单元测试(三)整式及其加减法
第三章 整式及其加减 单元测试(含答案) 2024-2025学年北师大版数学 七年级上册

第三章整式及其加减(单元测试)2024-2025学年七年级上册数学北师大版一、单选题1.将化简得( )A .B .C .D .2.下列运算中,正确的是( )A .B .C .D .3.如图1所示,一块瓷砖表面有四条分割线,由分割线可构成一个正方形图案.图2由两块瓷砖铺成,分割线可构成3个正方形.图3由四块瓷砖铺成,分割线可构成9个正方形.若用十二块瓷砖铺成长方形,则由分割线可构成的正方形数最多是( )A .33B .34C .35D .364.下列式子:,,,,,中,整式的个数是( )A .3B .4C .5D .65.如果,那么代数式的值为( )A .B .C .D .6.多项式2x 2﹣x ﹣3的项分别是( )A .x 2,x ,3B .2x 2,﹣x ,﹣3C .2x 2,x ,﹣3D .2x 2,x ,37.下列说法正确的是( )A .单项式的系数是,次数是B .多项式的是二次三项式C .单项式的次数是1,没有系数D .单项式的系数是,次数是8.下列各题正确的是( )A .B .()()2x y x y +-+x y +x y --+x y x y--23325x x x +=235x x +=2222ab b a -=()222a b a b--=-+3x 3a c32d +32y --034a 2a b +=-18762a b a b ⎛⎫+--- ⎪⎝⎭3113-11-25xy π-15-422231x y x -+-a 2-xy z 1-4336x y xy +=0x x --=C .D .9.如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第7个五边形数是( )A .62B .70C .84D .10810.多项式按字母的降幂排列正确的是( )A .B .C .D .二、填空题11.有一列数:1,3,2,,…,其规律是:从第二个数开始,每一个数都是其前后两个数之和,根据此规律,则第2023个数是12.已知a 是最小的正整数,b 是最大的负整数,c 是立方为的数,则 .13.单项式次数是 ,系数是 .14.已知,则.15.如图,点是线段上的一点,分别以、为边在的同侧作正方形和正方形,连接、、,当时,的面积记为,当,的面积记为,,以此类推,当时,的面积记为,则的值为 .16.已知两个代数式的和是,其中一个代数式是,则另一个为.17.用大小相同的棋子按如下规律摆放图形,第2022个图形的棋子数为 .396y y y -=22990a b ba -=2323573x y xy x y +--x 3232537x y x y xy -+-+2323537x y xy x y --+2323753x y xy x y +--2233735xy x y x y-+-1-27-abc =3213a bc -()2760m n ++-=()20m n +=C AB AC BC AB ACDE CBFG EG BG BE 1BC =BEG 1S 2BC =BEG 2S ⋯BC n =BEG n S 20232022S S -25412a a -+236a -18.如图,第(1)个多边形由正三角形“扩展”而来,边数记为,第(2)个多边形由正方形“扩展”而来,边数记为,…,依此类推,由正边形“扩展”而来的多边形的边数记为,则 .三、解答题19.先化简,再求值:(1)(6a ﹣3ab )+(ab ﹣2a )﹣2(ab +b ),其中a ﹣b =9,ab =6;(2)x ﹣2(x ﹣)+(﹣),其中|x +2|+(y ﹣1)2=0.20.先化简,再求值:,其中,.21.如图,在数轴上,三个有理数从左到右依次是:,x ,.(1)利用刻度尺或圆规,在数轴上画出原点;(2)直接写出x 的符号为______.(填“正号”或“负号”)22.七年级新学期,两摞规格相同准备发放的数学课本整齐地叠放在课桌面上,小英对其高度进行了测量,请根据图中所给出的数据信息,解答下列问题:312a =420a =n ()3n a n ≥10a =2312213y 23123x y +22221322212222a b ab ab a b ab ab ⎡⎤⎛⎫----+++ ⎪⎢⎥⎝⎭⎣⎦3a =-2b =1-1x +(1)每本数学课本的厚度是 cm ;(2)若课本数为(本),整齐叠放在桌面上的数学课本顶部距离地面的高度的整式为 (用含的整式表示);(3)现课桌面上有48本此规格的数学课本,整齐叠放成一摞,若从中取出13本,求余下的数学课本距离地面的高度.23.为了参加校园文化艺术节,书画社计划买一些宣纸和毛笔,现了解情况如下:甲、乙两家文具商店出售同样的毛笔和宣纸,毛笔每支20元,宣纸每张4元.甲商店的优惠办法是:买1支毛笔送1张宣纸;乙商店的优惠办法是:全部商品按定价的9折出售.书画社想购买毛笔10支,宣纸x 张.(1)若到甲商店购买,应付_____________元;若到乙商店购买,应付_____________元(用含x 的代数式表示);(2)若时,去哪家商店购买较合算?请计算说明;(3)若时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并求出此时需付多少元?24.如图是一组有规律的图案,它们是由边长相等的等边三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…照此规律摆下去:(1)照此规律,摆成第5个图案需要______个三角形.(2)照此规律,摆成第n 个图案需要______个三角形.(用含n 的代数式表示)(3)照此规律,摆成第2022个图案需要几个三角形?x x (10)x >30x =30x =参考答案:1.D2.D3.C4.B5.A6.B7.D8.D9.B10.A11.112.13.14.115.16.17.606918.11019.(1)2a ﹣2b ﹣3ab ,0;(2)﹣3x +y 2,7.20.,21.(1)略;(2)正号22.(1);(2);(3)23.(1),(2)到甲商店购买较为合算(3)先到甲商店购买10支毛笔,送10张宣纸,再到乙商店购买张宣纸,费用为272元24.(1)16;(2);(3)6067个3613-4045222418a a -+2ab -18-0.5850.5x +102.5cm()4160x +()3.6180x +20(31)n +。
第3章 整式及其加减 单元测试卷

北师大版七年级数学上册第3章 整式及其加减 单元测试卷一、选择题:1.下列说法正确的是( ) A .0不是单项式 B .x 没有系数C .2432x x ++是二次三项式D .“ab ”是单项式2.如果多项式()21a ba y y x --+-是关于y 的三次多项式,则( )A .03a b ,B .13,a bC .23a b ==,D .21a b ==,3.下面计算正确的是( )A .22323x x -=B .235325a a a +=C .33x x +=D .10.2504ab ab -+= 4.下列各题中,运算结果正确的是( )A .3a +2b =5abB .4x 2y ﹣2xy 2=2xyC .5y 2﹣3y 2=2y 2D .7a +a =7a 2 5.下列判断错误的是( )A .1﹣a ﹣2ab 是二次三项式 B .﹣a 2b 2c 与2ca 2b 2是同类项 C .是多项式 D .的系数是6.若关于x 的多项式﹣7x 3+(6+2m )x 2+3不含x 的二次项,则m =( ) A .2B .﹣2C .3D .﹣37.c 是a 的16,c 是b 的18,那么a 与b 的比是( ) A .11:68B .4:3C .3:4D .5:78.把一张纸剪成5块,从所得纸片中取一块,把此块再剪成5块,然后从这5块中取出一块,把此块又剪成5块,……这样类似进行n 次后(n 是正整数),共得纸片的总块数是( ) A .54n +B .55nC .41n +D .44n +9.有甲、乙、丙三条公路,乙公路的路线长度是甲公路的6倍多3千米,丙公路的路线长度是甲公路的2倍少2千米,则丙公路的路线长度的3倍比乙公路的路线长度( ) A .多1千米B .少5千米C .少9千米D .少12千米10.代数式3221x x ++-化简后的结果不可能是( ) A .51x --B .3x +C .51x +D .3x --11.红红按照一定的规律用小棒摆出了下面的4幅图.如果按照这个规律维续摆,第五幅图要用( )根小棒. A .23B .31C .35D .4512.如图,将一张边长为1的正方形纸片分割成7部分,部分②是部分①面积的一半,部分③是部分②面积的一半,依此类推,则234561111111222222S =------阴影.借助图形,则23202320241111122222++++=( )A .2023112-B .2024112- C .2025112-D .2024122-二、填空题:13.若312m x y +-与412n x y +是同类项,则()2022m n -= .14.若a 2−3a =−1,则代数式2a 2−6a +4的值为________.15.当7x =时,代数式35ax bx +-的值为7,则若当7x =-时,代数式35ax bx +-的值为 . 16.已知有理数a ,b ,c 在数轴上的位置如图所示,则化简2a c a b c b ++--+的结果是 .17.单项式234m a b -和1212n a b +是同类项,关于x y 、的多项式221x xy y mxy ++--中xy 项的系数是3-,则m n += .18. 填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是________.三、解答题:19.化简:(1)()()2354x y x y -++ (2)()()222245234a b ab a b ab ---20.先化简,再求值:()()2222222332a b ab a b ab a b -+---,其中a ,b 满足等式()20=12a b -++.21.已知2332A x mx y =-+,2233B nx x y =-+是关于x y ,的多项式,其中m n ,为常数. (1)若A B +的值与x 的取值无关,求m n ,的值.(2)在(1)的条件下,先化简()222124322m n m n n m n n ⎛⎫-+++ ⎪⎝⎭,再求值.22. 某中学七年级(1)班4名老师决定带领本班m 名学生去某革命胜地参观.该革命胜地每张门票的票价为30元,现有A 、B 两种购票方案可供选择:方案A :教师全价,学生半价;方案B :不分教师与学生,全部六折优惠 (1)请用含m 的代数式分别表示选择A 、B 两种方案所需的费用;(2)当学生人数40m =时,且只选择其中一种方案购票,请通过计算说明选择哪种方案更为优惠23.阅读理解:已知()41A a x =--,若A 值与字母x 的取值无关,则40a -=,解得4a =.∴当4a =时,A 值与字母x 的取值无关.知识应用:(1)已知,35A mx x B mx x m =-=-+. ①用含,m x 的式子表示32A B -;②若32A B -的值与字母m 的取值无关,求x 的值; 知识拓展:(2)春节快到了,某超市计划购进甲、乙两种羽绒服共30件进行销售,甲种羽绒服每件进价700元,每件售价1020元;乙种羽绒服每件进价500元,销售利润率为60%.购进羽绒服后,该超市决定:每售出一件甲种羽绒服,返还顾客现金a 元,乙种羽绒服售价不变.设购进甲种羽绒服x 件,当销售完这30件羽绒服的利润与x 的取值无关时,求a 的值.。
北师大版七年级数学上册《第三章整式及其加减》单元测试卷(带答案)

北师大版七年级数学上册《第三章整式及其加减》单元测试卷(带答案)一、选择题1.小明比小强大2岁,比小华小4岁.如果小强y 岁.则小华( ) A .(y −2)岁B .(y +2)岁C .(y +4)岁D .(y +6)岁2.下列代数式中,是次数为3的单项式的是( ) A .−m 3nB .3C .4t 3−3D .x 2y 23.对于多项式−3x −2xy 2−1,下列说法中,正确的是( ) A .一次项系数是3 B .最高次项是2xy 2 C .常数项是−1D .是四次三项式4.下列各组单项式中,不是同类项的是( ) A .−2y 2a 3与12ay 2B .12x 3y 与−12xy 3 C .6a 2bn 与−a 2nbD .23与325.按如图所示的程序运算,如果输入x 的值为12,那么输出的值为( )A .3B .0C .−1D .−36.下列运算中,正确的是( ) A .3a +2b =5abB .2a 3+3a 2=5a 5C .5a 2−4a 2=1D .3a 2b −3ba 2=07.若关于x 的代数式2x 2+ax +b −(2bx 2−3x −1)的值与x 无关,则a −b 的值为( ) A .2B .4C .−2D .−48.观察下列关于m ,n 的单项式的特点:12m 2n ,23m 2n 2,34m 2n 3,45m 2n 4,56m 2n 5,……,按此规律,第n 个单项式是( ) A .nn+1m 2n n B .nn+1m n n nC .n−1nm 2n nD .n−1nm n n n二、填空题9.一支钢管需要a 元,一本管记本需要b 元,现买5支钢笔和8本笔记本共需要 元. 10.若x P +4x 3+qx 2+2x +5是关于x 的五次四项式,则qp = . 11.已知2x 6y 2和−x 3m y n 是同类项,则2m +n 的值是 .12.一种商品成本为a 元/件,商场在成本的基础上增加20%作为售价出售,现搞活动促销,按原售价的九折出售.设售出m件该商品时,总利润为元.13.已知a是−5的相反数,b比最小的正整数大4,c是相反数等于它本身的数,则a+b+c的值是.三、计算题14.计算:(1)4b−3a−3b+2a(2)(3x2−y2)−3(x2−2y2)+m2−3cd+5m的值.15.若a、b互为相反数,c、d互为倒数,|m|=3,求a+b4m四、解答题16.已知代数式A=x2+ax−2a(1)求2A−B;(2)若2A−B的值与x的取值无关,求a的值.17.如图,在一个直角三角形休闲广场的直角处设计一块四分之一圆形花坛,若圆形的半径为r米,广场一直角边长为2a米,另一直角边长为b米.(1)列式表示广场空地的面积(用含π的式子表示);(2)若a=150米,b=50米,r=20米,求广场空地的面积(π取3.14).18.滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.45元/分钟0.4元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算:时长费按行车的实际时间计算;远途费的收取方式为:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收0.4元.(1)若小东乘坐滴滴快车,行车里程为15公里,行车时间为20分钟,则需付车费多少元?(2)若小明乘坐滴滴快车,行车里程为a公里,行车时间为b分钟,则小明应付车费多少元(用含a、b的代数式表示,并化简)?(3)小王与小张各自乘坐滴滴快车,行车里程分别为9.5公里与14.5公里,但下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差多少分钟?参考答案1.D2.D3.C4.B5.C6.D7.D8.A9.(5a+8b)10.011.612.0.08am13.1014.(1)解:4b−3a−3b+2a=(4−3)b+(2−3)a=b−a(2)解:(3x2−y2)−3(x2−2y2)=3x2−y2−3x2+6y2=5y215.解:依题意得a+b=0,cd=1,m=±3.当m=3时,原式=0+32−3×1+5×3=9−3+15=21.当m=−3时,原式=0+(−3)2−3×1+5×(−3)=9−3−15=−9. 因此值为21或-9.16.(1)解:原式=4ax-x-4a+1(2)解:a=1417.(1)解:四分之一圆的面积为:14πr2;直角三角形的面积为:12×2a×b=ab;所以,广场空地的面积为:ab−14πr2;(2)解:当a=150米,b=50米,r=20米,π=3.14时ab−14πr2=150×50−14×3.14×202=7186(平方米)18.(1)解:1.8×15+0.45×20+0.4×(15−10)=38(元)答:需付车费38元.(2)解:当a≤10时,小明应付费(1.8a+0.45b)元;当a>10时,小明应付费1.8a+0.45b+0.4(a−10)=(2.2a+0.45b−4)元;(3)解:小王与小张乘坐滴滴快车分别为x分钟、y分钟1.8×9.5+0.45x=1.8×14.5+0.45y+0.4×(14.5−10)整理,得:0.45x−0.45y=10.8∴x−y=24因此,这两辆滴滴快车的行车时间相差24分钟.。
第三章 整式及其加减 单元测试

第三章 整式及其加减 单元测试(能力提升)一、单选题1.下列代数式中,符合代数式书写要求的是()A .3mn B .2135x y C .()3m n ´+D .3ab ×【答案】A【分析】根据代数式的书写要求逐一判断即可.【解析】解:A .3m n符合代数式书写要求;B .2135x y 应为2165x y ;C .()3m n ´+应为()3m n +;D .3ab ×应为3ab ;故选:A .【点睛】本题考查代数式的书写要求,掌握代数式的书写要求是解题的关键.2.下列判断中错误的个数有()(1)23a bc 与2bca -不是同类项; (2)25m n 不是整式;(3)单项式32x y -的系数是-1; (4)2235x y xy -+是二次三项式.A .4个B .3个C .2个D .1个【答案】B【分析】根据同类项概念和单项式的系数以及多项式的次数的概念分析判断.【解析】解:(1)23a bc 与2bca -是同类项,故错误;(2)25m n 是整式,故错;(3)单项式-x 3y 2的系数是-1,正确;(4)3x 2-y+5xy 2是3次3项式,故错误.故选:B .【点睛】本题主要考查了整式的有关概念.并能掌握同类项概念和单项式的系数以及多项式的次数的确定方法.3.某人骑自行车t (小时)走了()km s ,若步行()km s ,则比骑自行车多用3(小时),那么骑自行车每小时比步行多走()()km .A .3s s t t --B .3s s t t -+C .()s t s +D .(3)s t -【答案】B【分析】先求出两种方法各自的速度,再将速度作差即可得出所求.【解析】骑自行车的速度为:s t 步行速度为:3st +骑自行车比步行每小时快出的路程:3s s t t -+.故选B【点睛】本题考查代数式计算的应用,掌握速度、时间、路程之间的关系是解题关键.4.下列各组中的两项是同类项的是( )A .2a b 和2ab -B .214x y 和5xy -C .a 和3aD .m 和7n【答案】C【分析】根据同类项的定义求解即可,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解析】解:A. 2a b 和2ab -所含相同字母的指数不同,不是同类项,不符合题意;B. 214x y 和5xy -所含相同字母的指数不同,不是同类项,不符合题意;C. a 和3a 是同类项,符合题意;D. m 和7n 所含字母不同,不是同类项,不符合题意;故选C .【点睛】本题考查了同类项.解题的关键是熟练掌握同类项的定义.5.已知一个多项式的2 倍与3x2+ 9x 的和等于-x2+5x-2,则这个多项式是( )A.-4x2-4x-2B.-2x2-2x-1C.2x2+14x-2D.x2+7x-1【答案】B【分析】设这个多项式为A,根据题意,得:2A+3x2+ 9x=-x2+5x-2则A=[-x2+5x-2-(3x2+ 9x)] ÷2,再利用整式的加减进行去括号合并同类项,计算即可.【解析】设这个多项式为A,根据题意,得:2A+3x2+ 9x=-x2+5x-2则A=[-x2+5x-2-(3x2+ 9x)] ÷2=(-x2+5x-2-3x2-9x)÷2=(-4x2-4x-2)÷2=-2x2-2x-1故选B【点睛】本题主要考查整式的加减,熟练掌握去括号法则以及合并同类项是解题关键.6.已知3x2﹣4x﹣1的值是8,则15x2﹣20x+7的值为( )A.45B.47C.52D.53【答案】C【分析】观察题中的两个代数式3x2﹣4x﹣1和15x2﹣20x+7,可以发现15x2﹣20x+7=5(3x2-4x)+7,因此可求出3x2﹣4x的值,然后整体代入即可求出所求的结果.【解析】由题意得:3x2-4x-1=8,化简得:3x2-4x=9,可知:15x2-20x+7=5(3x2-4x)+7=45+7=52.故选C.【点睛】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式15x2-20x的值,然后利用“整体代入法”求代数式的值.7.一个多项式M减去多项式2-+-,小马虎同学却误解为先加上这个多项式,结果得x x253237++,则多项式M是()x xA.2x x-+D.2843210310-++C.2x x-+B.284x x--x x【答案】A【分析】根据题意列出关系式,去括号合并即可得到结果.【解析】根据题意得:M=(x2+3x+7)-(-2x2+5x-3)=x2+3x+7+2x2-5x+3=3x2-2x+10,故选:A.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.8.某天数学课上老师讲了整式的加减运算,小颖回家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:5(2a2+3ab-b2)-(-3+ab+5a2+b2)=5a2■-6b2+3被墨水弄脏了,请问被墨水遮盖住的一项是()A.+14ab B.+3ab C.+16ab D.+2ab【答案】A【分析】此题涉及整式加减运算,解答时只要把求出5(2a2+3ab-b2)-(-3+ab+5a2+b2)的值,再减去5a2-6b2+3即可知道横线上的数.【解析】设横线上这一项为M,则M=5(2a2+3ab-b2)-(-3+ab+5a2+b2)-(5a2-6b2+3)=14ab.故选A.【点睛】解决此类题目的关键是熟练运用去括号、合并同类项,括号前是负号,括号里的各项要变号.合并同类项的时候,字母应平移下来,只对系数相加减.9.设P为一个二次三项式,Q为一个一次二项式,且P Q¸的商为一个整式.则P与Q的和、差、商之和的项数至少是()A.3B.2C.1D.0【答案】B【分析】根据多项式除法及结果分析得出Q 是P 分解因式后的一个因式,设()2,P acx ad bc x bd =+++ 其中a b c d ,,,是都不为0的常数,则()(),P ax b cx d =++ 令=,Q ax b + 再求解,P Q P Q P Q ¸+++-通过结果进行分析,从而可得答案.【解析】解:Q P 为一个二次三项式,Q 为一个一次二项式,且P Q ¸的商为一个整式.P Q \¸的结果是一个一次二项式,即Q 是P 分解因式后的一个因式,设()2,P acx ad bc x bd =+++ 其中a b c d ,,,是都不为0的常数,则()(),P ax b cx d =++ 令=,Q ax b +则,P Q cx d ¸=+2P Q P Q P Q P Q P \¸+++-=¸+()2222cx d acx ad bc x bd =+++++()()222221ax ad bc c x d b =+++++Q a b c d ,,,是都不为0的常数,当210,b += 及12b =-时,()()222221ax ad bc c x d b +++++222ax adx =+所以:P 与Q 的和、差、商之和的项数至少是2项,故选:.B【点睛】本题考查的是因式分解的应用,多项式除法的理解,灵活应用整式的乘法与因式分解的知识进行分析是解题的关键.10.代数式4x 3–3x 3y +8x 2y +3x 3+3x 3y –8x 2y –7x 3的值A .与x ,y 有关B .与x 有关C .与y 有关D .与x ,y 无关【答案】D【解析】根据整式的加减—合并同类项,可知33233234383387x x y x y x x y x y x -+++--=0,因此多项式与x 、y 均无关.故选D.二、填空题11.在式子1x y +、12、x -、61xy +、22a b -中,多项式有______个.【答案】2【分析】根据多项式的定义判断解答即可.【解析】解:∵1x y +是分式,不是整式,12、x -是单项式,61xy +、22a b -是多项式,∴多项式有2个,故答案为:2.【点睛】本题考查多项式的定义,掌握多项式满足的条件是解答的关键.12.2018年电影《我不是药神》反映了用药贵的事实,从而引起了社会的广泛关注.国家针对部分药品进行了改革,看病贵将成为历史.据调查,某种原价为345元的药品进行了两次降价,第一次降价15%,第二次降价x %,则该药品两次降价后的价格变为__________________元.【答案】345(1﹣15%)(1﹣x %)【分析】根据题意可以用代数式表示出该药品两次降价后的价格,本题得以解决.【解析】解:由题意可得,该药品两次降价后的价格变为:345(1﹣15%)(1﹣x %),故答案为:345(1﹣15%)(1﹣x %).【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.13.小雷说“我有一个整式2()a b +”小宁说“我也有一个整式,我们两个整式的和为3(2)a b -”,那么小宁的整式是________.【答案】4a-5b .【分析】直接利用整式的加减运算法则化简,进而得出答案.【解析】解:由题意可得,小宁的整式是:3(2a-b )-2(a+b )=6a-3b-2a-2b=4a-5b .故答案为:4a-5b .【点睛】考查了整式的加减,直接利用整式的加减运算法则化简,进而得出答案.14.已如22321,42A B x x B C x -=-+-=-,则C A -=_________.【答案】225x x -+-【分析】先把两式相加求解,A C - 再求解A C -的相反数即可得到答案.【解析】解:Q 22321,42A B x x B C x -=-+-=-\ 两式相加可得:2232142A C x x x -=-++-225x x =-+()()222525C A A C x x x x \-=--=--+=-+-故答案为:225x x -+-【点睛】本题考查的是整式的加减运算,相反数的含义,掌握去括号的法则与合并同类项的法则是解题的关键.15.关于x 的多项式222514x mx nx x x -++--+,它的值与x 的取值无关,则m n +=________.【答案】3【分析】先合并同类项,再根据关于x 的多项式222514x mx nx x x -++--+的值与x 的取值无关,得出n -2=0,m -1=0,再求出m 和n 的值,代入计算即可.【解析】解:222514x mx nx x x-++--+=()()2211n x m x -+--∵多项式222514x mx nx x x -++--+的值与x 的取值无关,∴n -2=0,m -1=0,∴m =1,n =2,∴m +n =3,故答案为:3【点睛】此题考查了整式的加减,关键是根据多项式的值与x 的取值无关,得出关于m ,n 的方程.16.已知381P ax x =-+,23Q x ax =--,无论x 取何值时,329P Q -=恒成立,则a 的值为______.【答案】2【分析】根据题意可以得到关于a 的等式,从而可以求得a 的值,本题得以解决.【解析】解:∵P=3ax-8x+1,Q=x-2ax-3,无论x 取何值时,3P-2Q=9恒成立,∴3P-2Q=3(3ax-8x+1)-2(x-2ax-3)=9ax-24x+3-2x+4ax+6=13ax-26x+9=(13a-26)x+9=9,∴13a-26=0,解得,a=2,故答案为:2.【点睛】本题考查整式的加减,解答本题的关键是明确整式的加减的计算方法.17.按下面的程序计算:当输入100x =时,输出结果是299;当输入50x =时,输出结果是_________.【答案】446【分析】先把50x =代入31x -求得的数与251比较,如果比251大则输出结果,如果比251小,则把这个数作x 的值重新进行输入,由此进行求解即可.【解析】解:当x=50时,3x−1=149<251,当x=149时,3x−1=446>251,输出结果.故答案为:446.【点睛】本题主要考查了程序流程类的代数式求值,解题的关键在于能够读懂程序流程图.18.某同学做一道代数题:“求代数式98765432x=时的x x x x x x x x x10987654321+++++++++,当1值”,由于将式中某一项前的“+”号错看为“-”号,误得代数式的值为37,那么这位同学看错了______次项前的符号.【答案】8【分析】先将x=1代入,求出正确值,再进行计算即可.【解析】x=时,解:当198765432+++++++++x x x x x x x x x10987654321=+++++++++10987654321=55,=-++++++++错误的算式为:原式10987654321=+++++++++-1098765432118=-5518=37则这位同学看错了8次项前的符号.故答案为:8【点睛】此题主要考查了整式的加减-化简求值问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.19.已知x 2+2xy =﹣12,xy ﹣y 2=﹣4,则2x 2+5xy ﹣y 2的值为_____.【答案】-5【分析】根据x 2+2xy =﹣12,xy ﹣y 2=﹣4,将所求式子变形,即可求得所求式子的值.【解析】解:∵x 2+2xy =﹣12,xy ﹣y 2=﹣4,∴2x 2+5xy ﹣y 2=2(x 2+2xy )+(xy ﹣y 2)=2×(﹣12)+(﹣4)=﹣1+(﹣4)=﹣5,故答案为:﹣5.【点睛】本题考查整式的加减,解答本题的关键是明确整式加减的计算方法.20.将数1个1,2个12,3个13,…,n 个1n(n 为正整数)顺次排成一列1,12,12,13,13,13,…1n ,1n …记11a =,211122a a =++,32111333a a =+++,…,11S a =,212S a a =+,3123S a a a =++,…,12n n S a a a =++¼+,则20212019S S -=__________.【答案】4041【分析】根据题意,可以得到11a =,2111222a a =++=,321113333a a =+++=,¼,从而可以得到n a n =的值,进而可以得到20212019S S -的值.【解析】解:11a =Q ,2111222a a =++=,321113333a a =+++=,¼,n a n \=,由题意可得,20212019S S -20192020202120191212()()a a a a a a a a =++¼+++-++¼+12201912920202021201a a a a a a a a =++¼+++---¼-22020201a a =+∵20202021202020214041a a +=+=,∴202120194041S S =-故答案为:4041.【点睛】此题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出n a n =,0202120192021202S S a a -=+.三、解答题21.上海与南京间的公路长为364km ,一辆汽车以xkm/h 的速度开往南京,请用代数式表示:(1)汽车从上海到南京需多少小时?(2)如果汽车的速度增加2km/h,从上海到南京需多少小时?(3)如果汽车的速度增加2km/h,可比原来早到几小时?【答案】(1)364xh;(2)3642x+h;(3)3643642x xæö-ç÷+èøh【分析】(1)根据题意,可以用代数式表示出汽车从上海到南京需要的时间;(2)根据题意,可以用代数式表示出汽车的速度增加2千米/时,从上海到南京需要的时间;(3)根据题意,可以用代数式表示出如果汽车的速度增加2千米/时,可比原来早到几小时.【解析】解:(1)汽车从上海到南京需364xh;(2)如果汽车的速度增加2km/h,从上海到南京需3642x+h;(3)如果汽车的速度增加2km/h,可比原来早到3643642x xæö-ç÷+èøh.【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.22.一个三位数,它的个位数字是m,十位数字是个位数字的5倍少1,百位数字比个位数字大3.(1)用含m的式子表示此三位数;(2)若交换个位数字和百位数字,其余不变,得到新的三位数,求原来的三位数比新得到的三位数多了多少?【答案】(1)151m+290;(2)297【分析】(1)分别表示出十位上的数和百位上的数,再根据数的表示相加即可;(2)交换个位数字和百位数字,其余不变,得到新的三位数,计算即可;【解析】(1)∵个位数字是m,十位数字是个位数字的5倍少1,百位数字比个位数字大3,∴十位数字为5m-1,百位数字为m+3,∴此三位数为:100(m+3)+10(5m-1)+m=151m+290;(2)若交换个位数字和百位数字,其余不变,则新得到的三位数字位:100m+10(5m-1)+m+3=151m-7,151m+290﹣(151m-7)=297.∴新得到的三位数字比原来的三位数多了297.【点睛】本题主要考查了代数式的表示及计算,准确计算是解题的关键.23.已知多项式﹣x2y2m+1+xy﹣6x3﹣1是五次四项式,且单项式πx n y4m﹣3与多项式的次数相同,求m,n 的值.【答案】m=1,n=4.【分析】根据多项式的次数是多项式中次数最高的单项式的次数,可得m的值,根据单项式的次数是单项式中所有字母指数和,可得n的值.【解析】∵多项式﹣x2y2m+1+xy﹣6x3﹣1是五次四项式,且单项式πx n y4m﹣3与多项式的次数相同,∴2+2m+1=5,n+4m﹣3=5,解得m=1,n=4.【点睛】本题考查了多项式,利用多项式的次数是多项式中次数最高的单项式的次数,单项式的次数是单项式中所有字母指数和得出m 、n 的值是解题关键.24.(1)求2212312(1)2323x x y x y æöæö--+-++-ç÷ç÷èøèø的值,其中11,42x y =-=-.(2)已知2(2)|23|0b a b -+-+=,求15(2)2(622)432a b a b a b æö---++--ç÷èø的值.【答案】(1)0;(2)272-.【分析】(1)将2212312(1)2323x x y x y æöæö--+-++-ç÷ç÷èøèø化为231x y -+-,然后将14x =-,12y =-代入求值即可;(2)根据2(2)|23|0b a b -+-+=可得2b =,12a =-,然后将()()1522622432ab a b a b æö---++--ç÷èø化简得12442a b --,再将2b =,12a =-,代入求值即可.【解析】解:(1)()221231212323x x yx y æöæö--+-++-ç÷ç÷èøèø()221231212323x x y x y =-+-++-231x y =-+-当14x =-,12y =-时原式21131042æöæö=-´-+--=ç÷ç÷èøèø;(2)∵2(2)|23|0b a b -+-+=,∴20b -=,230a b -+=,∴2b =,12a =-,∴()()1522622432a b a b a b æö---++--ç÷èø11051244432a b a b a b =--+-+--12442a b =--当2b =,12a =-时,原式11242422æö=´--´-ç÷èø272=-.【点睛】本题考查了整式的化简求值,非负数的性质,熟悉相关性质是解题的关键.25.设2222232,4623A x xy y x y B x xy y x y =-+-+=-+--,若2|2|(3)0x a y -++=且2B A a -=,求A 的值.【答案】283【分析】根据绝对值和偶次方的非负性求出12a x =,3y =-,代入2B A a -=求出x 的值,即可求出答案.【解析】解:22222(4623)2(232)B A x xy y x y x xy y x y -=-+----+-+2222=462346224x xy y x y x xy y x y-+---+-+-=5x y --;Q 2|2|(3)0x a y -++=,20,30x a y \-=+=,1,32a x y \==-,Q 2B A a -=,15(3)2x x \--´-=,10x \=,22=210310(3)(3)102(3)283A \´-´´-+--+´-=.【点睛】本题考查了绝对值、偶次方、整式的混合运算的应用,解此题的关键是求出x 、y 的值.26.对于多项式22222735x xy y x kxy y +++-+,老师提出了两个问题,第一个问题是:当k 为何值时,多项式中不含xy 项?第二个问题是:在第一问的前提下,如果2x =,1y =-,多项式的值是多少?(1)小明同学很快就完成了第一个问题,也请你把你的解答写在下面吧;(2)在做第二个问题时,马小虎同学把1y =-,错看成1y =,可是他得到的最后结果却是正确的,你知道这是为什么吗?【答案】(1)见解析;(2)正确,理由见解析【分析】(1)代数式中不含xy 项就是合并同类项以后xy 项得系数等于0,据此即可求得k 的值;(2)把2,1x y ==-和2,1x y ==代入(1)中的代数式求值即可判断.【解析】解:(1)因为22222735x xy y x kxy y +++-+2222(2)(35)(7)x x y y xy kxy =++++-2238(7)x y k xy =++-,所以只要70k -=,这个多项式就不含xy 项即7k =时,多项式中不含xy 项;(2)因为在第一问的前提下原多项式为:2238x y +,当2,1x y ==-时,2238x y +22328(1)+´=´-128=+20=.当2,1x y ==时,2238x y +2238x y =+223281=´´+128=+20=.所以当1y =-和1y =时结果是相等的.【点睛】本题考查了合并同类项法则以及求代数式的值,理解不含xy 项就是xy 项的系数是0是关键.27.有这样一道题:求整式33223320.520.5a b ab b a b ab -+-+233223b a b b ++--的值,其中 2.3a =,0.25b =-.有一个同学指出式子的值与条件 2.3a =,0.25b =-无关,他的说法有没有道理?说明理由.【答案】有道理,理由见解析【分析】先通过去括号、合并同类项对多项式进行化简,然后代入a 、b 的值进行计算.【解析】解:有道理.理由:332233223320.520.523a b ab b a b ab b a b b -+-+++--33333322222(2)(0.50.5)(2)3a b a b a b ab ab b b b =-++-+++--00033=++-=-.化简的结果不含有a 和b ,所以整式的值与a ,b 无关.【点睛】整式的加减运算实际上就是去括号、合并同类项;与某字母的取值无关,则是式子中不含该字母.28.观察下列关于自然数的等式:①221743´=-;②222853´=-;③223963´=-;…根据上述规律解决下列问题:(1)完成第四个等式:4´_______=________;(2)写出你猜想的第n 个等式(用含n 的式子表示).【答案】(1)10,2273-;(2)22(6)(3)3n n n +=+-【分析】由等式可以看出:第一个因数是从1开始连续的自然数,第二个因数比第一个因数大6,结果是第一个因数与3和的平方,减去3的平方,由此规律得出答案即可.【解析】解:(1)第四个等式:2241073´=-;(2)第n 个等式为:22(6)(3)3n n n +=+-;证明:左边2(6)6n n n n =+=+,右边2222(3)36996n n n n n =+-=++-=+,左边=右边22(6)(3)3n n n +=+-.【点睛】本题考查了数字的变化类,找出数字之间的运算规律,发现规律是解题关键.29.如图,某校的“图书码”共有7位数字,它是由6位数字代码和校验码构成,其结构分别代表“种类代码、出版社代码、书序代码和校验码”.其中校验码是用来校验图书码中前6位数字代码的正确性.它的编制是按照特定的算法得来的.以上图为例,其算法为:步骤1:计算前6位数字中偶数位数字的和a ,即91313a =++=;步骤2:计算前6位数字中奇数位数字的和b ,即6028b =++=;步骤3:计算3a 与b 的和c ,即313847c =´+=;步骤4:取大于或等于c 且为10的整数倍的最小数d ,即50d =;步骤5:计算d 与c 的差就是校验码X ,即50473X =-=.请解答下列问题:(1)《数学故事》的图书码为978753Y,则“步骤3”中的c的值为______,校验码Y的值为______.(2)如图①,某图书码中的一位数字被墨水污染了,设这位数字为m,你能用只含有m的代数式表示上述步骤中的d吗?从而求出m的值吗?写出你的思考过程.(3)如图②,某图书码中被墨水污染的两个数字的差是4,这两个数字从左到右分别是多少?请直接写出结果.【答案】(1)73,7;(2)3,过程见解析;(3)4、0或9、5或2、6【分析】(1)根据特定的算法代入计算计算即可求解;(2)根据特定的算法依次求出a,b,c,d,再根据d为10的整数倍即可求解;(3)根据校验码为8结合两个数字的差是4即可求解.【解析】(1)∵《数学故事》的图书码为978753Y,∴a=7+7+3=17,b=9+8+5=22,则“步骤3”中的c的值为3×17+22=73,校验码Y的值为80-73=7.故答案为:73,7;(2)依题意有:a=m+1+2=m+3,b=6+0+0=6,c=3a+b=3(m+3)+6=3m+15,d=c+X=3m+15+6=3m+21,∵d为10的整数倍,∴3m的个位数字只能是9,∴m的值为3;(3)可设这两个数字从左到右分别是p,q,依题意有:a=p+9+2=p+11,b=6+1+q=q+7,c=3(p+11)+(q+7)=3p+q+40,∵校验码是8,则3p+q的个位是2,∵|p-q|=4,∴p=4,q=0或p=9,q=5或p=2,q=6.故这两个数字从左到右分别是4,0或9,5或2,6.【点睛】本题考查了列代数式以及整式的加减,正确理解题意,学会探究规律、利用规律是解题的关键.。
北师大版七年级数学上册第三章整式及其加减单元测试卷-带参考答案

北师大版七年级数学上册第三章整式及其加减单元测试卷-带参考答案一、单选题 1.按照如图所示的运算程序,能使输出y 的值为5的是( )A .m =1,n =4B .2,5m n ==C .m =5,n =3D .m =2,n =2 2.关于代数式353a +,下列说法中正确的是( ) A .它的一次项系数是1B .它的常数项是5C .它是一个单项式D .它的次数是33.下列各组代数式:(1)a b -与a b --;(2)a b +与a b --;(3)1a +与1a -;(4)a b -+与a b -,其中互为相反数的有( )A .(2)(4)B .(1)(2)C .(1)(3)D .(3)(4)4.下列说法中正确的是( )A .a -表示负数;B .若x x =,则x 为正数C .单项式22xy 9-的系数为2- D .多项式2223a b 7a b 2ab 1-+-+的次数是45.若单项式3a m+1b 与-b n -1a 2m -2的和仍是单项式,则m ,n 的值分别为( )A .1,0B .3,0C .3,2D .1,26.下列从左到右的变形是因式分解的是( )A .B .C .D .7.1x 与2x ,3x …202x 是202个由1和1-组成的数,且满足12320222x x x x +++⋅⋅⋅+=,则()()()()22221232021111x x x x -+-+-+⋅⋅⋅+-的值为( ) A .408 B .462 C .360 D .3688.下列各组代数式中是同类项的是( )A .234a b -34ab -B .232x y -与323x yC .3512m n -与537n m - D .a 与c 9.某服装店出售一件衣服,标价为m 元,由于市场行情的变化,服装店进行了一次调价,在此基础上又进行了第二次调价,下列四种方案中,两次调价后售价最低的是( )A .第一次打八折,第二次打八折B .第一次提价30%,第二次打六折C .第一次提价50%,第二次降价50%D .第一次提价20%,第二次降价30%10.观察下列等式:133= 239= 3327= 4381= 53243= 63729= 732187=…解答下列问题:234202333333++++的末位数字是( )A .0B .2C .3D .9二、填空题11.观察2,﹣3,4,﹣5,6,﹣7,…这一列数,你能发现它们排列的规律吗?请根据你发现的规律,试写出第)21x ++=322221+-+-+23,12-…第10个数字是的值是、d 互为倒数,m 的绝对值等于.已知一个两位数,它的个位数字是x ,十位数字是三、解答题19.如图:(1)用含字母的式子表示阴影部分的面积;(2)当5a =,3b =时,阴影部分的面积是多少?20.观察下列按一定规律排列的三行数:第一行:﹣2,4,﹣8,16,﹣32,64,﹣128…第二行:3,9,﹣3,21,﹣27,69,﹣123…第三行:4,﹣2,10,﹣14,34,﹣62,130…(1)第一行数中的第11个数是 ;(2)第三行数中的第n 个数是 (用含n 的式子表示);(3)取每行数中的第m 个数,是否存在m 的值,使这三个数的和等于255?若存在,求出m 的值,若不存在,说明理由.21.已知:有理数a 、b 、c 在数轴上的位置如图所示,且c a >.(1)填空:a =___________;c =___________;ac =___________(2)化简:b c a c a b -++--22.如图,在一个长方形休闲广场的四角都设计一块半径相同的四分之一圆形的花坛,若圆形的半径为m r ,广场长为m a ,宽为m b .(m 为单位米)(1)列式表示广场空地的面积;参考答案: 1.D2.A3.A4.D5.C6.D7.C8.C9.A10.D11.﹣10112.113.1或3-/3-或1 14. 11n x +-/11n x +-+ 21213+ 15.15- 16.1617.13或7 18.11x +11y/11y+11x 19.(1)阴影部分面积为()2244a b a a b ππ+--;(2)阴影部分面积为17402π- 20.(1)-2048;(2)()22n --+;(3)不存在21.(1),,a c ac --(2)2c -22.(1)()22m ab r π-(2)()220000100m π- 23.(1)968-;(2)252ab -24.(1)666x y xy +-(2)9(3)6。
北师大版初中数学七年级上册《第3章 整式及其加减》单元测试卷(含答案解析

北师大新版七年级上学期《第3章整式及其加减》单元测试卷一.填空题(共50小题)1.下列各式:①1x;②2•3;③20%x;④a﹣b÷c;⑤;⑥x﹣5;其中,不符合代数式书写要求的有(填写序号)2.若﹣x n﹣2+4x是关于x的三次二项式,则n的值是.3.若n为整数,则代数式n(n+1)(n+2)表示的实际意义.4.已知代数式3x2﹣5x+3的值为1,则6x2﹣10x+7的值是.5.当x=﹣2时,多项式mx3+2x2+nx+4的值等于18,那么当x=2时,该多项式的值等于.6.体校里男生人数占学生总数的75%,女生人数是a,则学生总数是人.7.如图所示的运算程序中,若开始输入的x的值为﹣1,我们发现第一次输出的结果为2,第二次输出的结果为1,则第2018次输出的结果为.8.如图,图中阴影部分的面积是.9.如果a﹣b=﹣2,那么(a﹣b)2﹣(b﹣a)=.10.按照如图操作,若输入x的值是9,则输出的值是.11.买一个篮球需要m元,买一个足球需要n元,那么买4个篮球和7个足球共需元.12.用代数式表示:x的30%除5a的商.13.下列各式:0,,F=ma,m+2>m,2x2﹣3x+11,B≠12,,﹣y,6π,其中代数式的有个.14.已知x2﹣2x﹣1=0,则5+4x﹣2x2=.15.当x=1时,多项式px3+qx+1的值为2020,求当x=﹣1时,多项式px3+qx+1的值为.16.把多项式2m2n3+3mn2﹣2﹣m3n按字母m的降幂排列为.17.已知多项式3a4b m﹣a2b+1是六次三项式,则m=.18.单项式πr3h的系数是,次数是.多项式9x2y3﹣2x3y+5的次数是.19.下列式子:①a+2b;②﹣2xy2;③;④+5;⑤x﹣;⑥x2+x,其中属于多项式的有(填序号).20.如果多项式x b+(1﹣a)x3﹣x+1是关于x的四次三项式,那么a b的值为.21.观察给出的一列单项式:﹣2,4x,﹣8x2,16x3,…根据你发现的规律,第8个单项式为.22.多项式2x4﹣3x5﹣5是次项式,最高次项的系数是,常数项是.23.把多项式2x2﹣x3y﹣y3+xy2按字母y的降幂排列:.24.多项式2ab﹣a2b的次数是,单项式的系数是,﹣1的倒数是.25.当自然数a<b时,x a+y b+3a+b是次多项式.26.在式子,,,﹣,1﹣x﹣5xy2,﹣x,6xy+1,a2+b2中,多项式有个.27.单项式﹣的系数是.28.单项式的次数是.系数是.29.下列代数式:(1),(2)m,(3),(4),(5)2m+1,(6),(7),(8)x2+2x+,(9)y3﹣5y+中,整式有.(填序号)30.下列各式①m;②x+5=7;③2x+3y;④m>3;⑤中,整式的个数有个.31.若单项式5x4y和7x n﹣1y m是同类项,则m+n的值为.32.一个多项式加上多项式2x﹣1后得3x﹣2,则这个多项式为.33.已知a+b=5,c﹣d=﹣3,则(d﹣a)﹣(b+c)的值为.34.若单项式(n+3)x3y2m和单项式﹣2x|n|y4的和仍是一个单项式,则m+n=.35.若多项式x2+kxy+4x﹣2xy+y2﹣1不含xy项,则k的值是.36.若x=y﹣3,则(x﹣y)2﹣2.3(x﹣y)+0.75(x﹣y)2+(x﹣y)﹣6的值为.37.一个多项式加上3x2y﹣3xy2得x3﹣3xy2,则这个多项式为.38.已知A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+.(1)a=﹣1,b=﹣2时,求4A﹣(3A﹣2B)的值;(2)若(1)中式子的值与a的取值无关,求b的值.39.合并下列多项式3(4x2﹣3x+2)﹣2(1﹣4x2+x)40.若多项式3x2﹣2(5+y﹣3x2+mx2)的值与x的值无关,则m的等于.41.某同学做了一道数学题:“已知两个多项式为A、B,B=3x﹣2y,求A﹣B的值.”他误将“A﹣B”看成了“A+B”,结果求出的答案是x﹣y,那么原来的A﹣B 的值应该是.42.某同学在做计算2A+B时,误将“2A+B”看成了“2A﹣B”,求得的结果是9x2﹣2x+7,已知B=x2+3x+2,则2A+B的正确答案为.43.如图,已知正五角星的面积为5,正方形的边长为2,图中对应阴影部分的面积分别是S1、S2,则S1﹣S2的值为.44.去括号:2xy﹣(3xy﹣3y2+5).45.把多项式a﹣3b+c﹣2d的后3项用括号括起来,且括号前面带“﹣”号,所得结果是.46.如果x﹣y=2,m+n=1,那么(y+2m)﹣(x﹣2n)=.47.若x=y+3,则(x﹣y)2﹣2.3(x﹣y)+0.75(x﹣y)2+(x﹣y)+7等于.48.当x=﹣,y=3时,3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2=.49.将整数按如图方式进行有规律的排列,第2行最后一个数是﹣4,第3行最后一个数是9,第4行最后一个数是﹣16,…,依此类推,第21行的第21个数是.50.观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…,按照上述规律,第2018个单项式是.北师大新版七年级上学期《第3章整式及其加减》单元测试卷参考答案与试题解析一.填空题(共50小题)1.下列各式:①1x;②2•3;③20%x;④a﹣b÷c;⑤;⑥x﹣5;其中,不符合代数式书写要求的有①②(填写序号)【分析】根据书写规则,分数不能为带分数,对各项的代数式进行判定,即可求出答案.【解答】解:①1x分数不能为带分数;②2•3数与数相乘不能用“•”;③20%x,书写正确;④a﹣b÷c,书写正确;⑤;书写正确;⑥x﹣5,书写正确,不符合代数式书写要求的有①②共2个.故答案为:①②.【点评】此题考查了代数式的书写.注意代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)带分数要写成假分数的形式.2.若﹣x n﹣2+4x是关于x的三次二项式,则n的值是5.【分析】直接利用三次二项式的定义进而分析得出答案.【解答】解:∵﹣x n﹣2+4x是关于x的三次二项式,∴n﹣2=3,则n的值是:5.故答案为:5.【点评】此题主要考查了代数式,正确把握代数式的次数与系数的确定方法是解题关键.3.若n为整数,则代数式n(n+1)(n+2)表示的实际意义连续三个整数的乘积.【分析】根据代数式的结构即可得出答案.【解答】解:由于n为整数,所以n(n+1)(n+2)表示连续三个整数的乘积故答案为:连续三个整数的乘积【点评】本题考查代数式,解题的关键是正确理解题意,本题属于基础题型.4.已知代数式3x2﹣5x+3的值为1,则6x2﹣10x+7的值是3.【分析】先求出3x2﹣5x=﹣2,再变形后代入,即可求出答案.【解答】解:根据题意得:3x2﹣5x+3=1,3x2﹣5x=﹣2,所以6x2﹣10x+7=2(3x2﹣5x)+7=2×(﹣2)+7=3,故答案为:3;【点评】本题考查了求代数式的值,能够整体代入是解此题的关键.5.当x=﹣2时,多项式mx3+2x2+nx+4的值等于18,那么当x=2时,该多项式的值等于6.【分析】对题意进行分析,x=﹣2,mx3+2x2+nx+4=18,可求出8m+2n的值,然后将x=2代入,即可求得结果.【解答】解:当x=﹣2,mx3+2x2+nx+4=18,则8m+2n=﹣6,将8m+n=﹣6,x=2代入,可得:mx3+2x2+nx+4=6,故答案为:6.【点评】本题考查整式的加减,看清题中,弄清各个量的关系即可.6.体校里男生人数占学生总数的75%,女生人数是a,则学生总数是4a人.【分析】直接利用女生人数除以所占百分比进而得出答案.【解答】解:∵体校里男生人数占学生总数的75%,女生人数是a,∴学生总数是:a÷(1﹣75%)=4a.故答案为:4a.【点评】此题主要考查了列代数式,正确理解题意是解题关键.7.如图所示的运算程序中,若开始输入的x的值为﹣1,我们发现第一次输出的结果为2,第二次输出的结果为1,则第2018次输出的结果为1.【分析】根据题意找出规律即可求出答案.【解答】解:第一次输出为2,第二次输出为1,第三次输出为4,第四次输出为2,第五次输出为1,第六次输出为4,……从第三次起开始循环,∴(2018﹣2)÷3=672 (2)故第2018次输出的结果为:1故答案为:1.【点评】本题考查数字规律,解题的关键是正确理解程序图找出规律,本题属于基础题型.8.如图,图中阴影部分的面积是 5.7mn.【分析】直接利用总面积减去空白面积进而得出答案.【解答】解:阴影部分面积为:6mn﹣0.3nm=5.7mn.故答案为:5.7mn.【点评】此题主要考查了列代数式,正确表示矩形面积是解题关键.9.如果a﹣b=﹣2,那么(a﹣b)2﹣(b﹣a)=2.【分析】把a﹣b=﹣2代入计算即可求出值.【解答】解:把a﹣b=﹣2代入(a﹣b)2﹣(b﹣a)=4﹣2=2,故答案为:2【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.10.按照如图操作,若输入x的值是9,则输出的值是193.【分析】根据题意列出代数式,将x=9代入计算即可求出值.【解答】解:根据题意得:(x+5)2﹣3,当x=9时,原式=(9+5)2﹣3=196﹣3=193.故答案为:193.【点评】此题考查了代数式求值,弄清题中的程序框图是解本题的关键.11.买一个篮球需要m元,买一个足球需要n元,那么买4个篮球和7个足球共需(4m+7n)元.【分析】买一个篮球需要m元,则买4个篮球需要4m元,买一个足球需要n 元,则买7个足球需要7n元,然后将它们相加即可.【解答】解:∵买一个篮球需要m元,买一个足球需要n元,∴买4个篮球和7个足球共需(4m+7n)元.故答案为(4m+7n).【点评】本题考查了列代数式,列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系.12.用代数式表示:x的30%除5a的商.【分析】根据题意列出代数式即可得出答案【解答】解:x的30%可表示为30%x,x的30%除5a的用代数式可表示为:.故答案为:可表示为:.【点评】本题主要考查了列代数式,正确理解题意是关键.13.下列各式:0,,F=ma,m+2>m,2x2﹣3x+11,B≠12,,﹣y,6π,其中代数式的有6个.【分析】根据代数式的概念,用运算符号把数字与字母连接而成的式子叫做代数式.单独的一个数或一个字母也是代数式.【解答】解:题中的代数式有:0,,2x2﹣3x+11,,﹣y,6π,共6个.故答案为:6.【点评】考查了代数式,注意:代数式中不含有“>”,“=”号.14.已知x2﹣2x﹣1=0,则5+4x﹣2x2=3.【分析】将x2﹣2x=1代入多项式5+4x﹣2x2即可求出答案.【解答】解:由题意可知:x2﹣2x=1,∴原式=5+2(2x﹣x2)=5﹣2(x2﹣2x)=5﹣2×1=3,故答案为:3【点评】本题考查代数式求值,解题的关键是将x2﹣2x看成一个整体,本题属于基础题型.15.当x=1时,多项式px3+qx+1的值为2020,求当x=﹣1时,多项式px3+qx+1的值为﹣2018.【分析】将x=1代入多项式px3+qx+1后可求出p+q的值,然后将x=﹣1代入px3+qx+1即可求出答案.【解答】解:将x=1代入多项式px3+qx+1,得:p+q+1=2020,∴p+q=2019,将x=﹣1代入多项式px3+qx+1,∴﹣p﹣q+1=﹣(p+q)+1=﹣2018.故答案为:﹣2018【点评】本题考查代数式求值,解题的关键是熟练运用有理数的运算,本题属于基础题型.16.把多项式2m2n3+3mn2﹣2﹣m3n按字母m的降幂排列为﹣m3n+2m2n3+3mn2﹣2.【分析】先分清多项式的各项,然后按多项式降幂排列的定义排列.【解答】解:多项式2m2n3+3mn2﹣2﹣m3n的各项为:2m2n3,3mn2,﹣2,﹣m3n按m降幂排列为:﹣m3n+2m2n3+3mn2﹣2.故答案为:﹣m3n+2m2n3+3mn2﹣2.【点评】本题考查多项式,我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.17.已知多项式3a4b m﹣a2b+1是六次三项式,则m=﹣2.【分析】直接利用多项式的定义分析得出答案.【解答】解:∵多项式3a4b m﹣a2b+1是六次三项式,∴4+m=2,解得:m=﹣2.故答案为:﹣2.【点评】此题主要考查了多项式,正确把握多项式的定义是解题关键.18.单项式πr3h的系数是π,次数是4.多项式9x2y3﹣2x3y+5的次数是5.【分析】直接利用单项式以及多项式的次数确定方法分析得出答案.【解答】解:单项式πr3h的系数是:π,次数是:4;多项式9x2y3﹣2x3y+5的次数是:5.故答案为:π,4,5.【点评】此题主要考查了多项式以及单项式,正确把握相关次数确定方法是解题关键.19.下列式子:①a+2b;②﹣2xy2;③;④+5;⑤x﹣;⑥x2+x,其中属于多项式的有①③④⑥(填序号).【分析】直接利用多项式的定义分析得出答案.【解答】解:①a+2b;②﹣2xy2;③;④+5;⑤x﹣;⑥x2+x,其中属于多项式的有:①a+2b;③;④+5;⑥x2+x,故答案为:①③④⑥.【点评】此题主要考查了多项式,正确把握多项式的定义是解题关键.20.如果多项式x b+(1﹣a)x3﹣x+1是关于x的四次三项式,那么a b的值为1.【分析】直接利用多项式的次数与项数确定方法分析得出答案.【解答】解:∵多项式x b+(1﹣a)x3﹣x+1是关于x的四次三项式,∴b=4,a=1,则a b的值为:1.故答案为:1.【点评】此题主要考查了多项式,正确把握多项式的次数是解题关键.21.观察给出的一列单项式:﹣2,4x,﹣8x2,16x3,…根据你发现的规律,第8个单项式为28•x7.【分析】先根据所给单项式的次数及系数的关系找出规律,再确定所求的单项式即可.【解答】解:∵﹣2=(﹣1)1•21•x0;4x=(﹣1)2•22•x1;﹣8x3=(﹣1)3•23•x2;16x4=(﹣1)4•24•x3;∴第8个单项式为:(﹣1)8•28•x7=28•x7.故答案为:28•x7.【点评】本题考查了单项式的应用,解此题的关键是找出规律直接解答.22.多项式2x4﹣3x5﹣5是五次三项式,最高次项的系数是﹣3,常数项是﹣5.【分析】根据多项式的项和次数的定义,确定各个项和各个项的系数,注意要带有符号.【解答】解:多项式2x4﹣3x5﹣5是五次三项式,最高次项的系数是﹣3,常数项是﹣5;故答案为:五;三;﹣3;﹣5【点评】本题考查与多项式相关的概念,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.23.把多项式2x2﹣x3y﹣y3+xy2按字母y的降幂排列:﹣y3+xy2﹣x3y+2x2.【分析】按字母y的指数从大到小排列即可.【解答】解:多项式2x2﹣x3y﹣y3+xy2按字母y的降幂排列为:﹣y3+xy2﹣x3y+2x2故答案为:﹣y3+xy2﹣x3y+2x2【点评】此题主要考查了多项式,关键是掌握降幂排列的定义.24.多项式2ab﹣a2b的次数是3,单项式的系数是,﹣1的倒数是﹣.【分析】直接利用多项式的次数确定方法以及系数的确定方法和倒数的定义分别分析得出答案.【解答】解:多项式2ab﹣a2b的次数是:3,单项式的系数是:,﹣1的倒数是:﹣.故答案为:3,,﹣.【点评】此题主要考查了多项式以及倒数和单项式,正确把握相关定义是解题关键.25.当自然数a<b时,x a+y b+3a+b是b次多项式.【分析】直接利用多项式的次数确定方法得出答案.【解答】解:当自然数a<b时,x a+y b+3a+b是b次多项式.故答案为:b.【点评】此题主要考查了多项式,正确把握多项式的次数确定方法是解题关键.26.在式子,,,﹣,1﹣x﹣5xy2,﹣x,6xy+1,a2+b2中,多项式有3个.【分析】根据几个单项式的和叫做多项式进行分析即可.【解答】解:多项式有1﹣x﹣5xy2、6xy+1、a2+b2这3个,故答案为:3.【点评】此题主要考查了多项式,关键是掌握多项式定义.27.单项式﹣的系数是﹣.【分析】直接利用单项式的系数的确定方法分析得出答案.【解答】解:单项式﹣的系数是:﹣.故答案为:﹣.【点评】此题主要考查了单项式,正确把握单项式的系数确定方法是解题关键.28.单项式的次数是6.系数是.【分析】直接利用单项式的次数与系数确定方法分析得出答案.【解答】解:单项式的次数是:6,系数是:.故答案为:6,.【点评】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.29.下列代数式:(1),(2)m,(3),(4),(5)2m+1,(6),(7),(8)x2+2x+,(9)y3﹣5y+中,整式有(1)、(2)、(3)、(5)、(6)、(8).(填序号)【分析】利用整式的定义判断得出即可.【解答】解:(1),(2)m,(3),(5)2m+1,(6),(8)x2+2x+都是整式,故整式有(1)、(2)、(3)、(5)、(6)、(8).故答案为:(1)、(2)、(3)、(5)、(6)、(8).【点评】此题主要考查了整式的定义,正确把握整式的定义是解题关键.30.下列各式①m;②x+5=7;③2x+3y;④m>3;⑤中,整式的个数有两个.【分析】根据单项式与多项式统称为整式,可得答案.【解答】解:①m是整式;②x+5=7是方程,不是整式;③2x+3y是整式;④m>3是不等式;⑤是分式,不是整式,故答案为:两.【点评】本题考查了整式,单项式与多项式统称为整式,注意等式、不等式都不是整式,是分式,不是整式.31.若单项式5x4y和7x n﹣1y m是同类项,则m+n的值为6.【分析】直接利用同类项的定义得出m,n的值进而得出答案.【解答】解:∵单项式5x4y和7x n﹣1y m是同类项,∴4=n﹣1,1=m,解得:n=5,则m+n的值为:6.故答案为:6.【点评】此题主要考查了同类项,正确把握定义是解题关键.32.一个多项式加上多项式2x﹣1后得3x﹣2,则这个多项式为x﹣1.【分析】直接利用整式的加减运算法则计算得出答案.【解答】解:∵一个多项式加上多项式2x﹣1后得3x﹣2,∴这个多项式为:3x﹣2﹣(2x﹣1)=x﹣1.故答案为:x﹣1.【点评】此题主要考查了整式的加减运算,正确掌握运算法则是解题关键.33.已知a+b=5,c﹣d=﹣3,则(d﹣a)﹣(b+c)的值为﹣2.【分析】原式去括号变形后,将已知等式代入计算即可求出值.【解答】解:∵a+b=5,c﹣d=﹣3,∴原式=d﹣a﹣b﹣c=﹣(a+b)﹣(c﹣d)=﹣5+3=﹣2,故答案为:﹣2【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.34.若单项式(n+3)x3y2m和单项式﹣2x|n|y4的和仍是一个单项式,则m+n=5或﹣1.【分析】根据同类项的定义:所含字母相同,相同字母的次数相同,即可求得m、n的值,然后代入数值计算即可求解.【解答】解:∵单项式(n+3)x3y2m和单项式﹣2x|n|y4的和仍是一个单项式,∴单项式(n+3)x3y2m和单项式﹣2x|n|y4是同类项,则|n|=3,2m=4,∴n=±3,m=2,∴m+n=5或﹣1,故答案为:5或﹣1.【点评】本题主要考查合并同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.35.若多项式x2+kxy+4x﹣2xy+y2﹣1不含xy项,则k的值是2.【分析】直接利用多项式中不含xy项,得出k﹣2=0,进而得出答案.【解答】解:∵多项式x2+kxy+4x﹣2xy+y2﹣1不含xy项,∴kxy﹣2xy=0,解得:k=2.故答案为:2.【点评】此题主要考查了合并同类项,正确合并同类项是解题关键.36.若x=y﹣3,则(x﹣y)2﹣2.3(x﹣y)+0.75(x﹣y)2+(x﹣y)﹣6的值为9.【分析】直接利用合并同类项法则将原式变形,进而把已知代入求出答案.【解答】解:(x﹣y)2﹣2.3(x﹣y)+0.75(x﹣y)2+(x﹣y)﹣6=(+0.75)(x﹣y)2+(﹣2.3+)(x﹣y)﹣6=(x﹣y)2﹣2(x﹣y)﹣6,∵x=y﹣3,∴x﹣y=﹣3,∴原式=(﹣3)2﹣2×(﹣3)﹣6=9+6﹣6=9.故答案为:9.【点评】此题主要考查了合并同类项,正确合并同类项是解题关键.37.一个多项式加上3x2y﹣3xy2得x3﹣3xy2,则这个多项式为x3﹣3x2y.【分析】根据题意列出多项式相减的式子,再去括号,合并同类项即可.【解答】解:∵一个多项式加上3x2y﹣3xy2得x3﹣3xy2,∴这个多项式=(x3﹣3xy2)﹣(3x2y﹣3xy2)=x3﹣3xy2﹣3x2y+3xy2=x3﹣3x2y.故答案为:x3﹣3x2y.【点评】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.38.已知A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+.(1)a=﹣1,b=﹣2时,求4A﹣(3A﹣2B)的值;(2)若(1)中式子的值与a的取值无关,求b的值.【分析】(1)先化简4A﹣(3A﹣2B),再把A、B的值代入计算即可;(2)根据“式子的值与a的取值无关”得到关于b的一元一次方程,求解即可.【解答】解:(1)4A﹣(3A﹣2B)=4A﹣3A+2B=A+2B,∵A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+,∴A+2B=2a2+3ab﹣2a﹣1+2(﹣a2+ab+)=2a2+3ab﹣2a﹣1﹣2a2+ab+=4ab﹣2a+;(2)因为4ab﹣2a+=(4b﹣2)a+,又因为4ab﹣2a+的值与a的取值无关,所以4b﹣2=0,所以b=.【点评】本题考查了整式的加减.解决本题(2)的关键是理解结果与a无关.与a无关的意思是含该未知数的项的系数为0.39.合并下列多项式3(4x2﹣3x+2)﹣2(1﹣4x2+x)【分析】先去括号,再合并同类项即可求解.【解答】解:3(4x2﹣3x+2)﹣2(1﹣4x2+x)=12x2﹣9x+6﹣2+8x2﹣2x=20x2﹣11x+4.【点评】考查了整式的加减,整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.40.若多项式3x2﹣2(5+y﹣3x2+mx2)的值与x的值无关,则m的等于 4.5.【分析】此题可根据多项式3x2﹣2(5+y﹣3x2+mx2)的值与x无关,则经过合并同类项后令关于x的系数为零求得m的值.【解答】解:∵3x2﹣2(5+y﹣3x2+mx2)=3x2﹣10﹣2y+6x2﹣2mx2,=(3+6﹣2m)x2﹣2y﹣10,此式的值与x的值无关,则3+6﹣2m=0,解得m=4.5.故答案为:4.5.【点评】本题考查了整式的加减运算,重点是根据题中条件求得m的值,同学们应灵活掌握.41.某同学做了一道数学题:“已知两个多项式为A、B,B=3x﹣2y,求A﹣B的值.”他误将“A﹣B”看成了“A+B”,结果求出的答案是x﹣y,那么原来的A﹣B 的值应该是﹣5x+3y.【分析】先根据题意求出多项式A,然后再求A﹣B.【解答】解:由题意可知:A+B=x﹣y,∴A=(x﹣y)﹣(3x﹣2y)=﹣2x+y,∴A﹣B=(﹣2x+y)﹣(3x﹣2y)=﹣5x+3y.故答案为:﹣5x+3y.【点评】本题考查多项式的加减运算,注意加减法是互为逆运算.42.某同学在做计算2A+B时,误将“2A+B”看成了“2A﹣B”,求得的结果是9x2﹣2x+7,已知B=x2+3x+2,则2A+B的正确答案为11x2+4x+11.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:根据题意得:2A+B=9x2﹣2x+7+2(x2+3x+2)=9x2﹣2x+7+2x2+6x+4=11x2+4x+11,故答案为:11x2+4x+11【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.43.如图,已知正五角星的面积为5,正方形的边长为2,图中对应阴影部分的面积分别是S1、S2,则S1﹣S2的值为1.【分析】设空白部分的面积为S,则S1=5﹣S,S2=22﹣S,所以S1﹣S2=5﹣S﹣(4﹣S),然后去括号后合并即可.【解答】解:设空白部分的面积为S,则S1=5﹣S,S2=22﹣S,所以S1﹣S2=5﹣S﹣(4﹣S)=5﹣S﹣4+S=1.故答案为1.【点评】本题考查了整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号、合并同类项.44.去括号:2xy﹣(3xy﹣3y2+5)﹣xy+3y2﹣5.【分析】先去掉括号,再合并同类项即可.【解答】解:2xy﹣(3xy﹣3y2+5)=2xy﹣3xy+3y2﹣5=﹣xy+3y2﹣5,故答案为:﹣xy+3y2﹣5.【点评】本题考查了合并同类项法则和去括号,能够熟记去括号法则的内容是解此题的关键.45.把多项式a﹣3b+c﹣2d的后3项用括号括起来,且括号前面带“﹣”号,所得结果是a﹣(3b﹣c+2d).【分析】根据添括号的法则把给出的式子按要求进行变形,即可得出答案.【解答】解:把多项式a﹣3b+c﹣2d的后3项用括号括起来,且括号前面带“﹣”号,所得结果是a﹣(3b﹣c+2d).故答案为:a﹣(3b﹣c+2d).【点评】本题考查了添括号的法则,添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“﹣”,添括号后,括号里的各项都改变符号.46.如果x﹣y=2,m+n=1,那么(y+2m)﹣(x﹣2n)=0.【分析】原式去括号整理后,将已知等式代入计算即可求出值.【解答】解:当x﹣y=2,m+n=1时,原式=y+2m﹣x+2n=﹣(x﹣y)+2(m+n)=﹣2+2=0,故答案为:0.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.47.若x=y+3,则(x﹣y)2﹣2.3(x﹣y)+0.75(x﹣y)2+(x﹣y)+7等于10.【分析】由x=y+3得x﹣y=3,整体代入原式计算可得.【解答】解:∵x=y+3,∴x﹣y=3,则原式=×32﹣2.3×3+0.75×32+×3+7=2.25﹣6.9+6.75+0.9+7=10,故答案为:10.【点评】此题考查了整式的加减﹣化简求值,熟练掌握整体代入思想的运用是解本题的关键.48.当x=﹣,y=3时,3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2=﹣4.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=3x2y﹣2xy2+2xy﹣3x2y﹣xy+3xy2=xy2+xy,当x=﹣,y=3时,原式=﹣3﹣1=﹣4.故答案为:﹣4【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.49.将整数按如图方式进行有规律的排列,第2行最后一个数是﹣4,第3行最后一个数是9,第4行最后一个数是﹣16,…,依此类推,第21行的第21个数是421.【分析】根据图形得出第n行最后一个数为(﹣1)n+1•n2,据此知第20行最后一个数为﹣400,继而由奇数行的序数为奇数的数为正数可得答案.【解答】解:根据题意知第n行最后一个数为(﹣1)n+1•n2,当n=20时,即第20行最后一个数为﹣400,又奇数行的序数为奇数的数为正数,∴第21行的第21个数是421,故答案为:421.【点评】本题主要考查数字的变化规律,解题的关键是根据已知数列得出第n 行最后一个数为(﹣1)n+1•n2.50.观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…,按照上述规律,第2018个单项式是4035x2018.【分析】系数的规律:第n个对应的系数是2n﹣1,指数的规律:第n个对应的指数是n.【解答】解:系数的规律:第n个对应的系数是2n﹣1,指数的规律:第n个对应的指数是n,则第2018个单项式是4035x2018.故答案为:4035x2018.【点评】此题考查了规律型:数字的变化类,单项式的定义,分别找出单项式的系数和次数的规律是解决此类问题的关键.。
北师大版七年级上册数学 第三章 整式及其加减 单元综合测试

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯第三章整式及其加减单元综合测试一.选择题1.用文字语言叙述代数式x2﹣2y2的意义正确的是()A.x与2y的平方差B.x的平方减2的差乘以y的平方C.x与2y的差的平方D.x的平方与y的平方的2倍的差2.下列各式中,符合整式书写要求的是()A.x•5B.4m×n C.﹣1x D.﹣ab3.下列说法正确的是()A.不是整式B.单项式的系数是﹣C.x4+2x3是七次二项式D.是多项式4.下列式子:x2+2,+4,,,﹣5x,0中,整式的个数有()A.6B.5C.4D.35.单项式﹣x3y a与6x b y4是同类项,则a+b等于()A.﹣7B.7C.﹣5D.56.下列计算正确的是()A.3a+5b=8ab B.3a3c﹣2c3a=a3cC.3a﹣2a=1D.2a2b+3a2b=5a2b7.已知关于x的多项式﹣2x3+6x2+9x+1﹣2(3ax2﹣5x+3)的结果不含x2项,那么a的值是()A.﹣1B.1C.﹣2D.28.如图,圆的面积为2008,五边形的面积为2021,两个图形叠放在一起,两个阴影部分的面积分别为a,b,则b﹣a的值为()A.9B.11C.12D.139.如图,是一个正方体的表面展开图,A=x3+x2y+3,B=x2y﹣3,C=x3﹣1,D=﹣(x2y ﹣6),且相对两个面所表示的代数式的和都相等,则E代表的代数式是()A.x3﹣x2y+12B.10C.x3+12D.x2y﹣1210.已知无论x,y取什么值,多项式(2x2﹣my+12)﹣(nx2+3y﹣6)的值都等于定值18,则m+n等于()A.5B.﹣5C.1D.﹣1二.填空题11.用一生活情景描述2a+3b的实际意义:.12.一根弹簧长10cm,每挂1kg的物体弹簧伸长0.5cm,则10+0.5x表示的实际意义.13.若是五次多项式,则k=.14.单项式的系数是,次数是,多项式2x3﹣x2y2﹣3xy+x﹣1是次项式.15.一个多项式加上2x2﹣4x﹣3得x2﹣3x,则这个多项式为.16.若﹣4x a+5y3+x3y b=﹣3x3y3,则ab的值是.17.小华在计算多项式P加上x2﹣3x+6时,因误认为加上x2+3x+6,得到的答案是2x2﹣4x,则P应是.18.若﹣a2n﹣1b4与a2m b n的和是单项式,则(1+n)100•(1﹣m)102=.19.如图,长方形纸片的长为6cm,宽为4cm,从长方形纸片中剪去两个形状和大小完全相同的小长方形卡片,那么余下的两块阴影部分的周长之和是.20.在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①和图②,已知大长方形的长为a,两个大长方形未被覆盖部分,分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是.(用含a的代数式表示)三.解答题21.已知(m+1)x3﹣(n﹣2)x2+(2m+5n)x﹣6是关于x的多项式.(1)当m、n满足什么条件时,该多项式是关于x的二次多项式?(2)当m,n满足什么条件时,该多项式是关于x的三次二项式?22.已知代数式A=x2+xy﹣2y2,B=x2﹣xy﹣y2,C=﹣x2+8xy﹣3y2.(1)求2(A﹣B)﹣C.(2)当x=2.y=﹣1时,求出2(A﹣B)﹣C的值.23.(1)化简:(5a2+2a﹣1)﹣4[3﹣2(4a+a2)].(2)先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b),其中a=,b=.24.有这样一道题,当a=1,b=﹣1时,求多项式:3a3b3﹣a2b+b﹣(4a3b3﹣a2b﹣b2)﹣2b2+3+(a3b3+a2b)的值”,马小虎做题时把a=1错抄成a=﹣1,王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.25.罗山高中为了全面提高学生的综合素养,学校组织了音乐,篮球,跆拳道,美术共四个社团,学生积极参加(每个学生限报一项),参加社团的学生共有(6x﹣3y)人,其中音乐社团有x人参加,篮球社团参加的人数比音乐社团参加的人数的两倍少y人,跆拳道社团参加的人数比篮球社团参加的人数一半多1人(1)篮球社团有人;(用含x,y的式子表示)(2)求篮球社团比跆拳道社团多多少人?(用含x,y的式子表示)(3)若x=64,y=40,求美术社团的人数.26.老师设计了一个数学实验,给甲、乙、丙三名同学各一张写有化为最简的代数式的卡片,规则是两位同学的代数式相减等于第三位同学的代数式,甲、乙、丙的卡片如下,丙的卡片代数式未知.(1)若乙同学卡片上的代数式为一次二项式,求m的值;(2)若甲同学卡片上的代数式减乙同学卡片上的代数式等于丙同学卡片上的代数式,且结果为常数项,求m的值;(3)当m=1时,丙同学卡片上的代数式减甲同学卡片上的代数式等于乙同学卡片上的代数式,求丙同学卡片上的代数式.2x2﹣3x+1甲mx2﹣3x﹣2乙丙参考答案1.解:A、x与2y的平方差表示为:x2﹣(2y)2;B、x的平方减2的差乘以y的平方表示为:(x2﹣2)•y2;C、x与2y的差的平方表示为:(x﹣2y)2;D、x的平方与y的平方的2倍的差表示为:x2﹣2y2;故选:D.2.解:A、x•5不符合代数式的书写要求,应为5x,故此选项不符合题意;B、4m×n不符合代数式的书写要求,应为4mn,故此选项不符合题意;C、﹣1x不符合代数式的书写要求,应为﹣x,故此选项不符合题意;D、﹣ab符合代数式的书写要求,故此选项符合题意;故选:D.3.解:A、是整式,故选项错误;B、单项式的系数是﹣π,故选项错误;C、x4+2x3是四次二项式,故选项错误;D、是多项式,故选项正确.故选:D.4.解:x2+2,,,,﹣5x,0中,整式有:x2+2,,﹣5x,0共4个.故选:C.5.解:根据题意得,a=4,b=3,∴a+b=4+3=7.故选:B.6.解:A、3a与5b不是同类项,所以不能合并,故本选项不合题意;B、3a3c与﹣2c3a不是同类项,所以不能合并,故本选项不合题意;C、3a﹣2a=a,故本选项不合题意;D、2a2b+3a2b=5a2b,故本选项符合题意.故选:D.7.解:﹣2x3+6x2+9x+1﹣2(3ax2﹣5x+3)=﹣2x3+6x2+9x+1﹣6ax2+10x﹣6=﹣2x3+(6﹣6a)x2+19x﹣5,∵关于x的多项式﹣2x3+6x2+9x+1﹣2(3ax2﹣5x+3)的结果不含x2项,∴6﹣6a=0,解得a=1.故选:B.8.解:设空白部分面积为c,根据题意得:a+c=2008①,b+c=2021②,②﹣①得:b﹣a=13.故选:D.9.解:由题意得A+D=B+F=C+E,则E=A+D﹣C=x3+x2y+3+[﹣(x2y﹣6)]﹣(x3﹣1)=x3+x2y+3﹣x2y+6﹣x3+1=10.故选:B.10.解:(2x2﹣my+12)﹣(nx2+3y﹣6)=2x2﹣my+12﹣nx2﹣3y+6=(2﹣n)x2+(﹣m﹣3)y+18,∵无论x,y取什么值,多项式(2x2﹣my+12)﹣(nx2+3y﹣6)的值都等于定值18,∴,得,∴m+n=﹣3+2=﹣1,故选:D.二.填空题11.解:答案不唯一:如一个苹果的质量是a,一个桔子的质量是b,那么2个苹果和3个桔子的质量和是2a+3b;故答案为:一个苹果的质量是a,一个桔子的质量是b,那么2个苹果和3个桔子的质量和是2a+3b.12.解:一根弹簧长10cm,每挂1kg的物体弹簧伸长0.5cm,则10+0.5x表示的实际意义是挂x千克的物体时弹簧的长度.故答案为:挂x千克的物体时弹簧的长度.13.解:∵是五次多项式,∴k+1=5,解得:k=4,故答案为:4.14.解:单项式的系数是,次数是4,多项式2x3﹣x2y2﹣3xy+x﹣1是四次五项式,故答案为:;4;四;五.15.解:(x2﹣3x)﹣(2x2﹣4x﹣3)=x2﹣3x﹣2x2+4x+3=﹣x2+x+3.故答案为:﹣x2+x+3.16.解:﹣4x a+5y3+x3y b=﹣3x3y3,a+5=3,b=3,a=﹣2,ab=﹣2×3=﹣6,故答案为:﹣6.17.解:根据题意得:P=(2x2﹣4x)﹣(x2+3x+6)=x2﹣7x﹣6,故答案为:x2﹣7x﹣618.解:由题意得:,解得,m=,n=4,原式=5100•(﹣)102=,故答案为:=,19.解:两个形状和大小完全相同的小长方形卡片的长为acm,宽为bcm,上面的长方形周长:2(6﹣a+4﹣a)=(20﹣4a)cm,下面的长方形周长:2(a+4﹣b)=(8+2a﹣2b)cm,两式联立,总周长为:(20﹣4a)+(8+2a﹣2b)=20﹣4a+8+2a﹣2b=28﹣2(a+b)cm,∵a+b=6(由图可得),∴阴影部分总周长为28﹣2(a+b)=28﹣2×6=16cm.故答案为:16cm.20.解:设图③中小长方形的长为x,宽为y,大长方形的宽为b,根据题意得:x+2y=a,x=2y,即y=a,图①中阴影部分的周长2b+2y+2(a﹣x),图②中阴影部分的周长为2(b﹣2y+a)=2b ﹣4y+2a,则图①阴影部分周长与图②阴影部分周长之差为:2b+2y+2(a﹣x)﹣(2b﹣4y+2a)=2b+2y+2a﹣2x﹣2b+4y﹣2a=6y﹣2x=6y﹣4y=2y=a,故答案为:a.三.解答题21.解:(1)由题意得:m+1=0,且n﹣2≠0,解得:m=﹣1,n≠2,则m=﹣1,n≠2时,该多项式是关于x的二次多项式;(2)由题意得:m+1≠0,n﹣2=0,且2m+5n=0,解得:m≠﹣1,n=2,把n=2代入2m+5n=0得:m=﹣5,则m=﹣5,n=2时该多项式是关于x的三次二项式.22.解:(1)2(A﹣B)﹣C=2[(x2+xy﹣2y2)﹣(x2﹣xy﹣y2)]﹣(﹣x2+8xy﹣3y2)=2(x2+xy﹣2y2﹣x2+xy+y2)+x2﹣4xy+y2=2x2+xy﹣4y2﹣3x2+2xy+2y2+x2﹣4xy+y2=﹣x2﹣xy﹣y2;(2)将x=2,y=﹣1代入﹣x2﹣xy﹣y2得,=﹣×4﹣2×(﹣1)﹣×1=﹣2+2﹣=﹣.23.解:(1)原式=5a2+2a﹣1﹣4(3﹣8a﹣2a2)=5a2+2a﹣1﹣12+32a+8a2=13a2+34a﹣13;(2)原式=15a2b﹣5ab2﹣ab2﹣3a2b=12a2b﹣6ab2,当a=,b=时,原式=12×()2×﹣6××()2=12××﹣6××=1﹣=.24.解:原式=3a3b3﹣a2b+b﹣4a3b3+a2b+b2﹣2b2+3+a3b3+a2b =﹣b2+b+3.因为多项式合并后的结果里不含有a的项,故计算结果只与b有关,与a无关,所以a=1或a=﹣1计算的结果都一样.25.解:(1)由题意可得,篮球社团参加的人数为(2x﹣y)人;故答案为:(2x﹣y);(2)跆拳道社团参加的人数为:(2x﹣y)+1=(x﹣y+1)人,则篮球社团比跆拳道社团多:2x﹣y﹣(x﹣y+1)=(x﹣y﹣1)人;(3)∵篮球,跆拳道,美术共四个社团,学生积极参加(每个学生限报一项),参加社团的学生共有(6x﹣3y)人,∴美术社团的人数为:6x﹣3y﹣x﹣(2x﹣y)﹣(x﹣y+1)=6x﹣3y﹣x﹣2x+y﹣x+y﹣1=2x﹣y﹣1,当x=64,y=40时,原式=2×64﹣×40﹣1=128﹣60﹣1=67(人).26.解:(1)乙同学卡片上的代数式为一次二项式,则mx2=0,∴m=0;(2)2x2﹣3x+1﹣(mx2﹣3x﹣2)=2x2﹣3x+1﹣mx2+3x+2=(2﹣m)x2+3,由题意得结果为常数项,∴2﹣m=0,即m=2;(3)2x2﹣3x+1+x2﹣3x﹣2=3x2﹣6x﹣1,∴丙同学卡片上的代数式为3x2﹣6x﹣1.一天,毕达哥拉斯应邀到朋友家做客。
北师大版七年级上册数学第三章《整式及其加减》单元综合测试卷(含答案)

北师大版七年级上册数学第三章《整式及其加减》单元综合测试卷(含答案)一、选择题(每题3分,共30分)1.下列式子符合书写规范的是( )A .-1xB .115xyC .0.3÷xD .-52a 2.下列各式中,是单项式的是( )A .x 2-1B .a 2b C.πa +b D.x -y 3 3.单项式-π3a 2b 的系数和次数分别是( ) A .π3,3 B .-π3,3 C .-13,4 D.13,4 4.下列单项式中,与a 2b 是同类项的是( )A .2a 2bB .a 2b 2C .ab 2D .3ab5.如果多项式(a -2)x 4-12x b +x 2-3是关于x 的三次多项式,那么( ) A .a =0,b =3 B .a =1,b =3 C .a =2,b =3 D .a =2,b =16.下列去括号正确的是( )A .(a -b )-(c -d )=a -b -c -dB .-a -2(b -c )=-a -2b +2cC .-(a -b )+c =-a -b +cD .-2(a -b )-c =-2a +b -c7.【2021·台州】将x 克含糖10%的糖水与y 克含糖30%的糖水混合,混合后的糖水含糖( )A.20% B.x+y2×100% C.x+3y20×100% D.x+3y10x+10y×100%8.如图①是一个长为2m、宽为2n的长方形,其中m>n,先用剪刀沿图中虚线(对称轴)剪开,将它分成四个形状和大小都一样的小长方形,再将这四个小长方形拼成一个如图②的正方形,则中间空白部分的面积是( )A.2mn B.(m+n)2 C.(m-n)2 D.m2-n29.代数式2a2+3a+1的值是6,那么代数式6a2+9a+5的值是( ) A.20 B.18 C.16 D.1510.【教材P104复习题T16变式】【2020·德州】如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为( )A.148 B.152 C.174 D.202二、填空题(每题3分,共24分)11.用代数式表示“比a的平方的一半小1的数”是____________.12.若单项式-2x3yn与4x m+2y5合并后的结果还是单项式,则m+n=________.13.【教材P101复习题T2变式】按照如图所示的步骤操作,若输入x的值为-4,则输出的值为________.14.在山东部分地区,大年初一常常包上几个装有硬币的饺子,吃到“钱馅”饺子的人,寓意新的一年财源滚滚、大吉大利.因为怕弄坏牙齿,朵朵的奶奶就把花生放在饺子里代替硬币,朵朵家有6口人,奶奶按照每人n 粒花生的规则包饺子(每个饺子包1粒),那么有花生的饺子有________个.15.若多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3的和不含x 2项,则m =________.16.某同学计算一个多项式加上xy -3yz -2xz 时,误认为减去此式,计算出的错误结果为xy -2yz +3xz ,则正确的结果是__________.17.已知有理数a ,b ,c 在数轴上对应点的位置如图所示,化简|a +c |-|c -b |-|a +b |的结果为________.18.【2021·怀化】观察等式:2+22=23-2,2+22+23=24-2,2+22+23+24=25-2……已知按一定规律排列的一组数:2100,2101,2102,…,2199,若2100=m ,用含m 的代数式表示这组数的和是__________.三、解答题(19,21,22题每题10分,其余每题12分,共66分)19.先去括号,再合并同类项:(1)2a -(5a -3b )+(4a -b ); (2)3x 2y -⎣⎢⎡⎦⎥⎤2xy 2-2⎝ ⎛⎭⎪⎫xy -32x 2y +xy +3xy 2.20.先化简,再求值:(1)7a 2b +(-4a 2b )-(2a 2b -2ab ),其中a =-2,b =1;(2)2x 2-⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫-13x 2+23xy -2y 2-2(x 2-xy +2y 2),其中x =12,y =-1.21.【教材P 102复习题T 9变式】已知代数式A =2x 2+3xy -2x -1,B =-x 2+xy -1.(1)当x =y =-1时,求2A +4B 的值;(2)若2A +4B 的值与x 的取值无关,求y 的值.22.如图,某纪念馆要在两块紧挨在一起的长方形荒地上修建一个半圆形花圃,尺寸如图所示(单位:m).(1)求阴影部分的面积(用含x的代数式表示);(2)当x=9,π取3时,求阴影部分的面积.23.比较两个数的大小时,我们可以用“作差法”.它的基本思路是求a与b两数的差,当a-b>0时,a>b;当a-b<0时,a<b;当a-b=0时,a=b.试运用“作差法”解决下列问题:(1)比较2a+1与2(a+1)的大小;(2)比较a+b与a-b的大小.24.某家具厂生产一种课桌和椅子,课桌每张定价200元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张课桌就赠送一把椅子;方案二:课桌和椅子都按定价的80%付款.某校计划添置100张课桌和x把椅子.(1)若x=100,请计算哪种方案划算;(2)若x>100,请用含x的代数式分别把两种方案的费用表示出来;(3)若x=300,如果两种方案可以同时使用,请帮助学校设计一种最省钱的方案.参考答案一、1.D 2.B 3.B 4.A 5.C 6.B 7.D8.C 9.A10.C点思路:根据图案知,第1个图案有12个棋子,第2个图案有22个棋子,第3个图案有34个棋子,…第n 个图案有2[1+2+…+(n +1)+(n +2)]+2(n -1)=(n +2)(n +3)+2(n -1)(个)棋子.故第10个这样的图案需要黑色棋子的个数为(10+2)(10+3)+2×(10-1)=174.二、11.12a 2-1 12.6 13.-6 14.6n 15.4 16.3xy -8yz -xz 点拨:由题意可知原多项式为(xy -2yz +3xz )+(xy -3yz-2xz )=2xy -5yz +xz ,则正确的结果为(2xy -5yz +xz )+(xy -3yz -2xz)=3xy -8yz -xz .17.2b -2c 点拨:由题图可知a +c <0,c -b >0,a +b <0,所以原式=-(a+c)-(c -b)-[-(a +b)]=-a -c -c +b +a +b =2b -2c.18.m 2-m点技巧:由题中规律,得2100+2101+2102+…+2199=(2+22+23+...+2199)-(2+22+23+ (299)=(2200-2)-(2100-2)=(2100)2-2100.因为2100=m ,所以原式=m 2-m .三、19.解:(1)原式=2a -5a +3b +4a -b =a +2b ;(2)原式=3x 2y -(2xy 2-2xy +3x 2y +xy )+3xy 2=3x 2y -2xy 2+2xy -3x 2y -xy +3xy 2=xy +xy 2.20.解:(1)7a 2b +(-4a 2b )-(2a 2b -2ab )=7a 2b -4a 2b -2a 2b +2ab =a 2b +2ab .把a =-2,b =1代入,得原式=(-2)2×1+2×(-2)×1=0.(2)2x 2-[3(-13x 2+23xy )-2y 2]-2(x 2-xy +2y 2)=2x 2-(-x 2+2xy -2y 2)-(2x 2-2xy +4y 2)=2x 2+x 2-2xy +2y 2-2x 2+2xy -4y 2=x 2-2y 2.把x =12,y =-1代入,得原式=⎝ ⎛⎭⎪⎫122-2×(-1)2=-74. 21.解:(1)2A +4B =2(2x 2+3xy -2x -1)+4(-x 2+xy -1)=4x 2+6xy -4x -2-4x 2+4xy -4=10xy -4x -6.当x =y =-1时,原式=10×(-1)×(-1)-4×(-1)-6=10+4-6=8.(2)2A +4B =10xy -4x -6=(10y -4)x -6.因为2A +4B 的值与x 的取值无关,所以10y -4=0,解得y =0.4.22.解:(1)由题图中各个部分面积之间的关系可得,阴影部分的面积=2(x -2)+4(x -2-2)-12π·⎝ ⎛⎭⎪⎫2+422=2x -4+4x -16-92π=⎝ ⎛⎭⎪⎫6x -20-92πm 2. (2)当x =9,π取3时,阴影部分的面积为54-20-272=412(m 2). 23.解:(1)因为2a +1-2(a +1)=2a +1-2a -2=-1<0,所以2a +1<2(a +1).(2)(a+b)-(a-b)=a+b-a+b=2b.①当b>0时,a+b>a-b;②当b<0时,a+b<a-b;③当b=0时,a+b=a-b.24.解:(1)当x=100时,方案一:100×200=20 000(元);方案二:100×(200+80)×80%=22 400(元).因为20 000<22 400,所以方案一划算.(2)当x>100时,方案一:100×200+80(x-100)=80x+12 000(元);方案二:(100×200+80x)×80%=64x+16 000(元).(3)当x=300时,①按方案一购买:80×300+12 000=36 000(元);②按方案二购买:64×300+16 000=35 200(元);③先按方案一购买100张课桌,同时送100把椅子,再按方案二购买200把椅子:100×200+80×200×80%=32 800(元),36 000>35 200>32 800,即先按方案一购买100张课桌,同时送100把椅子,再按方案二购买200把椅子最省钱。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单元测试(三)整式及其加减法
一、选择题(每小题3分,共30分)
1.下列各2112,,8,,26,25
x y mn m x x a -=++,2341,5x y y y y π+-+中,整式有( ) A.3个 B.4个 C.6个 D.7个
2.列式表示“比m 的平方的3倍大1的数”是( )
A.2(3)1m +
B.2(31)m +
C.23(1)m +
D.231m +
3.下列各组单项式中,不是同类项的是( )
A.3
12a y 与323ya B.312x y 与312xy - C.32与23 D.26a mb 与2a bm - 4.化简m+n-(m-n)的结果为( )
A.2m
B.-2m
C.2n
D.-2n
5.若b=4, c=3b a ,则+b+c=a ( )
A.11a
B.13a
C.15a
D.17a
6.已知2y=3x -,那么代数式3-2+4y x 的值是( )
A.-3
B.0
C.6
D.9
7.某商店举办促销活动,促销的方法是将原价x 元的衣服以4105x ⎛⎫- ⎪⎝⎭
元的价格出售,则下列说法中,能正确表达该商店促销方法的是( )
A.原价减去10元后再打8折
B.原价打8折后再减去10元
C.原价减去10元后再打2折
D.原价打2折后再减去10元
8.下图是一数值转换机的示意图,若输入的x 值为20,则输出的结果为( )
A.150
B.120
C.60
D.30
9已知有理数a ,b ,c 在数轴上对应点的位置如图所示,化简:|b c|2|c+|3|b|=a a ----( )
A.5+4b 3c a --
B.52b+c a -
C.2b 3c a --
D.52b 3c a --
10.如图,用棋子摆出下列一组三角形,三角形每边有n 枚棋子,每个三角形的棋子总数是S.按此规律推断,当三角形边上有n 枚棋子时,该三角形的棋子总数S=( )
(n=2, S=3)(n=3, S=6)(n=4, S=9)(n=5, S=12)
A.33n -
B.3n -
C.22n -
D.23n -
二、填空题(每小题4分,共24分)
11.请你结合生活实际,设计具体情境,解释代数式30a
的意义__________. 12.当9a =时,代数式221a a ++的值为_________.
13.若32115k x y +与3873
x y -是同类项,则k =_________. 14.去括号:3263(1)x x x ⎡⎤---=⎣⎦_________.
15.当4x =-时,代数式3242x x ---与32534x x x ++-的和是_________.
16.对于有理数,a b ,定义a ⊙b=3a +2b ,则[(x +y )⊙(x y )]⊙3x 化简后得_________.
三、解答题(共46分)
17.(8分)计算:
(1) 2(2b 3)+3(2 3 b)a a --;
()22(2)4232(71)a ab a ab +---.
18.(8分)先化简,再求值:()()22238854+m mn mn m -+--,其中m=2, n=1.
19.(8分)小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示,根据图中的数据(单位:m ),解答下列问题:
(1)用含, y x 的式子表示地面总面积;
(2)当x =4,y=2时,如果铺21m 地砖的平均费用为30元,那么铺地砖的费用是多少元?
20.(10分)已知:关于,x y 的多项式2x ax y b +-+与多项式2363bx x y -+-的
和的值与x 的取值无关,求代数式()2222213324222a ab b a a ab b ⎡⎤⎛⎫-+--+- ⎪⎢⎥⎝⎭⎣
⎦的值.
21.(12分)某农户承包荒山若干亩,种果树2000棵.今年水果总产量为18000千克,此水果在市场上每千克售a 元,在果园每千克售b 元(b<a ).该农户将水果拉到市场出售平均每天出售1000千克,需8人帮忙,每人每天付工资25元,农用车运费及其他各项税费平均每天100元.
(1)分别用a ,b 表示两种方式出售水果的收入;
(2)若a =1.3元,b=1.1元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好.
参考答案
1.C
2.D
3.B
4.C
5.D
6.A
7.B
8.A
9.B
10.A
11.某班级有a 名学生参加考试,30名学生成绩合格,则合格人数占总人数的30a
. 12.100 13.72
14.32631x x x -+-
15.-2
16.21x +3y
17.(1)解:原式=4b 6a+6a 9b=5b ---.
(2)解:原式=22464711a ab a ab ab +--+=-+.
18.解:原式=22223854868m mn mn m m mn -+-+-=-.当m=2,n=1时,原式=2628218=⨯-⨯⨯=.
19.解:(1)24248(144)xy y y y y xy m +++=+.
(2)当4,2x y ==时,2442)30180(014⨯+⨯⨯⨯=(元).答:铺地砖的费用是1800元.
20.解:由题意可知,222-3 ) x+5 363(y+b 1)-3(x ax y b bx x y b x a +-++-+-=++.
该多项式的值与x的取值无关,所以b+1=0,a-3=0.所以b=-1,a=3.原式= ()
22222222 3633233633234
a a
b b a ab b a ab b a ab b ab
-+--+=-+-+-=-.把a=3,b=-1代人,得原式=-4×3×(-1)=12.
21.解:(1)将这批水果拉到市场上出售收入为
1800018000 18000825
10001000
a-⨯⨯-⨯
1001800036001800(180005400)
a a
=--=-元,在果园直接出售收入为18000b 元.
(2)当a=1.3时,市场收入为18000×1.3-5400=18000(元).当b=1.1时,果园收入为18000×1.1=19800(元).因为18000<19800,所以应选择在果园出售.。