了利用列表法与树状图法求概率的方法:先列表展示所有等可能的结果数n,再找出某事件发生的结果数m,然后根据概率的定义计算出这个事件的概率=.17.〔5分〕假设关于x、y的二元一次方程组,的解是,那么关于a、b的二元一次方程组的解是.【分析】利用关于x、y的二元一次方程组,的解是可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想整理找到两个方程组的联系求解的方法更好.【解答】解:方法一:∵关于x、y的二元一次方程组∴将解代入方程组,的解是,可得m=﹣1,n=2∴关于a、b的二元一次方程组可整理为:解得:方法二:关于x、y的二元一次方程组由关于a、b的二元一次方程组,的解是,可知解得:故答案为:【点评】此题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题表达明显.18.〔5分〕假设点A〔﹣2,y1〕、B〔﹣1,y2〕、C〔1,y3〕都在反比例函数y=〔k为常数〕的图象上,那么y1、y2、y3的大小关系为 y2<y1<y3 .【分析】设t=k2﹣2k+3,配方后可得出t>0,利用反比例函数图象上点的坐标特征可求出y1、y2、y3的值,比拟后即可得出结论.【解答】解:设t=k2﹣2k+3,∵k2﹣2k+3=〔k﹣1〕2+2>0,∴t>0.∵点A〔﹣2,y1〕、B〔﹣1,y2〕、C〔1,y3〕都在反比例函数y=常数〕的图象上,∴y1=﹣,y2=﹣t,y3=t,又∵﹣t<﹣<t,∴y2<y1<y3.故答案为:y2<y1<y3.【点评】此题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.19.〔5分〕如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,假设AE=,∠EAF=45°,那么AF的长为.〔k为【分析】取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,那么NF=x,再利用矩形的性质和条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的长.【解答】解:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,∵四边形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴NF=x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵AE=,AB=2,∴BE=1,∴ME=∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴∴,,=,解得:x=,∴AF=故答案为:=..【点评】此题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,20.〔5分〕观察以下各式:=1+,=1+,=1+,……请利用你所发现的规律,计算+++…+,其结果为 9.【分析】直接根据数据变化规律进而将原式变形求出答案.【解答】解:由题意可得:+=1++1++1+++ (1)+…+=9+〔1﹣+﹣+﹣+…+﹣=9+=9〕..故答案为:9【点评】此题主要考查了数字变化规律,正确将原式变形是解题关键.三、解答题〔本大题共6小题,总分值74分〕 21.〔10分〕先化简,再求值:〔xy2+x2y〕×〔〕﹣1,y=2sin45°﹣.÷,其中x=π0﹣【分析】原式利用除法法那么变形,约分得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=xy〔x+y〕?当x=1﹣2=﹣1,y=﹣2=﹣?时,原式==x﹣y,﹣1.【点评】此题考查了分式的化简求值,以及实数的运算,熟练掌握运算法那么是解此题的关键.22.〔12分〕如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC 平分∠DAB,求证:〔1〕直线DC是⊙O的切线;〔2〕AC2=2AD?AO.【分析】〔1〕连接OC,由OA=OC、AC平分∠DAB知∠OAC=∠OCA=∠DAC,据此知OC∥AD,根据AD⊥DC即可得证;〔2〕连接BC,证△DAC∽△CAB即可得.【解答】解:〔1〕如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,又∵AD⊥CD,∴OC⊥DC,∴DC是⊙O的切线;〔2〕连接BC,∵AB为⊙O的直径,∴AB=2AO,∠ACB=90°,∵AD⊥DC,∴∠ADC=∠ACB=90°,又∵∠DAC=∠CAB,∴△DAC∽△CAB,∴=,即AC2=AB?AD,∵AB=2AO,∴AC2=2AD?AO.【点评】此题主要考查圆的切线,解题的关键是掌握切线的判定、圆周角定理及相似三角形的判定与性质.23.〔12分〕如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y〔单位:m〕与飞行时间x〔单位:s〕之间具有函数关系y=﹣5x2+20x,请根据要求解答以下问题:〔1〕在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?〔2〕在飞行过程中,小球从飞出到落地所用时间是多少?〔3〕在飞行过程中,小球飞行高度何时最大?最大高度是多少?【分析】〔1〕根据题目中的函数解析式,令y=15即可解答此题;〔2〕令y=0,代入题目中的函数解析式即可解答此题;〔3〕将题目中的函数解析式化为顶点式即可解答此题.【解答】解:〔1〕当y=15时, 15=﹣5x2+20x,解得,x1=1,x2=3,答:在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;〔2〕当y=0时, 0═﹣5x2+20x,解得,x3=0,x2=4,∵4﹣0=4,∴在飞行过程中,小球从飞出到落地所用时间是4s;〔3〕y=﹣5x2+20x=﹣5〔x ﹣2〕2+20,∴当x=2时,y取得最大值,此时,y=20,答:在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.【点评】此题考查二次函数的应用,解答此题的关键是明确题意,利用二次函数的性质解答.24.〔13分〕如图,在平面直角坐标系中,点O为坐标原点,菱形OABC的顶点A在x轴的正半轴上,顶点C的坐标为〔1,〔1〕求图象过点B的反比例函数的解析式;〔2〕求图象过点A,B的一次函数的解析式;〔3〕在第一象限内,当以上所求一次函数的图象在所求反比例函数的图象下方时,请直接写出自变量x的取值范围.〕.【分析】〔1〕由C的坐标求出菱形的边长,利用平移规律确定出B的坐标,利用待定系数法求出反比例函数解析式即可;〔2〕由菱形的边长确定出A坐标,利用待定系数法求出直线AB解析式即可;〔3〕联立一次函数与反比例函数解析式求出交点坐标,由图象确定出满足题意x的范围即可.【解答】解:〔1〕由C的坐标为〔1,∵菱形OABC,∴BC=OC=OA=2,BC∥x轴,∴B〔3,〕,〕,得到OC=2,设反比例函数解析式为y=,把B坐标代入得:k=3,那么反比例解析式为y=;〔2〕设直线AB解析式为y=mx+n,把A〔2,0〕,B〔3,解得:,x﹣2,,即一次函数与反比例函数交点坐标为〔3,〕或〔﹣;〕代入得:,那么直线AB解析式为y=〔3〕联立得:解得:1,﹣3或〕,那么当一次函数的图象在反比例函数的图象下方时,自变量x的取值范围为x <﹣1或0<x<3.【点评】此题考查了待定系数法求反比例函数解析式与一次函数解析式,一次函数、反比例函数的性质,以及一次函数与反比例函数的交点,熟练掌握待定系数法是解此题的关键.25.〔13分〕,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.〔1〕如图①,假设点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;〔2〕假设点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.【分析】〔1〕连接AD,根据等腰三角形的性质可得出AD=BD、∠EBD=∠FAD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△BDE≌△ADF〔ASA〕,再根据全等三角形的性质即可证出BE=AF;〔2〕连接AD,根据等腰三角形的性质及等角的补角相等可得出∠EBD=∠FAD、 BD=AD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△EDB≌△FDA 〔ASA〕,再根据全等三角形的性质即可得出BE=AF.【解答】〔1〕证明:连接AD,如图①所示.∵∠A=90°,AB=AC,∴△ABC为等腰直角三角形,∠EBD=45°.∵点D为BC的中点,∴AD=BC=BD,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.在△BDE和△ADF 中,∴△BDE≌△ADF〔ASA〕,∴BE=AF;〔2〕BE=AF,证明如下:连接AD,如图②所示.∵∠ABD=∠BAD=45°,∴∠EBD=∠FAD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FDA.在△EDB和△FDA 中,∴△EDB≌△FDA〔ASA〕,∴BE=AF.,,【点评】此题考查了全等三角形的判定与性质、等腰直角三角形、补角及余角,解题的关键是:〔1〕根据全等三角形的判定定理ASA证出△BDE≌△ADF;〔2〕根据全等三角形的判定定理ASA证出△EDB≌△FDA.26.〔14分〕如图①,在平面直角坐标系中,圆心为P〔x,y〕的动圆经过点A〔1,2〕且与x轴相切于点B.〔1〕当x=2时,求⊙P的半径;〔2〕求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;〔3〕请类比圆的定义〔图可以看成是到定点的距离等于定长的所有点的集合〕,给〔2〕中所得函数图象进行定义:此函数图象可以看成是到点A 的距离等于到 x轴的距离的所有点的集合.〔4〕当⊙P的半径为1时,假设⊙P与以上〔2〕中所得函数图象相交于点C、D,其中交点D〔m,n〕在点C的右侧,请利用图②,求cos∠APD的大小.【分析】〔1〕由题意得到AP=PB,求出y的值,即为圆P的半径;〔2〕利用两点间的距离公式,根据AP=PB,确定出y关于x的函数解析式,画出函数图象即可;〔3〕类比圆的定义描述此函数定义即可;〔4〕画出相应图形,求出m的值,进而确定出所求角的余弦值即可.【解答】解:〔1〕由x=2,得到P〔2,y〕,连接AP,PB,∵圆P与x轴相切,∴PB⊥x轴,即PB=y,由AP=PB,得到解得:y=,那么圆P的半径为;〔2〕同〔1〕,由AP=PB,得到〔x﹣1〕2+〔y﹣2〕2=y2,整理得:y=〔x﹣1〕2+1,即图象为开口向上的抛物线,画出函数图象,如图②所示;〔3〕给〔2〕中所得函数图象进行定义:此函数图象可以看成是到点A的距离等于到x轴的距离的所有点的集合;故答案为:点A;x轴;〔4〕连接CD,连接AP并延长,交x轴于点F,设PE=a,那么有EF=a+1,ED=∴D坐标为〔1+,a+1〕,, =y,代入抛物线解析式得:a+1=〔1﹣a2〕+1,解得:a=﹣2+或a=﹣2﹣〔舍去〕,即PE=﹣2+,在Rt△PED中,PE=那么cos∠APD==﹣2,PD=1,﹣2.【点评】此题属于圆的综合题,涉及的知识有:两点间的距离公式,二次函数的图象与性质,圆的性质,勾股定理,弄清题意是解此题的关键.。
2019年山东省滨州市中考数学试卷及答案(Word解析版)

数学试卷2019 年山东省滨州市中考数学试卷一、选择题:本大题共12 个小题,在每个小题的四个选项中只有一个正确的,请把正确的选项选出来,并将其字母标号填写在答题栏内。
每小题选对得 3 分,错选、不选或多选均记 0 分,满分 36 分。
1.( 3 分)( 2019?滨州)计算,正确的结果为()A.B.C.D.2.( 3分)( 2019?滨州)化简,正确结果为()A . a2﹣ 1﹣2 B. a C. a D .a3.( 3分)( 2019?滨州)把方程变形为 x=2,其依据是()A.等式的性质 1B.等式的性质 2C.分式的基本性质 D .不等式的性质 1 4.( 3分)( 2008?湖州)如图,已知圆心角∠BOC=78 °,则圆周角∠BAC 的度数是()A . 156°B. 78°C. 39° D .12°5.( 3 分)( 2019?滨州)如图所示的几何体是由若干个大小相同的小正方体组成的.若从正上方看这个几何体,则所看到的平面图形是()A.B.C.D.6.( 3 分)( 2019?滨州)若点 A ( 1,y1)、B( 2, y2)都在反比例函数的图象上,则y1、 y2的大小关系为()A . y1< y2B. y1≤y2C. y1> y2 D .y1≥y27.( 3 分)( 2019?滨州)若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为()数学试卷A.6,B.,3C.6,3D.,8.( 3 分)( 2019?滨州)如图,等边△ ABC 沿射线 BC 向右平移到△ DCE 的位置,连接 AD 、BD ,则下列结论:① AD=BC ;② BD 、 AC 互相平分;③四边形 ACED 是菱形.其中正确的个数是()A.0B.1C.2D.39.(3 分)( 2019?滨州)若从长度分别为3、 5、6、9 的四条线段中任取三条,则能组成三角形的概率为()A .B.C. D .10.(3 分)( 2019?滨州)对于任意实数k,关于 x 的方程 x 2﹣2( k+1 )x﹣ k2+2k﹣ 1=0 的根的情况为()A .有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法确定11.( 3 分)( 2019?滨州)若把不等式组的解集在数轴上表示出来,则其对应的图形为()A.长方形B.线段C.射线D.直线212.(3 分)( 2019?滨州)如图,二次函数 y=ax +bx+c (a≠0)的图象与 x 轴交于 A、 B 两点,与 y 轴交于 C 点,且对称轴为 x=1,点 B 坐标为(﹣ 1, 0).则下面的四个结论:①2a+b=0;② 4a﹣ 2b+c< 0;③ ac>0;④当 y< 0 时, x<﹣ 1 或 x> 2.其中正确的个数是()A.1B.2C.3D.4数学试卷二、填空题本大题共 6 个小题,每小题填对最后结果得 4 分,满分 24 分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年山东省滨州市中考数学试卷(解析版)一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)在直角三角形中,若勾为3,股为4,则弦为()A.5 B.6 C.7 D.8【分析】直接根据勾股定理求解即可.【解答】解:∵在直角三角形中,勾为3,股为4,∴弦为=5.故选:A.【点评】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.2.(3分)若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为( )A.2+(﹣2)ﻩB.2﹣(﹣2) C.(﹣2)+2 D.(﹣2)﹣2【分析】根据数轴上两点间距离的定义进行解答即可.【解答】解:A、B两点之间的距离可表示为:2﹣(﹣2).故选:B.【点评】本题考查的是数轴上两点间的距离、数轴等知识,熟知数轴上两点间的距离公式是解答此题的关键.3.(3分)如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2ﻩB.∠3=∠4C.∠1+∠3=180°D.∠3+∠4=180°【分析】依据AB∥CD,可得∠3+∠5=180°,再根据∠5=∠4,即可得出∠3+∠4=180°.【解答】解:如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故选:D.【点评】本题考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.4.(3分)下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A.1 B.2 C.3 D.4【分析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.【解答】解:①a2•a3=a5,故原题计算错误;②(a3)2=a6,故原题计算正确;③a5÷a5=1,故原题计算错误;④(ab)3=a3b3,故原题计算正确;正确的共2个,故选:B.【点评】此题主要考查了同底数幂的除法、乘法、幂的乘方、积的乘方,关键是熟练掌握各计算法则.5.(3分)把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A.ﻩB. C.D.【分析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.【解答】解:解不等式x+1≥3,得:x≥2,解不等式﹣2x﹣6>﹣4,得:x<﹣1,将两不等式解集表示在数轴上如下:故选:B.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式的解集解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.6.(3分)在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,则点A的对应点C的坐标为()A.(5,1)B.(4,3)C.(3,4)ﻩD.(1,5)【分析】利用位似图形的性质,结合两图形的位似比进而得出C点坐标.【解答】解:∵以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的横坐标和纵坐标的一半,又∵A(6,8),∴端点C的坐标为(3,4).故选:C.【点评】此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.7.(3分)下列命题,其中是真命题的为()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、例如等腰梯形,故本选项错误;B、根据菱形的判定,应是对角线互相垂直的平行四边形,故本选项错误;C、对角线相等且互相平分的平行四边形是矩形,故本选项错误;D、一组邻边相等的矩形是正方形,故本选项正确.故选:D.【点评】本题主要考查平行四边形的判定与命题的真假区别.正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理,难度适中.8.(3分)已知半径为5的⊙O是△ABC的外接圆,若∠ABC=25°,则劣弧的长为()A.ﻩB.ﻩC.ﻩD.【分析】根据圆周角定理和弧长公式解答即可.【解答】解:如图:连接AO,CO,∵∠ABC=25°,∴∠AOC=50°,∴劣弧的长=,故选:C.【点评】此题考查三角形的外接圆与外心,关键是根据圆周角定理和弧长公式解答.9.(3分)如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A.4ﻩB.3ﻩC.2 D.1【分析】先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.【解答】解:根据题意,得:=2x,解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为×[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故选:A.【点评】此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.10.(3分)如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1ﻩB.2 C.3 D.4【分析】直接利用二次函数的开口方向以及图象与x轴的交点,进而分别分析得出答案.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选:B.【点评】此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A 点坐标是解题关键.11.(3分)如图,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M、N 分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A.B.ﻩC.6 D.3【分析】作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,利用轴对称的性质得MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,所以∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN周长最小,作OH⊥CD于H,则CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.【解答】解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB 于M、N,如图,则MP=MC,NP=ND,OP=OD=OC=,∠BOP=∠BOD,∠AOP=∠AOC,∴PN+PM+MN=ND+MN+NC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,作OH⊥CD于H,则CH=DH,∵∠OCH=30°,∴OH=OC=,CH=OH=,∴CD=2CH=3.故选:D.【点评】本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.12.(3分)如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A. B.C.ﻩD.【分析】根据定义可将函数进行化简.【解答】解:当﹣1≤x<0,[x]=﹣1,y=x+1当0≤x<1时,[x]=0,y=x当1≤x<2时,[x]=1,y=x﹣1……故选:A.【点评】本题考查函数的图象,解题的关键是正确理解[x]的定义,然后对函数进行化简,本题属于中等题型.二、填空题(本大题共8小题,每小题5分,满分40分)13.(5分)在△ABC中,若∠A=30°,∠B=50°,则∠C=100°.【分析】直接利用三角形内角和定理进而得出答案.【解答】解:∵在△ABC中,∠A=30°,∠B=50°,∴∠C=180°﹣30°﹣50°=100°.故答案为:100°【点评】此题主要考查了三角形内角和定理,正确把握定义是解题关键.14.(5分)若分式的值为0,则x的值为﹣3 .【分析】分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:因为分式的值为0,所以=0,化简得x2﹣9=0,即x2=9.解得x=±3因为x﹣3≠0,即x≠3所以x=﹣3.故答案为﹣3.【点评】本题主要考查分式的值为0的条件,注意分母不为0.15.(5分)在△ABC中,∠C=90°,若tanA=,则sinB=.【分析】直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案.【解答】解:如图所示:∵∠C=90°,tanA=,∴设BC=x,则AC=2x,故AB=x,则sinB===.故答案为:.【点评】此题主要考查了锐角三角函数关系,正确表示各边长是解题关键.16.(5分)若从﹣1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,则点M在第二象限的概率是.【分析】列表得出所有等可能结果,从中找到点M在第二象限的结果数,再根据概率公式计算可得.【解答】解:列表如下:由表可知,共有6种等可能结果,其中点M在第二象限的有2种结果,所以点M在第二象限的概率是=,故答案为:.【点评】本题考查了利用列表法与树状图法求概率的方法:先列表展示所有等可能的结果数n,再找出某事件发生的结果数m,然后根据概率的定义计算出这个事件的概率=.17.(5分)若关于x、y的二元一次方程组,的解是,则关于a、b的二元一次方程组的解是.【分析】利用关于x、y的二元一次方程组,的解是可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想整理找到两个方程组的联系求解的方法更好.【解答】解:方法一:∵关于x、y的二元一次方程组,的解是,∴将解代入方程组可得m=﹣1,n=2∴关于a、b的二元一次方程组可整理为:解得:方法二:关于x、y的二元一次方程组,的解是,由关于a、b的二元一次方程组可知解得:故答案为:【点评】本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.18.(5分)若点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,则y1、y2、y3的大小关系为y2<y1<y3.【分析】设t=k2﹣2k+3,配方后可得出t>0,利用反比例函数图象上点的坐标特征可求出y1、y2、y3的值,比较后即可得出结论.【解答】解:设t=k2﹣2k+3,∵k2﹣2k+3=(k﹣1)2+2>0,∴t>0.∵点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,∴y1=﹣,y2=﹣t,y3=t,又∵﹣t<﹣<t,<y1<y3.∴y2<y1<y3.故答案为:y2【点评】本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.19.(5分)如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE=,∠EAF=45°,则AF的长为.【分析】取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的长.【解答】解:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,∵四边形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴NF=x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵AE=,AB=2,∴BE=1,∴ME==,∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴,∴,解得:x=,∴AF==.故答案为:.【点评】本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,20.(5分)观察下列各式:=1+,=1+,=1+,……请利用你所发现的规律,计算+++…+,其结果为9.【分析】直接根据已知数据变化规律进而将原式变形求出答案.【解答】解:由题意可得:+++…+=1++1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.【点评】此题主要考查了数字变化规律,正确将原式变形是解题关键.三、解答题(本大题共6小题,满分74分)21.(10分)先化简,再求值:(xy2+x2y)×÷,其中x=π0﹣()﹣1,y=2sin45°﹣.【分析】原式利用除法法则变形,约分得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=xy(x+y)••=x﹣y,当x=1﹣2=﹣1,y=﹣2=﹣时,原式=﹣1.【点评】此题考查了分式的化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.22.(12分)如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:(1)直线DC是⊙O的切线;(2)AC2=2AD•AO.【分析】(1)连接OC,由OA=OC、AC平分∠DAB知∠OAC=∠OCA=∠DAC,据此知OC∥AD,根据AD⊥DC即可得证;(2)连接BC,证△DAC∽△CAB即可得.【解答】解:(1)如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,又∵AD⊥CD,∴OC⊥DC,∴DC是⊙O的切线;(2)连接BC,∵AB为⊙O的直径,∴AB=2AO,∠ACB=90°,∵AD⊥DC,∴∠ADC=∠ACB=90°,又∵∠DAC=∠CAB,∴△DAC∽△CAB,∴=,即AC2=AB•AD,∵AB=2AO,∴AC2=2AD•AO.【点评】本题主要考查圆的切线,解题的关键是掌握切线的判定、圆周角定理及相似三角形的判定与性质.23.(12分)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?【分析】(1)根据题目中的函数解析式,令y=15即可解答本题;(2)令y=0,代入题目中的函数解析式即可解答本题;(3)将题目中的函数解析式化为顶点式即可解答本题.【解答】解:(1)当y=15时,15=﹣5x2+20x,解得,x1=1,x2=3,答:在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;(2)当y=0时,0═﹣5x2+20x,解得,x3=0,x2=4,∵4﹣0=4,∴在飞行过程中,小球从飞出到落地所用时间是4s;(3)y=﹣5x2+20x=﹣5(x﹣2)2+20,∴当x=2时,y取得最大值,此时,y=20,答:在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.24.(13分)如图,在平面直角坐标系中,点O为坐标原点,菱形OABC的顶点A 在x轴的正半轴上,顶点C的坐标为(1,).(1)求图象过点B的反比例函数的解析式;(2)求图象过点A,B的一次函数的解析式;(3)在第一象限内,当以上所求一次函数的图象在所求反比例函数的图象下方时,请直接写出自变量x的取值范围.【分析】(1)由C的坐标求出菱形的边长,利用平移规律确定出B的坐标,利用待定系数法求出反比例函数解析式即可;(2)由菱形的边长确定出A坐标,利用待定系数法求出直线AB解析式即可;(3)联立一次函数与反比例函数解析式求出交点坐标,由图象确定出满足题意x的范围即可.【解答】解:(1)由C的坐标为(1,),得到OC=2,∵菱形OABC,∴BC=OC=OA=2,BC∥x轴,∴B(3,),设反比例函数解析式为y=,把B坐标代入得:k=3,则反比例解析式为y=;(2)设直线AB解析式为y=mx+n,把A(2,0),B(3,)代入得:,解得:,则直线AB解析式为y=x﹣2;(3)联立得:,解得:或,即一次函数与反比例函数交点坐标为(3,)或(﹣1,﹣3),则当一次函数的图象在反比例函数的图象下方时,自变量x的取值范围为x<﹣1或0<x<3.【点评】此题考查了待定系数法求反比例函数解析式与一次函数解析式,一次函数、反比例函数的性质,以及一次函数与反比例函数的交点,熟练掌握待定系数法是解本题的关键.25.(13分)已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.【分析】(1)连接AD,根据等腰三角形的性质可得出AD=BD、∠EBD=∠FAD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△BDE≌△ADF (ASA),再根据全等三角形的性质即可证出BE=AF;(2)连接AD,根据等腰三角形的性质及等角的补角相等可得出∠EBD=∠FAD、BD=AD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△EDB≌△FDA(ASA),再根据全等三角形的性质即可得出BE=AF.【解答】(1)证明:连接AD,如图①所示.∵∠A=90°,AB=AC,∴△ABC为等腰直角三角形,∠EBD=45°.∵点D为BC的中点,∴AD=BC=BD,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴BE=AF;(2)BE=AF,证明如下:连接AD,如图②所示.∵∠ABD=∠BAD=45°,∴∠EBD=∠FAD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FDA.在△EDB和△FDA中,,∴△EDB≌△FDA(ASA),∴BE=AF.【点评】本题考查了全等三角形的判定与性质、等腰直角三角形、补角及余角,解题的关键是:(1)根据全等三角形的判定定理ASA证出△BDE≌△ADF;(2)根据全等三角形的判定定理ASA证出△EDB≌△FDA.26.(14分)如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B.(1)当x=2时,求⊙P的半径;(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;(3)请类比圆的定义(图可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到点A的距离等于到x轴的距离的所有点的集合.(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,求cos∠APD的大小.【分析】(1)由题意得到AP=PB,求出y的值,即为圆P的半径;(2)利用两点间的距离公式,根据AP=PB,确定出y关于x的函数解析式,画出函数图象即可;(3)类比圆的定义描述此函数定义即可;(4)画出相应图形,求出m的值,进而确定出所求角的余弦值即可.【解答】解:(1)由x=2,得到P(2,y),连接AP,PB,∵圆P与x轴相切,∴PB⊥x轴,即PB=y,由AP=PB,得到=y,解得:y=,则圆P的半径为;(2)同(1),由AP=PB,得到(x﹣1)2+(y﹣2)2=y2,整理得:y=(x﹣1)2+1,即图象为开口向上的抛物线,画出函数图象,如图②所示;(3)给(2)中所得函数图象进行定义:此函数图象可以看成是到点A的距离等于到x轴的距离的所有点的集合;故答案为:点A;x轴;(4)连接CD,连接AP并延长,交x轴于点F,设PE=a,则有EF=a+1,ED=,∴D坐标为(1+,a+1),代入抛物线解析式得:a+1=(1﹣a2)+1,解得:a=﹣2+或a=﹣2﹣(舍去),即PE=﹣2+,在Rt△PED中,PE=﹣2,PD=1,则cos∠APD==﹣2.【点评】此题属于圆的综合题,涉及的知识有:两点间的距离公式,二次函数的图象与性质,圆的性质,勾股定理,弄清题意是解本题的关键.。