岩石力学

合集下载

岩体力学名词解释

岩体力学名词解释

岩石力学定义:岩石力学是研究岩石的力学性状的一门理论和应用的科学,它是力学的一个分支,是探讨岩石对周围物理环境中力场的反应。

应力:应力指物体在所受面力作用下内部产生的内力的集度。

正应力:应力在其作用截面的法线方向的分量。

剪应力:应力在其作用截面的切线方向的分量。

体力:分布在物体体积内的力。

面力:分布在物体表面上的力。

内力:物体本身不同部分之间相互作用的力。

正面:外法线沿着坐标轴的正方向的截面。

正面上的应力分量与坐标轴方向一致为正,反之为负。

负面:外法线是沿着坐标轴的负方向的截面。

负面上的应力分量与坐标轴方向相反为正,反之为负。

主平面:单元体剪应力等于零的截面。

主应力:主平面上的正应力。

强度(峰值强度):在一定条件下,岩石发生破坏时单位面积所能承受的最大载荷。

残余强度:岩石完全破坏后所能承受的一个较小的应力值。

应变软化:指岩石达到峰值强度以后继续变形,其强度随变形量增加而降低/减少的特性。

塑性变形:岩石失去承载能力以前所承受的永久的变形。

屈服:有些材料在开始出现塑性变形之后,常在应力不变或应力增加很小的情况下继续产生变形,这种现象称为屈服。

屈服点:岩石从弹性转变为塑性的转折点有效应力:一般意义,是指对多孔渗水材料总的力学特征起主导作用的应力。

有效应力是外加或总应力和孔隙压力的函数。

切线杨氏模量:应力-应变曲线上某一确定点的斜率,一般取50%峰值强度点的斜率。

平均杨氏模量:应力-应变曲线上近似直线部分的斜率平均值割线杨氏模量:坐标原点与某一定点连线的斜率扩容:岩石在塑性阶段的体积膨胀称为扩容现象,它主要由于变形引起裂隙发展和张开而造成的岩石:岩石是组成地壳的基本物质,它由各种岩矿或岩屑在地质作用下按一定规律通过结晶联结成或借助于胶结物粘结组合而成。

岩体:是指天然埋藏条件下大范围分布的,由结构面和结构体组成的地质体。

岩石结构面的产状:即结构面在空间的产生状态和方位,用结构面上倾斜度最大的倾斜线与水平面成的夹角,以及对应倾向线的方位(从真北方向顺时针测得)来描述结构面的间距:一组结构面在法线方向上两相邻面的距离。

岩石力学岩石压力及其控制

岩石力学岩石压力及其控制
第五章 岩石压力及其控制 第一节 井巷地压
一、基本概念
地压:泛指在岩体中存在的力,它既包括原岩对围岩的作用 力,也包括围岩间的相互作用力,又包括围岩对支架的作用 力。 狭义地压:把围岩因变形移动和岩块冒落作用在支架上的压 力称为狭义地压。 广义地压:将岩体内部原岩作用于围岩和支架上的压力称为 广义地压。
b1 a12
x2 dx
2a
3a1
3a12 a2
近似顶压= 2a1b1
(二)、侧压计算
当两帮不稳定时 f 2
1
p 2
pc pE'
H
pc
b1
tg 2 45
2
pE'
b1
H tg 2 45
2
合力作用点
y
H 3
2b1 H 3b1 H
(三)、底压计算
EA
BF
CT TD
K C
ex
sin
x
cosx
4 K
4EI
4 C
4EI
C : 充填体阻力系数 K :矿石阻力系数
由弹性地基梁理论可知,在充填体一侧顶板压力:
y
q0
1
e
x
sin
x
cosx
4 K
4EI
4 C
4EI
C : 充填体阻力系数 K :矿石阻力系数
地压活动影响因素:
1、自然因素:岩石、岩体的物理力学性质,原岩应力状态、开采深度、 地质构造发育程度、地下水活动、
2、人为因素:采矿方法、矿块结构参数、开采顺序、开采强度、支护 方式、爆破规模。
六、开采顺序对次生应力分布的影响
(一)、沿走向开采顺序
1、自矿体一端向另一端回采(单侧回采):当采用单侧回采时,回采 空间周围岩体次生应力场取决于采场跨度、同时回采采场数目。

岩石力学

岩石力学

岩石力学1.岩石与岩体的区别和联系?答:岩石是矿物或岩屑在地质作用下按一定的规律聚集而形成的自然物体。

岩体,是指一定工程范围内的自然地质体,它经历了漫长的自然历史过程,经受了各种地质作用,并在地应力的长期作用下,在其内部保留了各种永久变形和各种各样的地质构造形迹(不整合、褶皱、断层、层里、节理、劈理等不连续面。

岩体=岩块+结构面。

岩石和岩体的重要区别就是岩体包含若干连续面,岩体的强度远低于岩石强度。

2.简述岩石力学的研究内容和方法?研究内容:①岩石与岩体的物理力学性质②岩石和岩体的本构关系③工程岩体的应力、变形和强度理论④岩石室内实验⑤岩体测量和工程稳定监测。

研究方法:采用科学实验、理论分析与工程紧密结合的方法。

3.岩石的物理性质指标主要有哪些?它们是如何定义的?答:质量密度(单位体积的质量);重度(单位体积的重量);相对密度(岩石的干重量除以岩石的实体积所得的量与1个大气压下4摄氏度的纯水的重度的比值);孔隙率(孔隙体积与总体积百分比);孔隙比(孔隙体积与固体的体积之比);含水率(天然状态下岩石中水的重量与岩石烘干重量的百分比);吸水率(干燥岩石试样在一个大气压和室温条件下吸入水的重量与岩石干重百分比);饱水率(岩样在强制状态(真空、煮沸、高压)下,岩样的最大吸水重量与岩样烘干重量的百分比);渗透性(在水压力作用下,岩石的孔隙和裂隙透过水的能力);膨胀性(岩石浸水后体积增大的性质);崩解性(岩石与水相互作用时失去黏结性并变成完全丧失强度的松散物质的性能);软化性(岩石与水相互作用时强度降低的特性);抗冻性(岩石抵抗冻融破坏的性能称为岩石的抗冻性)。

岩石容重:单位体积的岩石的重量分为天然容重、饱和容重、干容重。

4简述岩石在单轴压缩条件下的变形、破坏特征并说明原因(论述)?分为四段:①孔裂隙压密阶段:应力-应变曲线呈上凹形,其斜率随应力增加而逐渐增大,包含永久变形;原因:试件中原有微裂隙在压应力作用下逐渐闭合。

岩石力学

岩石力学

1 RC 1 RC

1 最大正应力理论(朗肯理论)
• 假设材料的破坏只取决于绝对值最大的正应力, 因此当岩石内的三个主应力中只要有一个达到
单轴抗压强度或单轴抗拉强度时,岩石就算破
坏。准则为: 1 RC 3Rt
• 或 1 2 R 22 2 R 23 2 R 2 0
• 适用条件:单向应力状态及脆性岩石在二向应 力状态中受拉的情况,对复杂应力状态不适用。
• 2 试验方法上的因素或人为因素,如试件形 状、尺寸、大小,试件加工情况和加荷速 率等
• 各因素的影响见书中P33-34
第四节 岩石的抗拉强度
• 岩石的抗拉强度就是岩石试件在单轴 拉力作用下抵抗破坏的极限能力。或 者说极限强度在数值上等于破坏时的 最大拉应力。
• 岩石的抗拉强度比其抗压强度低得多。
• 实际的荷载形式是多种多样的,它使任何单一的 岩石破坏模式都不会居主要的地位。在荷载作用 下,岩体实际的破坏情况是相当复杂的,它可能 是由上述的一种或多种破坏模式。
第三节 岩石的抗压强度
• 岩石的抗压强度是岩石试件在单轴压力下抵抗破 坏的极限能力,或极限强度在数值上等于破坏时 的最大压应力。(分饱和和天然状态)
Rc---岩石单轴抗压强度(MPa) P---岩石试件破坏时的荷载(MN) A---试件的横断面面积(m)
• 表3-1 岩石的单轴抗压强度和抗拉强度
• 影响岩石的抗压强度的因素很多,这些因 素可分为两方面:
• 1 岩石本身的因素,如矿物成分、结晶程度 颗粒大小、颗粒联接及胶结情况、密度、 裂隙的特性和方向、风化程度和含水情况 等。
• 1直剪试验 • 直剪试验的受力方式示意图如下:
• 现场直接剪切实验示意图
• 直接剪切实验的注意事项:

第三章 岩石力学基本知识介绍

第三章 岩石力学基本知识介绍
抗压试验 抗拉试验-巴西实验
p r0 t
c
P A
t
抗剪试验
抗弯试验
P s A
3Pl b 2bh 2
表 1-4 岩石的抗压、抗拉、抗剪和抗弯强度
岩石 粗粒砂岩 中粒砂岩 细粒砂岩 页 岩 泥 岩 石 膏 含膏石灰岩 安山岩 白云岩 石灰岩 花岗岩 正长岩 辉长岩 石英岩 辉绿岩 抗压强度 σ cMpa 142 151 185 14-61 18 17 42 98.6 162 138 166 215.2 230 305 343 抗拉强度 σ tMpa 5.14 5.2 7.95 1.7-8 3.2 1.9 2.4 5.8 6.9 9.1 12 14.3 13.5 14.4 13.4 抗剪强度 τ sMpa - - - - - - - 98 118 145 198 221 244 316 347 抗弯强度 σ rMpa 10.3 13.1 24.9 36 3.5 6 6.5



d dt
弹性
塑性
粘性
材料的变形性质
弹性:一定的应力范围内,物体受外力作用产生变形,而 去除外力后能够立即恢复其原有的形状和尺寸大小的性质
产生的变形称为弹性变形 具有弹性性质的物体称为弹性介质
弹性按其应力和应变关系又可分为两种类型
应力和应变呈直线关系—即线弹性或虎 克型弹性或理想弹性 应力应变呈非直线的非线性弹性
l
xx
xx l x
xx
o
xx l x
xy
xy x
l
yx
yx y
l
yy
yy y
l
一点应力状态——剪应力互等定理
xy xy 2 2 M oz xy l 2l l xy l 2l l x x yx yx 2 2 yx l 2l l yx l 2l l y y

构造地质学05第五章岩石力学性质

构造地质学05第五章岩石力学性质
一、库伦剪切破裂准则 所谓准则,指的是基本条件是什么,库伦指出, 假定材料的破坏,取决于最大剪切应力,按照 这个理论建立的条件是:
τmax= τ0 …(1)
τ0为抗剪强度极限
理论上,破裂面应沿最大剪应力面产生,形成棋 盘格式构造。剪裂角< 450?
库伦解释是岩石抗剪强度与剪应力和正应力有 关,因此将(1)式改为:
De/dt 常量
撤出应力
t0 t1 t2
t3
时间
永久应变
t4 t5
松弛——保持应变不变,应力随时间而减小。 (相当于降低了岩石的弹性极限) (1)、应力随时间减小,松弛速度急剧下降。 (2)、应力经很长时间后可趋于一极限值
实践证明:在地质上岩石能否在很长时间的极 小差异应力下不断变形,需要一定的温度和压 力条件,因为它一般发生在地壳深层或它具备 有利于蠕变之条件的地方,如某些强变形带中。
剪切 脆性
挠曲
压扁
流动 温度
韧性
熔融 围 压
岩石随P-T条件的变化而呈现 变形习性及相应的主要变形机制
显理 示想 了的 各地 构壳 造一 层段 次剖 构面 造, 样剖 式面
三.岩石变形的时间因素
在地质条件下,岩石变形是长期的,通常要 以百万年为单位,因此评价时间因素对岩石变 形的效应具有关键意义。
σy=0
完全塑性材料。没
有载荷,变形继续
增大。
如果超过屈服点,继 续塑性变形,需施加 更大的应力超过屈服 应力,这个过程称应 变硬化或加工硬化。 经过一段应变硬化的 塑性变形后卸载,应 力-应变曲线回到e2 表明总的永久变形。
应变硬化
σy>0 σy=0
如果将同样应力继续 加上去,应力-应变 曲线则沿以前路径回 到塑性变形P位置上 ,好像增大了弹性范 围和增高了屈服应力 (σy/)。因此应变 硬化可以看作屈服强 度随递进变形而连续 升高。

岩石力学

岩石力学

一、名词解释:1、岩石力学:研究岩石的力学性状和岩石对各种物理环境的力场产生效应的一门理论科学,是力学的一个分支,同时它也是一门应用科学。

2、岩石:是由各种造岩矿物或岩屑在地质作用下按一定规律组合而成的多种矿物颗粒集合体,是组成地壳的基本物质。

3、岩体:是地质体,它的形成于漫长的地质年代有关,它是一定工程范围内的自然地质体,经过各种地质运动,内部含有构造和裂隙。

4、结构面:①指在地质历史发展过程中岩体内形成的具有一定的延伸方向和长度,厚度相对较小的宏观地质界面或带。

②又称弱面或地质界面,是指存在于岩体内部的各种地质界面,包括物质分异面和不连续面,如假整合、不整合、褶皱、断层、层面、节理和片理等。

5、岩石结构:结构面和结构体在岩体内的排列组合形式,称为岩体结构。

6、软化系数:指岩石试件的饱和抗压强度与干燥状态下的抗压强度的比值7、弹性模量:弹性范围内轴向应力与轴向应变之比。

8、变形模量:岩石在单轴压缩条件下,轴向应力与轴向应变之比。

9、泊松比:岩石在单向受压条件下,横向应变与纵向应变之比10、抗压强度:是指岩石试件在单轴压力下达到破坏的极限值。

11、抗拉强度:是指岩石试件在单向拉伸条件下试件达到破坏的极限值。

12、抗剪强度:是指岩石抵抗剪切破坏的能力13、流变性:指在外界条件不变时,岩石应变或应力随时间而变化的性质。

14、蠕变:在大小和方向都保持不变的外力作用下,变形随时间不断增长的现象。

15、准岩体强度:考虑裂隙发育程度,经过修正后的岩石强度称为准岩体强度。

16、完整性系数:是岩体中纵波速度和同种岩体的完整岩石中纵波速度之平方比。

17、普氏系数:岩石单轴抗压强度的十分之一。

18、RQD :指大于10cm 的岩芯累计长度与钻孔进尺长度之比的百分数。

19、原岩应力:岩石是地球表层的物质,在漫长的地质年代里,由于地质构造运动等原因使地壳物质产生了内应力效应在,这种应力称为地应力或原岩应力。

20、自重应力:由于岩体自重而产生的天然应力叫自重应力。

岩石的岩石的力学性质

岩石的岩石的力学性质

岩石的1岩石的力学性质-岩石的变形岩石的强度:岩石抵抗外力作用的能力,岩石破坏时能够承受的最大应力。

岩石的变形:岩石在外力作用下发生形态(形状、体积)变化。

岩石在荷载作用下,首先发生的物理力学现象是变形。

随着荷载的不断增加,或在恒定载荷作用下,随时间的增长,岩石变形逐渐增大,最终导致岩石破坏。

岩石变形过程中表现出弹性、塑性、粘性、脆性和延性等性质。

▪ 1.5岩石变形性质的几个基本概念▪1)弹性(elasticity):物体在受外力作用的瞬间即产生全部变形,而去除外力(卸载)后又能立即恢复其原有形状和尺寸的性质称为弹性。

▪弹性体按其应力-应变关系又可分为两种类型:▪线弹性体:应力-应变呈直线关系。

▪非线性弹性体:应力—应变呈非直线的关系。

▪2)塑性(plasticity):物体受力后产生变形,在外力去除(卸载)后变形不能完全恢复的性质,称为塑性。

▪不能恢复的那部分变形称为塑性变形,或称永久变形,残余变形。

▪在外力作用下只发生塑性变形的物体,称为理想塑性体。

▪理想塑性体,当应力低于屈服极限时,材料没有变形,应力达到后,变形不断增大而应力不变,应力-应变曲线呈水平直线.▪3)黏性(viscosity):物体受力后变形不能在瞬时完成,且应变速率随应力增加而增加的性质,称为粘性。

▪应变速率与时间有关,->黏性与时间有关▪其应力-应变速率关系为过坐标原点的直线的物质称为理想粘性体(如牛顿流体),▪4)脆性(brittle):物体受力后,变形很小时就发生破裂的性质。

▪5)延性(ductile):物体能承受较大塑性变形而不丧失其承载力的性质,称为延性。

▪ 1.7岩石变形指标及其确定▪岩石的变形特性通常用弹性模量、变形模量和泊松比等指标表示。

3)全应力-应变曲线的工程意义▪①揭示岩石试件破裂后,仍具有一定的承载能力。

▪②预测岩爆。

▪若A>B,会产生岩爆▪若B>A,不会产生岩爆▪③预测蠕变破坏。

▪当应力水平在H点以下时保持应力恒定,岩石试件不会发生蠕变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

岩石力学岩石的物理性质 一、 岩石的分类火成岩:侵入岩和喷出岩。

沉积岩:砂岩(95%的油气储量)、页岩(待开采,如页岩气、煤层气)、石灰岩。

变质岩:不含油气。

二、 岩石的强度主要取决于:组成其矿物的强度、连接结构形式、岩石的结构和整体构造、胶结物的成分和胶结方式 三、岩石的物理性质孔隙度、渗透率、可压缩性、导电性、传热性的总称。

1、 孔隙度:绝对孔隙度:φ = V 孔/V 岩总 孔隙度越高,岩石的力学性质越差。

有效孔隙度: φ有效 =V 连通/V 孔总。

2、 渗透性:在一定压力作用下,孔隙具有让流体(油、气、水)通过的性质。

其大小用渗透率来描述,反映了流体在岩石孔隙中流动的阻力的大小。

达西定律:A LhK Q ∆=φ...K Φ——反应岩石性质系数 含义:以粘度为1厘泊的流体完全饱和于岩石孔隙中,在1个大气压差的作用下,以层流的方式用过截面积为1cm 2,长度为1cm 的岩样时,其流量为1cm 3/s 。

则渗透率为1达西(D )。

3、 岩石中的油、气、水饱和度。

…4、 岩石的粒度组成和比表面积:粒度组成的分析方法:筛分析法和沉降法。

通过粒度得孔隙度。

比表面积:单位体积岩石内颗粒的总表面积。

通过粒度组成估算比面。

孔隙度、粒度、比表三者之二求一岩石的力学性质岩石的类型、组成成分、结构构造、围压、温度、应变率、载荷等对其力学性质都有影响 一、 岩石变形性质的基本概念1、 弹性:… 基本弹性参数E 、υ。

2、 塑性3、 黏性:物体受力后,变形不能在瞬时完成,且应变率随应力的增加而增加的性质。

4、 脆性:受力后变形很小就发生破裂的性质。

(ε>5%就发生破裂的称为塑性材料,小于的称脆性材料)5、 延性:发生较大塑性变形,但不丧失其承载能力的性质。

岩石在常温,常压下,并不是理想的弹性或塑性材料,而是几种的复合体,如塑弹性、塑弹塑、弹塑蠕。

其本构关系略。

6、常温常压下岩石的典型应力-应变曲线:(重点)OA---塑性,应力增加快,但应变增加不多。

原因:存在的孔隙和微裂隙被压实。

其刚度增加。

当围压大时,OA 段不明显。

AB---弹性;BC---塑性,应力增大不多,但应变增加多。

在BC 段间任一点卸载后再加载,其强度会提高,称为硬化。

B 点所对应的应力值为弹性极限。

到C 点,岩石没垮塌,还保持柱状,但有裂纹,不能加载,其承载能力变小,所以得到CD段。

为证明其承载能力变小,在CD段间取点G卸载,得曲线GK,再加载,得KH,σG<σH,所以,其还具有承载能力,但变小。

当变形到D点时,此点应力为残余强度, 是屈服应力的1.3~3倍。

二、围压对岩石力学性质的影响围压增大:岩石的抗剪强度增大,变形增大,弹性极限提高,应力-应变曲线发生形态变化,岩石的性质发生变化:弹脆——弹塑——应变硬化。

三、温度对岩石性质的影响随温度升高,岩石的屈服极限,强度降低,由脆性转化为塑性,延性;弹性模量变小。

四、孔隙、孔隙压力对岩石性质的影响孔隙:原生孔隙和次生孔隙孔隙压力:孔隙中有流体,所以液体对颗粒表面的垂直压力,称为孔隙压力。

(粒度和埋藏深度决定)1、孔隙压力对岩石应力的影响:有效围压取决于围压和孔隙压力之差,即孔隙压力抵消围压的影响。

延性随空隙压力的增大而减小,岩石由延性转化为脆性。

强度随孔隙压力的增大而减小2、孔隙度的影响孔隙度增加,岩石的强度减小,延性增加。

(强度下降的原因:随岩石孔隙度增加,集中应力便增加,承载面积减小,凸峰自由度减小。

延性增加原因是,孔隙闭合,造成类似的延性变形。

)五、应变率的影响(即作用的时间)造成岩石的破坏是内部裂纹扩展而成,若岩石裂纹发育时间充分,则其易破坏,强度降低。

总结:岩石的强度和测度一、岩石的破坏形式张性破坏、剪切破坏(破裂角和摩擦角的关系是:)和流动二、岩石的抗压强度及其影响因素(从实验的角度)1、组成岩石颗粒越细小,强度越高;容重越大,强度越高;胶结物胶结能力越强,强度越高。

平行于层理抗压强度最小,垂直于层理抗压强度最大。

(内因)2、端面应力集中,形状与大小,加载速率(如前)(外因)三、抗拉强度(采用巴西法测量)岩石的抗拉强度远低于抗压强度,主要是孔隙作用,对拉很敏感,还有组分的影响。

四、岩石的抗剪强度及影响因素1、抗剪强度的定义:限制性剪切强度:考虑了岩石内部的粘聚力和内摩擦力非限制性剪切强度:只考虑粘聚力。

内摩擦力和外载有关,粘聚力是本身具有。

2、经实验得莫尔强度包络线(略去),看出岩石的剪切强度曲线反应了影响剪切强度的两个参数:粘聚力C和内摩擦角Φ.C为包络线与纵轴的截距,Φ为包络线切线与横轴的夹角。

随围压增大的剪切破坏时,Φ减小,C增加。

3、莫尔强度包络线(后面有)的应用:包络线与应力圆相交——岩石破坏相切——岩石处于极限应力状态相离——岩石不破坏4、补充应力圆的画法(省掉)岩石的流变性一、流变性定义:在长期载荷下,应变、应力随时间变化的性质成为岩石的流变性。

弹性变形与时间无关概念区分塑性变形粘性流动:与时间有关蠕变:应力不变,但变形却随时间而变流变现象松弛:应变不变,应力随时间变小弹性后效:加载或卸载后,弹性应变之后于应力的现象。

二、岩石的蠕变性态的实验研究1、单轴、三轴实验2、表明在足够长的时间内,应力低于或高于弹性极限聚能产生蠕变现象,但不同的恒定载荷作用下,蠕变曲线不同。

3、蠕变图(重点)分三个阶段:过渡蠕变阶段——稳定蠕变阶段——加速蠕变阶段,任何一段的持续时间跟岩石的种类、所受载荷的大小、温度有关。

4、由岩石的蠕变引出岩石的长期强度岩石的长期强度是随外载的作用时间延长而降低的(即岩石在受到低于强度极限的载荷时,只要作用时间足够,岩石也破坏)。

一般长期强度和瞬时强度的比值为0.4~0.8。

三、影响蠕变性态的因素A——1/E,B——稳定阶段的应变率,C——加速蠕变阶段的应变率随水平应力的增加,B,C都增加;随温度的增加,岩石的应变显著增加,应变率也显著增加,稳定阶段的时间减小;岩石颗粒越大,应变率越小。

四、岩石蠕变的模型基本元件:弹性元件(虎克体)、粘性元件(牛顿体)、塑性元件(圣维南体)1、麦克斯韦尔模型:描述有瞬变,无弹性后效,有松弛,有蠕变,不稳定变形的情况。

(串联)2、开尔文模型:描述有弹性后效,没松弛,有稳定变形,没有蠕变的情况。

(并联)3、伯格斯模型:描述有瞬变,有过渡蠕变,稳态蠕变的岩石(串联+并联)岩石强度破坏准则一、库伦破坏准则认为岩石的破坏主要是剪切破坏,只能适用常温,低围压下。

岩石并不是沿最大剪应力方向破坏,而是沿τ和σ同时作用最厉害的面破坏。

Τ0——固有剪切力,f——tgΦ,σn——正应力,斜平面的法向与最大主应力的方向的夹角为α,θ为剪裂角,Φ为摩擦角小结:1、第一种需要记住,第二第三种本人未记2、若考虑孔隙压力,第一种表达变为:,则在σ~τ坐标中,应力圆向左平移了P,但形状不改变,则易和抗剪切包络线相切,岩石便处于极限应力状态,即孔隙压力抵消围压的影响,易使岩石破坏。

求此岩的内聚力? 二、 摩尔准则摩尔准则的包络线型:斜直线(如前)、二次抛物线、双曲线型,此剪切强度理论适用于塑性、脆性的剪切破坏。

库伦是摩尔的特殊。

三、 平面格里菲斯准则(断裂破坏)(主要指脆性破坏)脆性材料的实际强度时理论强度的1/100~1/1000,是因为物体内部存在随机分布的裂隙,当加载到一定时,其有利于破裂的裂隙末端产生集中应力导致材料的提前破坏。

只要材料有缺陷,其疲劳强度远低于静强度1、 断裂学裂纹分为三类:张开型、滑开型、撕开性。

岩石的剪切破坏主要是后两种形式,拉伸破坏形式为第一种。

2、 格里菲斯理论1) 引用断裂学基本思想:岩石内部有裂纹,其形状为椭圆 2) 裂纹沿着最大拉应力的垂直方向扩展3) 强度判据:根据椭圆孔应力状态得出解析解a.0331>+σσ破坏条件:t σσσσσ-=+-)(8)(31231 危险裂纹方位角:)(22cos 3131σσσσβ+-= b.0331≤+σσ破坏条件:t σσ=3 危险裂纹方位角:02sin =β0=⇒β4)格里菲斯强度曲线:讨论:(1)单轴拉伸1=σ,03<σ,满足 0331≤+σσ,t σσ>3 则破坏,02sin =β0=⇒β (2)双向拉伸0331≤+σσ(同上)(3)单轴压缩01>σ,03=σ,满足0331>+σσ,则t σσσσσ-=+-)(8)(31231,6/πβ=(4)双向压缩 01>σ,03>σ,t σσσσσ-=+-)(8)(31231,2/0πβ→=缺点:格里菲斯只说裂纹会被拉开,但不能说明其怎么扩展,只能使用脆性材料。

例题:洞室:MPa 2.161=σ,MPa 1.193-=σ,MPa 7.8t =σ,MPa C 35=)57(54.1︒==φf ,用格里菲斯和摩尔理论分析其强度 解:格里菲斯:0)1.19(32.61331>-+=+X σσMPa MPa X t 7.815.19)1.192.61(8)1.192.61()(8)(231231=>=-+=+-σσσσσ∴不安全莫尔判据:2cot 2sin 3131σσϕσσϕ+++=C 得197.0sin =ϕφϕ>=⇒49.66∴不安全。

相关文档
最新文档