3岩石力学性质及强度解析

合集下载

岩石力学第三章:岩石的力学特性及强度准则

岩石力学第三章:岩石的力学特性及强度准则

常 见 岩 石 的 软 化 系 数
岩 石 名 称
花 岗 岩 闪 长 岩 辉 绿 岩 流 纹 岩
软化系数
0.72~0.97 0.60~0.80 0.33~0.90 0.75~0.95
岩石名称
泥 岩
软化系数
0.40~0.60 0.44~0.54 0.70~0.94 0.75~0.97
泥 灰 岩 石 灰 岩 片 麻岩
岩石名称
抗压强度 (MPa)
100~250
抗拉强 度 (MPa)
7~25
岩石名称
抗压强度 (MPa)
5~100
抗拉强度 (MPa)
2~10
常 见 岩 石 的 抗 压 及 抗 拉 强 度
花岗岩
页 岩
流纹岩
160~300
12~30
粘土岩
2~15
0.3~1
闪长岩
120~280
12~30
石灰岩
40~250
7~20
安山岩
140~300
10~20
白云岩
80~250
15~25
辉长岩
160~300
12~35
板 岩
60~200
7~20
辉绿岩
150~350
15~35
片 岩
10~100
1~10
玄武岩 砾岩 砂 岩
150~300 10~150 20~250
10~30 2~15 4~25
片麻岩 石英岩 大理岩
50~200 150~350 100~250
(二)岩石的水理性质
5.可溶性:是指岩石被水溶解的性能。它与岩石 的矿物成分、水中CO2 含量及水的温度等因素有 关。 6.膨胀性:岩石吸水后体积增大引起岩石结构破 坏的性能称膨胀性。

第三章-3 影响岩石力学性质及概述

第三章-3    影响岩石力学性质及概述
2018年12月 10
图5-5
溶液和温度对大理岩变形影响的 应力-应变曲线图
(Griggs,围压为1000MPa)
11
2018年12月
图 5- 6
溶液和温度对石英变形影响的应力-应变曲 线图 (围压为1400MPa)
12
2018年12月
四、
孔隙压力
在地壳岩石中,常有孔隙流体存在。这 种孔隙流体的压力称为孔隙压力或孔隙液压。 存在于岩石中的流体可以促进岩石的重结晶作 用,并影响岩石的变形。如果不透水层阻挡含 水层中的孔隙流体流出,岩石中的孔隙压力就 会加大。孔隙压力的存在抵消了部分围压的影 响。即有效围压 (Pe)为围压 (Pc)与孔隙液压 (Pp) 之差: Pe = Pc- Pe…………………..(5-1) 因此 ; 孔隙压力的存在也降低了岩石的强 度,使得岩石易于发生脆性破坏。
第三章(三) 影响岩石力学性质及 岩石变形的因素
岩石的力学性质并不是固定不变的, 主要决定于岩石本身的成分、结构和构 造等,但岩石所处的外界地质环境因素, 包括围压、温度、溶液和应力作用时间 及变形速度等,都对岩石的力学性质以 致岩石变形有着明显的影响。本章主要 阐述外界因素的影响。
2018年12月
(据Paterson,1978)
2018年12月 4
二、 温 度
随着温度增高,可以使常温常压下 脆性的岩石,变得强度降低,弹性减弱, 塑性增大,韧性增强,易于变形。也就 是说,提高温度,加速了岩石由脆性向 韧性的转化。但是,影响的程度随岩性 不同有所差异。
2018年12月
5
矿物同岩石一样,温度升高,弹性极限和 抗压强度明显降低,易于形成塑性变形。图5-4 中的磁黄铁矿和闪锌矿在围压固定,温度从 25℃、100℃、200℃、300℃、400℃到500℃逐 渐升高的情况下,弹性极限等也逐渐降低,并 且温度升的越高,降得越快。 温度影响岩石力学特性的原因在于,随着 温度的升高,晶体质点的热运动增强,质点间 的凝聚力就减弱,质点容易位移;从而降低了岩 石的弹性极限与强度极限,提高了岩石的塑性 和韧性。

第3讲 岩石的力学性质-强度性质

第3讲 岩石的力学性质-强度性质

11
3.实验原理
消除方法: ①润滑试件端部(如垫云 母片;涂黄油在端部)机)
12
4.影响单轴抗压强度的主要因素
(1)承压板端部的摩擦力及其刚度(加垫块的依据) (2)试件的形状和尺寸 形状:圆形试件不易产生应力集中,好加工 尺寸:大于矿物颗粒的10倍; φ50的依据 高径比:研究表明;L/D≥(2.5-3)较合理 (3)加载速度 加载速度越大,表现强度越高) 我国规定加载速度为0.5~0.8MPa/s (4)环境 含水量:含水量越大强度越低;岩石越软越明显,对 泥岩、粘土等软弱岩体,干燥强度是饱和强度的2-3倍。 温度:180℃以下不明显:大于180℃,温度越高强度 越小。
34



2)实验加载方式:
a. 真三轴加载:试件为立方体,加载方式如图所示。 应力状态:σ1>σ2> σ3 这种加载方式试验装置繁杂,且六个面均可受到由加 压铁板所引起的摩擦力,对试验结果有很大影响,因而实 用意义不大。故极少有人做这样的三轴试验。

b.伪三轴试验:,试件为圆柱体,试件直径25~150mm,长 度与直径之比为2:1或3:1。轴向压力的加载方式与单 轴压缩试验相同。 但由于有了侧向压力,其加载上时的端部效应比单轴加 载时要轻微得多。 应力状态:
a.试验者和时间:意大利人冯· 卡门(Von· Karman) 于1911年完成的。 b.试验岩石:白色圆柱体大理石试件,该大理石 具有很细的颗粒并且是非常均质的。 c.试验发现: ①在围压为零或较低时,大理石试件以脆性方式 破坏,沿一组倾斜的裂隙破坏。 ②随着围压的增加,试件的延性变形和强度都不 断增加,直至出现完全延性或塑性流动变形,并 伴随工作硬化,试件也变成粗腰桶形的。 ③在试验开始阶段,试件体积减小,当达到抗压 强度一半时,出现扩容,泊松比迅速增大。

岩土所考博复习资料岩石力学(个人总结)第二章 岩石的基本物理力学性质

岩土所考博复习资料岩石力学(个人总结)第二章 岩石的基本物理力学性质

第二章岩石的基本物理力学性质第一节概述第二节岩石的基本物理性质一岩石的密度指标1 岩石的密度:岩石试件的质量与试件的体积之比,即单位体积内岩石的质量。

(1)天然密度:是指岩石在自然条件下,单位体积的质量,即(2)饱和密度:是指岩石中的孔隙全部被水充填时单位体积的质量,即(3)干密度:是指岩石孔隙中液体全部被蒸发,试件中只有固体和气体的状态下,单位体积的质量,即(4)重力密度:单位体积中岩石的重量,简称重度。

2 岩石的颗粒密度:是指岩石固体物质的质量与固体的体积之比值。

公式二岩石的孔隙性1 岩石的孔隙比:是指岩石的孔隙体积与固体体积之比,公式2 岩石的孔隙率:是指岩石的孔隙体积与试件总体积的比值,以百分率表示,公式孔隙比和孔隙率的关系式:三岩体的水理性质1 岩石的含水性质(1)岩石的含水率:是指岩石孔隙中含水的质量与固体质量之比的百分数,即(2)岩石的吸水率:是指岩石吸入水的质量与试件固体的质量之比。

2 岩石的渗透性:是指岩石在一定的水力梯度作用下,水穿透岩石的能力。

它间接地反映了岩石中裂隙间相互连通的程度。

四岩体的抗风化指标1 软化系数:是指岩石饱和单轴抗压强度与干燥状态下的单轴抗压强度的比值。

它是岩石抗风化能力的一个指标,反映了岩石遇水强度降低的一个参数:2 岩石耐崩解性:岩石与水相互作用时失去粘结性并变成完全丧失强度的松散物质的性能。

岩石耐崩解性指数:是通过对岩石试件进行烘干,浸水循环试验所得的指数。

它直接反映了岩石在浸水和温度变化的环境下抵抗风化作用的能力。

3 岩石的膨胀性:岩石浸水后体积增大的性质。

(1)岩石的自由膨胀率:是指岩石试件在无任何约束的条件下浸水后所产生膨胀变形与试件原尺寸的比值。

(2)岩石的侧向约束膨胀率:是将具有侧向约束的试件浸入水中,使岩石试件仅产生轴向膨胀变形而求得膨胀率。

(3)膨胀压力:岩石试件浸水后,使试件保持原有体积所施加的最大压力。

五岩体的其他特性1 岩石的抗冻性:岩石抵抗冻融破坏的性能。

岩石力学ppt课件第三章 岩体力学性质

岩石力学ppt课件第三章 岩体力学性质
(2)上凹型(塑-弹性岩体)
含软弱夹层的层状岩体及裂隙岩体 (3)上凸型(弹-塑性岩体)
结构面发育且有泥质充填的岩体。
(4)复合型:阶梯或“S”型(塑-弹-塑性岩体)
20结21/8构/17面发育不均或岩性不均匀的岩体。
23
(二)剪切变形特征:
(a)沿软弱结 构面剪切
(b)沿粗糙结构面、 软弱岩体及强风
化岩体剪切
(c)坚硬岩体 受剪切
峰前变形平均斜 率小,破坏位移 大;峰后强度损 失小。
2021/8/17
峰前变形平均斜 率较大,峰值强 度较高;峰后有 明显应力降。
峰前变形斜率大,
峰值强度高,破坏
位移小;峰后残余 强度较低。
24
(三)各向异性变形特征:(P101蔡)
岩石的全部或部分物理、力学特性随方向不同而 表现出差异的现象称为岩石的各向异性。
2021/8/17
2
§3.1 概述
岩体=结构面(弱面)+结构体(岩石块体) 结构面:断层、褶皱、节理……统称
影响岩体力学性质的基本因素:
结构体(岩石)力学性质、结构面力学性质、岩体 结构力学效应和环境因素(特别是水和地应力的作用)
2021/8/17
3
§3.2岩体结构的基本类型 (地质学、复习、了解)
36
孔隙静水压力作用
(三)力学作用:
孔隙动水压力作用
当多孔连续介质岩土体中存在孔隙地下水时, 未充满孔隙的地下水使岩土体的有效应力增加:
p
σα有效应力,σ 总应力,p 孔隙静水水压力
当地下水充满多孔连续介质岩土体时,使有效 应力减小:
p
2021/8/17
σα,σ ,p : 含义同上
37

第三讲岩石的性质解析

第三讲岩石的性质解析
软化系数越小,表示岩石在水作用下的强度和稳定性 越差,当KR <0.75为软化性强的岩石,工程性质较差。
第三章 地质构造及其对工程的影响
岩石的抗冻性
抗冻系数(Cf) 岩石的抗冻性指岩石抵抗冰冻的能力,用岩石的抗冻 系数(Cf)来表示:
c cf σc: 岩石冻融试验前的抗压强度, kPa; Cf c σcf: 冻融化试验后的抗压强度,kPa
第三章 地质构造及其对工程的影响
2、水理性质
岩石的吸水性
吸水率(ωa) 岩石的吸水率(ωa)是指岩石在通常大气压下吸入水 的重量与同体积干燥岩石重量的比,用百分数表示: g0 g s a 100% g0: 烘干岩样浸水48h后的湿重, k g; gs gs: 岩石烘干后的重量,k g 岩石的吸水率的大小,取决于岩石孔隙度的大 小、孔隙张开程度等。吸水率大,水对岩石颗粒间 结合物的浸湿、软化作用就强,岩石强度和稳定性 受水作用的影响也就越显著。
第三章 地质构造及其对工程的影响
岩石的软化性
软化系数(KR) 岩石的软化性指岩石在水的作用下,强度和稳定性降 低的性质,用岩石的软化系数(KR)来表示,即岩石饱水状 态的抗压强度与岩石风干后抗压强度之比,用小数表示:
w σw: 岩石饱水状态的抗压强度, kPa; KR d σd: 岩石风干后的抗压强度,kPa
岩石变形的指标:
弹性模量(E) 应力与弹性应变的比值,即 E=/ee 。弹性模量越大, 变形越小,说明岩石抵抗变形的能力越强。 变形模量(E0) 应力与总应变的比值,即 E0=/(ee+ ep)。变形模量越 大,总变形越小,说明岩石抵抗变形的能力越强。 泊松比(µ )
单轴压缩下岩石横向应变与纵向应变的比值,即: µ e 横/e纵。岩石的泊松比一般在0.2-0.4之间。

岩石的物理力学性质讲解

岩石的物理力学性质讲解

4、岩石的崩解性
式中:
Id2

mr md
W2 W0 100% W1 W0
Id2 ——两次循环试验求得的耐崩解指数,在0~100% 之间变化;
md——试验前试块的烘干质量; mr——残留在圆筒内试块的烘干质量; W1 ——试验前试件和圆筒的烘干重量; W2——第二次循环后试件和圆筒的烘干重量; W0——试验结束冲洗干净后圆筒的烘干重量。
2、干密度(ρ d)和干重度(γ d )
干密度是指岩石孔隙中的液体全部被蒸发后单位体积 岩石的质量,相应的重度即为干重度。
d
Ws V
d d g
(g/cm3) (kN /m3)
式中:Ws——岩石试件烘干后的质量(g); V——岩石试件的体积(cm3);
g——重力加速度。
3、饱和密度(ρ )和饱和重度(γw)
E切=
a a
2 2
a1 a1
割线模量:
是曲线上某一点与坐 标原点连线的斜率。
E割
工程上常用E50 :
E50

50 50
初始模量反映了岩石中微裂隙的多少。 切线模量反映了岩石的弹性变形特征 割线模量反映了岩石的总体变形特征。
c 具有粘性的弹性岩石
由于应变恢复 有滞后现象,即加 载和卸载曲线不重 合,加载曲线弹模 和卸载弹模也不一 样。P点加载弹模 取过P点的加载曲 线的切线斜率,P 点卸载弹模取过P 点的卸载曲线的切 线斜率。
nb
Vnb V
Ws V
Vnb Ws
Ws Vnb1 d1
V W1
w
式中:W s为干燥岩石的重量;γ d,γ w分别为干燥岩石和水的重度。
(2)岩石的饱水率(ω2)

三大岩石的工程性质评述

三大岩石的工程性质评述

岩浆岩的工程性质评述岩浆岩的工程地质性质主要与岩浆凝固时的环境条件有关,不同成因条件,其矿物成分、结构、构造和产状差别很大,岩石颗粒间的连接力也有很大差异。

(1)侵入岩:是岩浆在地下缓慢冷凝结晶生成的,矿物结晶良好,颗粒之间连接牢固,多呈块状构造。

因此,侵入岩孔隙率低、抗水性强、力学强度及弹性模量高,具有较好的工程性质。

常见的侵入岩有花岗岩、闪长岩及辉长岩等。

从矿物上看,石英、长石、角闪石及辉石的含量越多,岩石强度越高,云母含量增加使岩石强度降低。

从结构上看,晶粒均匀细小的岩石强度高,粗粒结构及斑状结构岩石强度相对较低。

(2)喷出岩:是岩浆喷出地表后迅速冷凝生成的,由于地表条件复杂,使喷出岩具有很不相同的地质特征。

具有隐晶质结构、致密块状构造的粗面岩、安山岩、玄武岩等,工程性质良好,其强度甚至可大于花岗岩。

但当这类岩石具有明显的流纹、气孔构造或含有原生节理时,工程性质变差,孔隙度增加,抗水性降低,力学强度及弹性模量减小。

在具体评述岩浆岩的工程性质时,还必须充分考虑它的节理发育程度及风化程度。

沉积岩的工程性质评述沉积岩具有层理构造,层状及层理对沉积岩工程性质的影响主要表现为各向异性。

因此,沉积岩的产状及其与工程建筑物位置的相互关系对建筑物的稳定性影响很大。

同时由于组成岩石的物质成分不同,也具有不同的工程地质特征。

(1)碎屑岩:是碎屑颗粒被胶结构胶结在一起而形成的岩石。

它的工程性质主要取决于胶结物成分、胶结方式。

从胶结物成分看,按硅质、钙质、铁质、粘土质的顺序,强度依次降低。

从胶结方式看,基底式胶结的岩石胶结紧密,强度较高,受胶结物成分控制;孔隙式胶结岩石的工程性质与碎屑颗粒成分、形状及胶结物成分有关,变化很大;接触式胶结岩石的孔隙度大,透水性强,强度低。

(2)粘土岩:是工程性质最差的岩石之一。

粘土岩强度低、抗水性差、亲水性强。

当粘土岩有较多节理、裂隙时,一旦遇水浸泡,工程性质迅速恶化,常产生膨胀、软化或崩解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一些典型的破坏形态
岩石的变形特性,根据其破坏特征,可以分为弹 性、弹塑性、塑性、粘性等(粘性又可分为粘弹性 和粘塑性)等。
§3-2 岩石的变形特性
弹性:指物体在外力作用下发生变形,当外力撤出后变形
能够恢复的性质。
塑性:指物体在外力作用下发生变形,当外力撤出后变形 不能恢复的性质。 脆性:物体在外力作用下变形很小时就发生破坏的性质。 延性:物体能够承受较大的塑性变形而不丧失其承载能力
瓦威尔西克(Wawer Sik,1968)对岩石开始宏观破坏 后的性态做了仔细研究,所得结果如图所示。
类型1:试件仍有一定的强度。要使试件进一步破坏,试验机必须进 一步作功,这种类型为稳定破坏型。应力-应变曲线的破坏后区斜率 为负。这种类型为稳定破坏型;(孔隙率大的沉积岩和部分结晶岩) 类型2:试件受力达到其极限强度以前储存的弹性变形能就足以使试 件完全破坏,不但不需要试验机进一步作功,还要逐步卸载,才能作 出破坏后区应力-应变曲线。应力-应变曲线的破坏后区斜率为正。 这种类型为非稳定破坏型;(细粒结晶岩)
小 结:
1.无论岩石在什么状态的应力条件下( 压、拉、剪、弯、扭),其破坏形式基本上只 有两种:拉伸和剪切。 2. 三向等压>三向不等压>双向压>单向 压>剪切(包括扭转)>弯曲>单向拉伸;
3.从试验数量来看,单向压缩试验、 圆盘劈裂试验最多。
岩石的破坏形式
就其破坏本质而言,岩石破坏有以下三种类型: 1、拉破坏 2、剪切破坏 3、塑性流动破坏
1 与 主 应 力 差 ( σ 1-
σ 3) 的关 系 曲 线 表 示 。
围压对岩石变形的影响
图2-6 三轴应力状态下大理岩的应力-应变曲线
围压对岩石刚度的影响
砂岩:孔隙较多,岩性较软, σ3增大,弹性模量变大。 辉长岩:致密坚硬, σ3增大,弹性模量几乎不变。
围压对岩石强度的影响
图2-6 三轴应力状态下大理岩的应力-应变曲线
N = Pcosα Q = Psinα
剪切面上的法向应力σ 和剪应力τ 为:
N P cos A A
Q P sin A A
用楔形垫板改变倾斜压模倾角
4. 三轴压缩剪切试验
抗剪强度曲线:τ
= c+σ tgυ
四、围压下岩石的力学性质指标测定
岩石三轴试验是为了模拟井下地层岩石的实
2、岩石在真三轴试验条件下的变形特性
岩石的真三轴试验在20世纪60年代才开始的。
(a)σ 3=常数, 极限应力σ 1 随σ 2增大而增大,但破坏前的塑性变 形量却减小;破坏形式从延性向脆性变化; (b)σ 2=常数, 极限应力σ 1 随σ 3增大而增大,破坏前的塑性变形 量增大,但屈服极限未变。破坏形式从脆性向延性变化。
2、间接拉伸试验
A 劈裂法(巴西试验法)
圆盘试件:
2P t d t
方形试件:
2P t ah
式中:P—破坏时的荷载,N;
d— 试件直径;cm;
t—试件厚度,cm; a,h—方形试件边长和厚度,cm。
不规则试件(加压方向应满足h/a≤1.5 ):
t
P V 2/3
1、体积变形阶段(OE): 弹 性 变 形阶 段 , 曲线 呈 线 性变化。
1 2 3
在E点后,曲线向左弯曲,开始偏离直线段,开始出现 扩容,表示岩体内部开始产生微裂隙。E点应力称为初始扩 容应力。
2、体积不变阶段(EF) 随应力增加,岩石体积虽有变形,但体积应变增量近 于0,体积大小几乎无变化,且有
c Br t


s
o

o
理想弹性体

s
理想弹塑性体

o

o
d dt
线性硬化弹塑性体
理想粘性体
一、岩石在单轴压缩状态下的力学特性
1、σ ~ε 曲线的基本形状 美国学者米勒将σ ~ε 曲线分为6种。
一般岩石在室温和大气条件下的单向压缩试验曲线
(1)0A段:微裂隙闭合阶段,微裂隙压密极限σ A。 (2)AB段:近似直线,弹性阶段,σ
岩石单向 碳酸盐类岩石 抗压强度与石英含量的关系 极限抗压强度与密度之间关系
对于风化严重,难以
加工成试件的岩石 ,可根
据点荷载试验计算岩石的
抗压强度:
c 24I s
式中:Is—点荷载强度指标,
Is P / D
2
2、岩石单轴抗压强度分类
我国工程界按岩石单轴抗压强度将岩体分为四类:
(2)、 准岩体强度
完整性系数K:
V岩体 2 K ( ) V岩石
式中:V岩体、 V岩石分别为弹性波在岩体和岩石中传播的纵波速度。 准岩体抗压强度: σ 准岩体抗拉强度: σ
岩石的体积变形可用下式表示:
1 2 x y z ( x y z ) E
1 2 v v E
体积应力:
x y z v
E 1 2
体积模量:
三、岩石的体积应变曲线
在 E 、 μ 为常数的情况下,岩石的体积应变曲线可分为
三个阶段:
一 、岩石的扩容现象
岩石的扩容
岩石的扩容现象是岩石具有的一种普遍性质,是岩石在荷
载作用下,其破坏之前产生的一种明显的非弹性体积变形。
扩容----是指岩石受外力作用后 ,发生非弹性的体积膨胀。
多数岩石在破坏前都要产生扩容,扩容的快慢和大小与岩
石本身的性质、种类及其它因素有关。
二、岩石的体积应变
体积应变——单位体积的改变,称为体积应变
四、岩石变形特性参数的测定
1、弹性模量E的确定 a、线弹性类岩石――σ ~ε 曲线呈线性关系,曲线上任 一点P的弹性模量E:
E
b
σ ~ε 曲线呈非线性关系
d 初始模量 : E 初= d
切线模量(直线段):
0
a 2 a1 E 切= a 2 a1
割线模量:
(3)岩石的强度:是指岩石抵抗破坏的能力。岩石
在外力作用下,当应力达到某一极限值时便发生破
坏,这个极限值就是岩石的强度。
一、岩石的单轴抗压强度σ
P c A
C
端部效应
破坏形态
为了消除端部效应,国际岩石力学学会推荐采用高径 比(h/d)为2.5~3.0的试件做抗压试验。 根据h/d=1的试件的抗压强度计算h/d>1的岩块的抗压 强度:
t
1 1 ( ~ ) c 10 50
三、岩石的抗剪强度
1、剪切面上无压应力的剪切试验
2、剪切面上有压应力的剪切试验
P A
T A
试件尺寸:直径或边长不小于50mm,高度应等于直径或边长。 改变P,即可测得多组σ 、τ ,作出σ ~τ 曲线。
3、斜剪试验
作用于剪切面上的法向力N和切向力Q:
第三章
岩石力学性质及强度
§3-1
岩石变形简介
岩块一般是指从岩体中取出的,尺寸不大 的岩石,实验室试验的试件是岩块的一种。 岩体是指地下工程周围较大范围的岩石。 岩石从狭义说来包括岩块和岩体,广义说 来应包括晶体,岩块、岩体和地壳。 岩石的力学性质,即岩石在受力之后所表 现的特性的反映,主要有变形特性和强度特性
际受力状态而测定岩石在围压作用下的抗压强度、
变形模量、弹性模量及泊松比。
岩石的三轴抗压强度、变形模量、弹性模量、 泊松比及剪切模量分别为:
P ( 2) 3 A
50 3 Ee ( 4 ) 50 i
Ee G 6) ( 2(1 u )
50 3 E0 50 0
( 50 3 ) ur ( 50 3 )
(3)
( 5)
岩石在三轴压缩下的极限应力σ
1c为三轴抗压强度,
它随围压增大而升高。
按照莫尔强度理论,可按下式计算三向抗压强度:
1c
σ
1c
1 sin c 3 1 sin
——岩石的三向抗压强度;
σ c ——岩石的单向抗压强度; φ——岩石的内摩擦角。
岩石力学的弹性变形
E K 3 1 2
弹性模量, E 泊松比, v 体积模量, K 剪切模量, G
E G 2 1
§3-6
岩体强度的测定(现场测试)
1、岩体单向抗压强度和准岩体强度 (1)单向抗压强度σ c
试件:边长(0.5~1.5)m,
高度不小于边长的立方块。
式中:P—试件破坏时的作用力,N; A—试件横截面面积,m2。
B
为弹性极限。
(3)BC段:屈服阶段,σ C为屈服极限。 (4 )CD 段:破坏阶段,σ D 为强度极限,即单轴抗压强度。 (5)DE段:即破坏后阶段,σ E为残余强度。
刚度K:指物体产生单位位移所需的外力。
K P u
弹性变形能W:
1 P2 W Pu 2 2K
式中: K——物体的刚度,kN/mm; p——外力,N; u—— 在外力作用下的位移。
E割

工程上常用E50 :
50 E 50 50
初始模量反映了岩石中微裂隙的多少。 切线模量反映了岩石的弹性变形特征
割线模量反映了岩石的总体变形特征。
c
具有粘性的弹性岩石
由于应变恢复 有滞后现象,即加 载和卸载曲线不重 合,加载曲线弹模 和卸载弹模也不一 样。 P 点加载弹模 取过 P 点的加载曲 线的切线斜率, P 点卸载弹模取过 P 点的卸载曲线的切 线斜率。
d c c1 0.778 0.22( ) h
式中:σ
c1——
h/d=1的试件抗压强度;
σ c —— h/d>1的试件抗压强度。
国际岩石力学学会室内试验委员会规定对于抗压强度试验要求圆柱形试件的尺寸精度是: (1)试件的端面平坦,误差小于0.02毫米; (2)试件的端面应垂直于试件轴,误差小于0.001弧度 (3.5分); (3)试件的每侧面应是光滑的,凹凸不平自由度和试件在整个长度范围内应平直到0.3毫米以内; (4)通过量测互成直角的两个直径的平均值,其位置大约在试件的上部、中部和下部,试件的直径 误差应小于0.1毫米。这个平均直径将用来计算横截面积。试件高度的精度应在1.0毫米之内。
相关文档
最新文档