中考数学专题尺规作图

合集下载

中考数学-尺规作图专题复习

中考数学-尺规作图专题复习

中考总复习—尺规作图一、理解“尺规作图”的含义在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.由此可知,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的.2.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.二、熟练掌握尺规作图题的规范语言1.用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、× .三、了解尺规作图题的一般步骤尺规作图题的步骤:1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;2.求作:能根据题目写出要求作出的图形及此图形应满足的条件;3.作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.四、最基本,最常用的尺规作图,通常称基本作图。

中考数学考点一遍过考点20尺规作图含解析

中考数学考点一遍过考点20尺规作图含解析

考点 20 尺规作图一、尺规作图1.尺规作图的定义在几何里,把限定用没有刻度的直尺和圆规来画图称为尺规作图.2.五种基本作图(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作一个角的平分线;(4)作一条线段的垂直平分线;(5)过一点作已知直线的垂线.3.根据基本作图作三角形(1)已知三角形的三边,求作三角形;(2)已知三角形的两边及其夹角,求作三角形;(3)已知三角形的两角及其夹边,求作三角形;(4)已知三角形的两角及其中一角的对边,求作三角形;(5)已知直角三角形一直角边和斜边,求作直角三角形.4.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆);(2)作三角形的内切圆.5.有关中心对称或轴对称的作图以及设计图案是中考常见类型.6.作图题的一般步骤(1)已知;(2)求作;(3)分析;(4)作法;(5)证明;(6)讨论.其中步骤(3)(4)(5)(6)一般不作要求,但作图中一定要保留作图痕迹.二、尺规作图的方法1.尺规作图的关键(1)先分析题目,读懂题意,判断题目要求作什么;(2)读懂题意后,再运用几种基本作图方法解决问题.2.根据已知条件作等腰三角形或直角三角形求作三角形的关键是确定三角形的三个顶点,作图依据是三角形全等的判定,常借助基本作图来完成,如作直角三角形就先作一个直角.考向一基本作图1.最基本、最常用的尺规作图,通常称为基本作图.2.基本作图有五种:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作一个角的平分线;(4)作一条线段的垂直平分线;(5)过一点作已知直线的垂线.典例 1 如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于12AB)为半径作弧,两弧相交于点M和N,作直线M N交AB于点D,交BC于点E,连接C D,下列结论错误的是A.AD=BD B.BD=CDC.∠A=∠BED D.∠ECD=∠EDC【答案】 D【解析】∵M N为A B的垂直平分线,∴AD=BD,∠BDE=90°,∵∠ACB=90°,∴C D=BD,∵∠A+∠B=∠B+∠BED=90°,∴∠A=∠BED,∵∠A≠60°,AC≠AD,∴EC≠ED,∴∠ECD≠∠EDC.故选D.典例 2 如图,已知∠MAN,点B在射线A M上.(1)尺规作图:①在A N上取一点C,使BC=BA;②作∠MBC的平分线BD,(保留作图痕迹,不写作法)(2)在(1)的条件下,求证:BD∥AN.【解析】(1)①以B点为圆心,B A长为半径画弧交AN于C点;如图,点C即为所求作;②利用基本作图作B D平分∠MBC;如图,B D即为所求作;(2)先利用等腰三角形的性质得∠A=∠BCA,再利用角平分线的定义得到∠MBD=∠CBD,然后根据三角形外角性质可得∠MBD=∠A,最后利用平行线的判定得到结论.∵AB=AC,∴∠A=∠BCA,∵BD平分∠MBC,∴∠MB=D∠CBD,∵∠MBC=∠A+∠BCA,即∠MBD+∠CBD=∠A+∠BCA,∴∠MBD=∠A,∴BD∥AN.1.根据下图中尺规作图的痕迹,可判断A D一定为三角形的A.角平分线B.中线C.高线D.都有可能2.(1)请你用尺规作图,作A D平分∠BAC,交B C于点D(要求:保留作图痕迹);(2)∠ADC的度数.考向二复杂作图利用五种基本作图作较复杂图形.典例2如图,在同一平面内四个点A,B,C,D.(1)利用尺规,按下面的要求作图.要求:不写画法,保留作图痕迹,不必写结论.①作射线AC;②连接AB,BC,BD,线段B D与射线AC相交于点O;③在线段AC上作一条线段C F,使C F=AC–BD.(2)观察(1)题得到的图形,我们发现线段AB+BC>AC,得出这个结论的依据是__________.【答案】见解析.【解析】(1)①如图所示,射线A C即为所求;②如图所示,线段AB,BC,BD即为所求;③如图所示,线段CF即为所求;(2)根据两点之间,线段最短,可得AB+BC>AC.故答案为:两点之间,线段最短.3.作图题:学过用尺规作线段与角后,就可以用尺规画出一个与已知三角形一模一样的三角形来.比如给定一个△ABC,可以这样来画:先作一条与AB相等的线段A′B′,然后作∠B′A′C′=∠BAC,再作线段A′C′=AC,最后连接B′C′,这样△A′B′C′就和已知的△ABC一模一样了.请你根据上面的作法画一个与给定的三角形一模一样的三角形来.(请保留作图痕迹)1.根据已知条件作符合条件的三角形,在作图过程中主要依据是A.用尺规作一条线段等于已知线段B.用尺规作一个角等于已知角C.用尺规作一条线段等于已知线段和作一个角等于已知角D.不能确定2.下列作图属于尺规作图的是A.画线段MN=3 cmB.用量角器画出∠AOB的平分线C.用三角尺作过点A垂直于直线l 的直线D.已知∠α,用没有刻度的直尺和圆规作∠AOB,使∠AOB=2∠α3.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,C A为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是A.BH垂直平分线段AD B.A C平分∠BADC.S△ABC=BC·AH D.AB=AD4.如图,点C在∠AOB的O B边上,用尺规作出了∠AOB=∠NCB,作图痕迹中,弧F G是A.以点C为圆心,O D为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,O D为半径的弧D.以点E为圆心,DM为半径的弧5.如图,△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于12EF长为半径画弧,两弧相交于点G;③作射线AG交B C边于点D.则∠ADC的度数为A.65°B.60°C.55°D.45°6.如图,△ABC为等边三角形,要在△ABC外部取一点D,使得△ABC和△DBC全等,下面是两名同学做法:甲:①作∠A的角平分线l;②以B为圆心,BC长为半径画弧,交l于点D,点D即为所求;乙:①过点B作平行于AC的直线l;②过点C作平行于AB的直线m,交l于点D,点D即为所求.A.两人都正确B.两人都错误C.甲正确,乙错误D.甲错误,乙正确7.在△ABC中,按以下步骤作图:①分别以A,B为圆心,大于12AB的长为半径画弧,相交于两点M,N;②作直线MN交A C于点D,连接BD.若C D=BC,∠A=35°,则∠C=__________.8.如图,在△ABC中,AB=A C.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连接BD.若∠A=32°,则∠CDB的大小为__________度.9.按要求用尺规作图(要求:不写作法,但要保留作图痕迹,并写出结论)已知:线段AB;求作:线段A B的垂直平分线MN.10.如图,已知△ABC,∠BAC=90°,(1)尺规作图:作∠ABC的平分线交AC于D点(保留作图痕迹,不写作法)(2)若∠C=30°,求证:D C=D B.1.(2019?河南)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于12A C长为半径作弧,两弧交于点E,作射线BE交A D于点F,交A C于点O.若点O是AC的中点,则CD的长为A.2 2 B.4 C.3 D.102.(2019?包头)如图,在Rt △ABC中,∠B=90°,以点A为圆心,适当长为半径画弧,分别交AB、A C于点D,E,再分别以点D、E为圆心,大于12D E为半径画弧,两弧交于点F,作射线AF交边B C于点G,若BG=1,AC=4,则△ACG的面积是A.1 B.32C.2 D.523.(2019?北京)已知锐角∠AOB,如图,(1)在射线O A上取一点C,以点O为圆心,OC长为半径作?PQ ,交射线OB于点D,连接C D;(2)分别以点C,D为圆心,CD长为半径作弧,交?PQ于点M,N;(3)连接O M,MN.根据以上作图过程及所作图形,下列结论中错误的是A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD4.(2019?广西)如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为A.40°B.45°C.50°D.60°5.(2019?新疆)如图,在△ABC中,∠C=90°,∠A=30°,以点B 为圆心,适当长为半径画弧,分别交BA,B C于点M,N;再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线B P交A C于点D.则下列说法中不正确的是A.BP是∠ABC的平分线B.AD=BDC.S△CBD∶S△ABD=1∶3 D.C D= 12 BD6.(2019?荆州)如图,矩形ABCD的顶点A,B,C分别落在∠MON的边OM,O N上,若OA=OC,要求只用无刻度的直尺作∠MON的平分线.小明的作法如下:连接AC,B D交于点E,作射线OE,则射线O E平分∠MO.N有以下几条几何性质:①矩形的四个角都是直角,②矩形的对角线互相平分,③等腰三角形的“三线合一”.小明的作法依据是A.①②B.①③C.②③D.①②③7.(2019?河北)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是A.B.C.D.8.(2019?长沙)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于12AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交B C于点D,连接AD,则∠CAD的度数是A.20°B.30°C.45°D.60°9.(2019?襄阳)如图,分别以线段AB的两个端点为圆心,大于AB的一半的长为半径画弧,两弧分别交于C,D两点,连接AC,BC,AD,BD,则四边形ADBC一定是A.正方形B.矩形C.梯形D.菱形10.(2019?广东)如图,在△ABC中,点D是AB边上的一点.(1)请用尺规作图法,在△ABC内,求作∠ADE,使∠ADE=∠B,D E交A C于E;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若A DDB=2,求A EEC的值.11.(2019?长春)如图,在△ABC中,ACB 为钝角.用直尺和圆规在边AB 上确定一点D .使ADC 2 B ,则符合要求的作图痕迹是A.B.C.D.12.(2019?贵阳)如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于12B D长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若AE=2,BE=1,则E C的长度是A.2 B.3C.3 D.513.(2019?宜昌)通过如下尺规作图,能确定点D 是BC 边中点的是A.B.C.D.14.(2019?潍坊)如图,已知AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交AOB的两边于C,D两点,连接CD;②分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在AOB内交于点E,连接CE,DE;③连接OE交CD于点M.下列结论中错误的是A.CEO DEO B.CM MDC.OCD ECD D.1 S四边形CD OEOCED215.(2019?东营)如图,在RtV ABC中,ACB90,分别以点B和点C为圆心,大于12BC的长为半径作弧,两弧相交于D,E两点,作直线DE交AB于点F,交BC于点G,连接CF.若AC3,CG2,则CF的长为A.52B.3C.2D.7 216.(2019?宁夏)如图,在Rt△ABC中,C90,以顶点B为圆心,适当长度为半径画弧,分别交AB,BC于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.若A30,则S△S△BCDABD__________.17.(2019?贵港)尺规作图(只保留作图痕迹,不要求写出作法):如图,已知△ABC,请根据“SAS”基本事实作出△DEF,使△DEF≌△ABC.18.(2019?玉林)如图,已知等腰△ABC顶角A30.(1)在A C上作一点D,使AD BD(要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加墨);(2)求证:△BCD是等腰三角形.19.(2019?长春)图①、图②、图③均是6×6的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A、B、C、D、E、F均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法.(1)在图①中以线段AB为边画一个△ABM,使其面积为6.(2)在图②中以线段CD为边画一个△CDN,使其面积为6.(3)在图③中以线段EF为边画一个四边形EFGH,使其面积为9,且EFG90.20.(2019?哈尔滨)图1、2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)在图1中画出以AC为底边的等腰直角△ABC,点B在小正方形顶点上;(2)在图2中画出以AC为腰的等腰△ACD,点D在小正方形的顶点上,且△ACD的面积为8.21.(2019?济宁)如图,点M和点N在AOB内部.(1)请你作出点P,使点P到点M和点N的距离相等,且到AOB两边的距离也相等(保留作图痕迹,不写作法);(2)请说明作图理由.22.(2019?河池)如图,AB为e O的直径,点C在e O上.(1)尺规作图:作BAC的平分线,与e O交于点D;连接OD,交BC于点E(不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE与AC的位置及数量关系,并证明你的结论.23.(2019?赤峰)已知:AC是Y ABCD的对角线.(1)用直尺和圆规作出线段AC 的垂直平分线,与AD 相交于点E,连接CE.(保留作图痕迹,不写作法);(2)在(1)的条件下,若AB 3,BC 5,求△DCE 的周长.24.(2019?杭州)如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与B C边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.25.(2019?吉林)图①,图②均为4×4 的正方形网格,每个小正方形的顶点称为格点.在图①中已画出线段AB,在图②中已画出线段C D,其中A、B、C、D均为格点,按下列要求画图:(1)在图①中,以AB为对角线画一个菱形AEBF,且E,F 为格点;(2)在图②中,以CD为对角线画一个对边不相等的四边形CGD,H且G,H为格点,∠CGD=∠CHD=90°.26.(2019?武汉)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD 的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图1,过点A画线段AF,使A F∥D C,且AF=D C.(2)如图1,在边AB上画一点G,使∠AGD=∠BGC.(3)如图2,过点E画线段EM,使EM∥AB,且EM=AB.27.(2019?江西)在△ABC中,AB=AC,点A在以BC为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1)在图1中作弦E F,使EF∥BC;(2)在图2中以B C为边作一个45°的圆周角.变式拓展1.【答案】B【解析】由作图的痕迹可知:点D是线段BC的中点,∴线段AD是△ABC的中线,故选B.如图,在△ABC中,∠C=90°,∠B=40°.2.【解析】(1)如图,AD为所作;(2)∵∠C=90°,∠B=40°.∴∠BAC=90°–40°=50°,∵A D平分∠BAC,∴∠BAD= 12∠BAC=25°,∴∠ADC=∠B+∠BAD=40°+25°=65°.3.【解析】首先作一条射线,进而截取AB=A′B′,∠CAB=∠C′A′B′,进而截取AC=A′C′,进而得出答案.如图所示:△A′B′C′即为所求.考点冲关1.【答案】C【解析】根据已知条件作符合条件的三角形,需要使三角形的要素符合要求,或者是作边等于已知线段,或者是作角等于已知角,故选C.2.【答案】D【解析】选项A,画线段MN=3 cm,需要知道长度,而尺规作图中的直尺是没有长度的,错误;选项B,用量角器画出∠AOB的平分线,量角器不在尺规作图的工具里,错误;选项C,用三角尺作过点A垂直于直线l 的直线,三角尺也不在作图工具里,错误;选项D,正确.故选D.3.【答案】A【解析】由作法可得BH为线段AD的垂直平分线,故选A.4.【答案】D【解析】作图痕迹中,弧F G是以点E为圆心,DM为半径的弧,故选D.5.【答案】A【解析】由题意得AG为∠CAB的角平分线,则∠ADC=25°,∵∠C=90°,∴∠ADC=65°,故选A.6.【答案】A【解析】(甲)如图一所示,∵△ABC为等边三角形,AD是∠BAC的角平分线,∴∠BEA=90°,∴∠BED=90°,∴∠BEA=∠BED=90°,由甲的作法可知,AB=BD,A B=BDABC=DBC∴∠ABC=∠DBC,在△ABC与△DBC中,,BC BC=∴△ABC≌△DBC,故甲的作法正确;(乙)如图二所示,∵BD ∥AC ,C D ∥AB ,∴∠ ABC =∠DCB ,∠ACB =∠DBC ,ABC = DCB在△ABC 和△ DCB 中,BC =CB,ACB = DBC∴△ABC ≌△DCB (ASA ),∴乙的作法是正确的.故选 A . 7.【答案】 40°【解析】∵根据作图过程和痕迹发现 MN 垂直平分 AB , ∴D A =D B ,∴∠ DBA =∠A =35°,∵C D =BC ,∴∠ CDB =∠CBD =2∠A =70°,∴∠ C =40°, 故答案为: 40°. 8.【答案】 37【解析】∵ AB =AC ,∠A =32°, ∴∠ABC =∠ACB =74°, 又∵BC =D C ,∴∠CDB =∠CBD = 1 2∠ACB =37°,故答案为: 37. 9.【解析】作法:(1)分别以 A ,B 点为圆心,以大于A B 2的长为半径作弧,两弧相交于 M ,N 两点;(2)作直线 MN ,MN 即为线段 AB 的垂直平分线.10.【解析】( 1)射线 BD 即为所求.(2)∵∠ A =90°,∠ C =30°,∴∠ABC =90°﹣30°=60°,∵BD 平分∠ ABC ,∴∠CBD = 1 2∠ABC =30°, ∴∠C =∠CBD =30°,∴D C =D B .直通中考1.【答案】 A【解析】如图,连接 FC ,则 AF =FC .∵AD ∥BC ,∴∠ FAO =∠BCO .FAO BCOOA OC在△FOA 与△ BOC 中, ,∴△ FOA ≌△BOC (ASA ),∴ A F =BC =3,AOF COB∴FC =AF =3,FD =AD - A F =4-3=1.在△ FDC 中,∵∠ D =90°,∴ CD2+D F 2=FC 2,∴C D 2+12=32,∴C D =2 2 .故选 A .2.【答案】 C【解析】由作法得 AG 平分∠ BAC ,∴G 点到 A C 的距离等于 BG 的长,即 G 点到 AC 的距离为 1,所以△ ACG 的面积 =1 2 ×4×1=2.故选 C .3.【答案】 D【解析】由作图知 C M =C D =D N ,∴∠ COM =∠COD ,故 A 选项正确;∵O M =ON =MN ,∴△ OMN 是等边三角形,∴∠ MO =N 60° ,∵C M =C D =D N ,∴∠MOA =∠AOB =∠BON = 1 3 ∠MO =N 20° ,故 B 选项正确;∵∠MO =A ∠AOB =∠BON =20° ,∴∠ OCD =∠OC =M 80° ,∴∠ MCD =160° ,1 2 又∠CMN =∠AON =20° ,∴∠ MCD +∠CMN =180° ,∴ MN ∥C D ,故C 选项正确;∵MC +C D +D N >MN ,且 C M =C D =D N ,∴3C D >MN ,故 D 选项错误,故选 D .4.【答案】 C【解析】由作法得 C G ⊥AB ,∵AC =BC ,∴CG 平分∠ ACB ,∠A =∠B ,∵∠ ACB =180° -40 ° -40° =100° , ∴∠BCG = 1 2∠ACB =50° .故选 C .5.【答案】 C【解析】由作法得 B D 平分∠ ABC ,所以 A 选项的结论正确;∵∠C =90° ,∠ A =30° ,∴∠ ABC =60° ,∴∠ ABD =30° =∠A ,∴AD =BD ,所以 B 选项的结论正确; ∵∠CBD = 1 2 ∠ABC =30° ,∴ BD =2C D ,所以D 选项的结论正确;∴AD =2C D ,∴S △ABD =2S △CBD ,所以 C 选项的结论错误.故选 C .6.【答案】 C【解析】∵四边形 ABCD 为矩形,∴ AE =C E ,而 OA =OC ,∴OE 为∠AOC 的平分线.故选 C .7.【答案】 C【解析】三角形外心为三边的垂直平分线的交点,由基本作图得到 C 选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选 C .8.【答案】 B【解析】在△ ABC 中,∵∠ B =30° ,∠ C =90° ,∴∠ BAC =180° - ∠B -∠C =60° ,由作图可知 MN 为 AB 的中垂线,∴D A=D B,∴∠DAB=∠B=30°,∴∠CAD=∠BAC- ∠DAB=30°,故选B.9.【答案】D【解析】由作图可知:AC=AD=BC=BD,∴四边形ACBD是菱形,故选D.10.【解析】(1)如图,∠ADE为所作.(2)∵∠ADE=∠B,∴D E∥BC,∴A E ADEC DB=2.11.【答案】B【解析】∵ADC 2 B且ADC B BCD ,∴B BCD ,∴DB DC ,∴点D 是线段BC 中垂线与AB 的交点,故选B.12.【答案】D【解析】由作法得C E⊥AB,则∠AEC=90°,AC=AB=BE+AE=2+1=3,在Rt△ACE中,C E= 32 22 5 .故选D.13.【答案】A【解析】作线段BC的垂直平分线可得线段BC 的中点.由此可知:选项 A 符合条件,故选A.14.【答案】C【解析】由作图步骤可得:OE 是AOB 的角平分线,∴∠COE=∠DOE,∵OC=OD,OE=OE,O M=O M,∴△COE≌△DOE,∴∠CEO=∠DEO,∵∠COE=∠DOE,OC=OD,∴C M=DM,OM⊥C D,∴S 四边形OCED=S△CO+E S△DOE= 1 1 1OE CM OE DM CD OE ,2 2 2但不能得出OCD ECD ,∴A、B、D选项正确,不符合题意,C选项错误,符合题意,故选C.15.【答案】A【解析】由作法得GF 垂直平分BC ,∴FB FC ,CG BG 2,FG BC ,∵ACB 90 ,∴FG∥AC ,∴BF CF ,∴CF 为斜边AB 上的中线,∵AB 32 42 5,∴1 5CF AB .故选A.2 216.【答案】1 2【解析】由作法得BD 平分ABC,∵∠C 90 ,A 30 ,∴ABC 60 ,∴ABD CBD 30 ,∴DA DB ,在Rt△BCD 中,BD 2CD ,∴AD 2CD ,∴S△BCDS△ABD12.故答案为:12.17.【解析】如图,△DEF 即为所求.18.【解析】(1)如图,点D为所作.(2)∵AB AC,∴1ABC C(18036)72,2∵DA DB,∴ABD A36,∴BDC A ABD363672,∴BDC C,∴△BCD是等腰三角形.19.【解析】(1)如图①所示,△ABM即为所求.(2)如图②所示,△CDN即为所求.(3)如图③所示,四边形EFGH即为所求.20.【解析】(1)作AC的垂直平分线,作以AC为直径的圆,垂直平分线与圆的交点即为点B.(2)以C为圆心,AC为半径作圆,格点即为点D.21.【解析】(1)如图,作∠AOB的角平分线与线段MN的垂直平分线交于P点,即点P到点M和点N的距离相等,且到AOB两边的距离也相等.(2)理由:角的平分线上的点到角的两边的距离相等、直平分线上的点到线段两端点的距离相等.22.【解析】(1)如图所示:(2)O E∥AC,1 OE AC.2理由如下:∵AD平分BAC,∴1 BAD BAC,2∵1 BAD BOD,2∴BOD BAC,∴OE∥AC,∵OA OB,∴OE为△ABC的中位线,∴OE∥AC,1 OE AC.223.【解析】(1)如图,CE为所作.(2)∵四边形ABCD为平行四边形,∴AD BC5,CD AB3,∵点E在线段AC的垂直平分线上,∴EA EC,∴△DCE的周长CE DE CD EA DE CD AD CD538.24.【解析】(1)∵线段A B的垂直平分线与BC边交于点P,∴PA=PB,∴∠B=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠B.(2)根据题意可知BA=BQ,∴∠BAQ=∠BQA,∵∠AQC=3∠B,∠AQC=∠B+∠BAQ,∴∠BQA=2∠B,∵∠BAQ+∠BQA+∠B=180°,∴5∠B=180°,∴∠B=36°.25.【解析】(1)如图,菱形AEBF即为所求.(2)如图,四边形CGDH即为所求.26.【解析】(1)如图所示,线段AF即为所求.(2)如图所示,点G即为所求.(3)如图所示,线段EM即为所求.27.【解析】(1)如图1,EF为所作.(2)如图2,∠BCD为所作.。

初中数学专题尺规作图(含答案)

初中数学专题尺规作图(含答案)

第28课时尺规作图◆考点聚焦1.掌握基本作图,尺规作图的要求与步骤.2.利用基本作图工具画三角形、四边形、圆以及简单几何体的三视图,•对简单的作图能叙述作法.3.运用基本作图、结合相关的数学知识(平移、旋转、对称、•位似)等进行简单的图案设计.4.运用基本作图解决实际问题.◆备考兵法1.熟练掌握基本作图.2.在画几何体的三视图时,要注意其要求,•即“长对正”“高平齐”“宽相等”.3.认真分析题意,善于把实际问题转化为基本作图.◆识记巩固1.尺规作图的定义:_____________.2.基本作图包括:_______,_______,________,________,_______.3.三角形三边的垂直平分线的交点叫三角形的外心,•三角形三内角平分线的交点叫三角形的内心,外心到三角形的_______的距离相等,内心到三角形_______的距离相等.识记巩固参考答案:1.限定只能使用圆规和没有刻度的直尺作图2.作线段作角作线段的垂直平分线过一点作已知直线的垂线作角平分线3.顶点三边◆典例解析例1 (2008,新疆建设兵团)(1)请用两种不同的方法,用尺规在所给的两个矩形中各作一个不为正方形的菱形,且菱形的四个顶点都在矩形的边上.(保留作图痕迹)(2)写出你的作法.解析(1)所作菱形如图①,②所示.说明:作法相同的图形视为同一种,例如类似图③,•图④的图形视图与图②是同一种.①②③④(2)图①的作法:作矩形A1B1C1D1四条边的中点E1,F1,G1,H1,连结H1E1,E1F1,G1F1,G1H1.四边形E1F1G1H1即为菱形.图②的作法:在B2C2上取一点E2,使E2C2>A2E2且E2不与B2重合,连结A2E2.以A2为圆心,A2E2为半径画弧,交A2D2于H2;以E2为圆心,A2E2为半径画弧,交B2C2于F2;连结H2F2,则四边形A2E2F2H2为菱形.例2 如图,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是矩形.请你只用无刻度的直尺在图中画∠AOB的平分线(请保留画图痕迹).解析连结AB.因为OA=OB,因此△ABO为等腰三角形.要作出∠AOB的平分线,•只要确定出AB的中点即可.因AEBF为矩形,因此连结AB,EF,相交于M.根据矩形的性质,M即为AB的中点.连结OM,射线OM即为所求的角平分线.例3台球是一项高雅的体育运动,其中包含了许多物理学,几何学知识.如图是一个台球桌,目标球F与本球E之间有一个G球阻挡,现在击球者想通过击打E球先撞击球台的AB边,经过一次反弹后再撞击F球,他应将E球打到AB边上的哪一点?•请在图中用尺规作图这一点H,并作出E球的运行路线(不写画法,保留作图痕迹).解析作点E关于直线AB的对称点E1,连结E1F,E1F与AB相交于点H,球E•的运动路线是EH→HF.点评本例是把实际问题通过抽象,把求H点的问题先转化为作E•点关于直线AB的对称点问题加以解决.数学课程标准对尺规作图提出了明确要求,是中考的重要内容之一,在复习时要掌握基本作图,要善于把具体问题的作图转化为基本作图.•学会对作图问题进行分析,归纳,掌握画法.◆中考热身1.(2008,江苏镇江)如图,在△ABC中,作∠ABC的平分线BD,交AC于D,作线段BD 的垂直平分线EF,分别交AB于E,BC于F,垂足为O,连结DF,在所作图中,寻找一对全等三角形,并加以证明.(不定作法,保留作图痕迹)2.(2008,山西太原)如图,在△ABC中,∠BAC=2∠C.(1)在图中作出△ABC的内角平分线AD;(要求:尺规作图,保留作图痕迹,•不写证明)(2)在已作出的图形中,写出一对相似三角形,并说明理由.3.(2008,四川成都)如图,已知点A是锐角∠MON内的一点,试分别在OM,ON上确定点B,点C,使ABC•的周长最小,写出你作图的主要步骤并标明你所确定的点_________.(要求画出草图,保留作图痕迹)◆迎考精练一、基础过关训练1.在Rt△ABC中,已知∠C=90°,AD是∠BAC的平分线.以AB上一点O为圆心,AD•为弦作⊙O(不写作法,保留作图痕迹).2.请你画出一个以BC为底边的等腰△ABC,使底边上的高AD=BC.(1)求tanB和sinB的值.(2)在你所画的等腰△ABC中,假设底边BC=5米,求腰上的高BE.3.作一条直线,平分如图所示图形的面积:4.现有m,n两堵墙,两个同学分别站在A处和B处,请问小明在哪个区域内活动才不会被任何一个同学发现?(画图,用阴影表示)5.按下列要求作图,不写画法,要保留作图痕迹.(1)在图1中,作出AB的中点M,作出∠BCD的平分线CN,延长CD到点P,使DP=2CD;(2)如图2是一个破损的机器部件,它的残留边缘是圆弧,请作图找出圆弧所在的圆心.图1 图26.如图,Rt△ABC的斜边AB=5,cosA=35.(1)用尺规作图作线段AC的垂直平分线(保留作图痕迹,不要求写作法,证明);(2)若直线L与AB,AC分别相交于D,E两点,求DE的长.7.成绵高速公路OA和绵广高速公路OB在绵阳市相交于点O,在∠AOB•内部有两个城镇C,D,若要修一个大型农贸市场P,使P到OA与OB的距离相等,且PC=PD,用尺规作出市场P的位置.(不写作法,保留作图痕迹)二、能力提升训练8.已知正方形ABCD的面积为S.(1)求作:四边形A1B1C1D1,使得点A1和点A关于点B对称,点B1和点B关于点C 对称,点C1和点C关于点D对称,点D1和点D关于点A对称;(只要求画出图形,不要求写作法)(2)用S1表示(1)中所作出的四边形A1B1C1D1的面积;(3)若将已知条件中的正方形改为任意四边形,面积仍为S,并按(1)•的要求作出一个新的四边形,面积为S2,则S1与S2是否相等?为什么?参考答案:中考热身1.解:(1)画角平分线,线段的垂直平分线.(2)△BOE≌△BOF≌△DOF.证明(略)2.解:(1)如图,AD即为所求(2)△ABD∽△CBA,理由如下:∵AD平分∠BAC,∠BAC=2∠C,∴∠BAD=∠BCA.又∵∠B=∠B,∴△ABD∽△CBA.3.分别作点A关于OM,ON的对称点A′,A″;连结A′A″,分别交OM,ON于点B,点C,则点B,点C即为所求作图略迎考精练基础过关训练1.点拨:作AD的垂直平分线与AB的交点即为圆心,OA为半径.(作图略)2.解:①画线段BC:②作BC的垂直平分线MN与BC相交于D;③在DM上截取DA=BC;④连结AB,AC,△ABC即为所求.(1)tanB=2,sinB=255,(2)BE=25米.3.点拨:过几何体中心的任一条直线均可将该图形分成面积相等的两部分.(•如图)4.解:小明在图中的阴影部分区域就不会被两个同学发现.5.(1)作图略.(2)点拨:在残片的圆弧上任选两条弦,分别作它们的中垂线,其交点即为圆心.6.点拨:(1)①分别以A,C为圆心,以大于12AC为半径画弧,两弧相交于M,N;•②连结MN,过MN的直线即为所求的直线L.(2)DE=2. 7.点拨:(1)作∠AOB的角平分线OE;(2)作DC的垂直平分线MN;(3)MN 交OE 于P 点,P 即为所求. 能力提升训练8.解:(1)如图1.图1 图2 (2)设正方形ABCD 的边长为a ,∴S=a 2. 依题意A 1D 1=A 1B 1=B 1C 1=C 1D 15. 易证A 1B 1C 1D 1是正方形, ∴S 1111A B C D =5a 2,∴S 1=5S . (3)S 1=S 2.证明如下:如图2,连结BD 1,BD .在△BDD 1中,AB 是中线, ∴S △ABD =S △ABD1.在△AA 1D 1中,BD 1是中线, ∴S △ABD1=S △A1BD1,S △AA1D1=2S △ABD1, 同理S △OC1B1=2S △CBD , ∴S △AA1D1+S △OC1B1=2S . 同理S △DD1C1+S △BA1B1=2S , ∴S 四边形1111A B C D =5S=S 2, ∴S 1=S 2.。

中考专题复习——初中最基本的尺规作图总结与典型例题

中考专题复习——初中最基本的尺规作图总结与典型例题

初中基本尺规作图总结与典型例题一、理解“尺规作图”的含义1.在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.由此可知,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的.2.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.二、熟练掌握尺规作图题的规范语言1.用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×. 三、了解尺规作图题的一般步骤尺规作图题的步骤:1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;2.求作:能根据题目写出要求作出的图形及此图形应满足的条件;3.作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。

中考数学专题复习导学案尺规作图》(含答案)

中考数学专题复习导学案尺规作图》(含答案)

中考数学专题练习《尺规作图》【知识归纳】一)尺规作图1.定义只用没有刻度的和作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二)五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三)基本作图的应用1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆).(2)作三角形的内切圆.【基础检测】1.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b +1),则a 与b 的数量关系为( )A .a =bB .2a +b =﹣1C .2a ﹣b =1D .2a +b =12.如图,已知△ABC ,以点B 为圆心,AC 长为半径画弧;以点C 为圆心,AB 长为半径画弧,两弧交于点D ,且点A ,点D 在BC 异侧,连结AD ,量一量线段AD 的长,约为( )A .2.5cmB .3.0cmC .3.5cmD .4.0cm3.如图,已知△ABC ,∠BAC=90°,请用尺规过点A 作一条直线,使其将△ABC 分成两个相似的三角形(保留作图痕迹,不写作法)4.如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上,点A 、B 的坐标分别是A (4,3)、B (4,1),把△ABC 绕点C 逆时针旋转90°后得到△A 1B 1C .(1)画出△A 1B 1C ,直接写出点A 1、B 1的坐标;(2)求在旋转过程中,△ABC 所扫过的面积.5.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB 与BC ,且四边形ABCD 是一个轴对称图形,其对称轴为直线AC .(1)试在图中标出点D ,并画出该四边形的另两条边;(2)将四边形ABCD 向下平移5个单位,画出平移后得到的四边形A′B′C′D′.6.已知:线段a 及∠ACB .求作:⊙O ,使⊙O 在∠ACB 的内部,CO=a ,且⊙O 与∠ACB 的两边分别相切.7.如图,OA=2,以点A 为圆心,1为半径画⊙A 与OA 的延长线交于点C ,过点A 画OA 的垂线,垂线与⊙A 的一个交点为B ,连接BC(1)线段BC 的长等于 ; (2)请在图中按下列要求逐一操作,并回答问题:A B C①以点为圆心,以线段的长为半径画弧,与射线BA交于点D,使线段OD的长等于②连OD,在OD上画出点P,使OP得长等于,请写出画法,并说明理由.【达标检测】一、选择题1.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°2.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧○1;步骤2:以B为圆心,BA为半径画弧○2,将弧○1于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()第10题图A.BH垂直分分线段AD B.AC平分∠BAD=BC·AH D.AB=ADC.S△ABC二、填空题3.如图,已知线段AB,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C、D 两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB.若FA=5,则FB=.4.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的是。

中考数学专题训练-尺规作图 (1-3)(原卷版)

中考数学专题训练-尺规作图 (1-3)(原卷版)

中考数学专题训练-尺规作图(1)一:作已知角的平分线(1)以O为圆心,任意长为半径作弧,分别交OA,OB于点M,N;(2)分别以点M,N为圆心,以大于12MN的长为半径作弧,两弧相交于点P;(3)作射线OP,OP即为所作的角平分线. 二:作已知线段的垂直平分线(1)分别以M、N为圆心,大于12MN的相同线段为半径画弧,两弧相交于P,Q;(2)连接PQ,交MN于O.则PQ就是所求作的MN的垂直平分线.1.如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于12AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD 的长为()A.22B.4 C.3 D.102.已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作PQ,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交PQ于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD3.如图,在△ABC中,∠C=90°,∠A=30°,以点B为圆心,适当长为半径画弧,分别交BA,BC于点M,N;再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.则下列说法中不正确的是()A.BP是∠ABC的平分线B.AD=BDC.S△CBD∶S△ABD=1∶3 D.CD=12 BD4.如图,在△ABC中,点D是AB边上的一点.(1)请用尺规作图法,在△ABC内,求作∠ADE,使∠ADE=∠B,DE交AC于E;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若ADDB=2,求AEEC的值.5.如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.6.在△ABC中,AB=AC,点A在以BC为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1)在图1中作弦EF,使EF∥BC;(2)在图2中以BC为边作一个45°的圆周角.1.如图,已知矩形AOBC 的三个顶点的坐标分别为O(0,0),A(0,3),B(4,0),按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交OC,OB 于点D,E;②分别以点D,E 为圆心,大于12DE 的长为半径作弧,两弧在∠BOC 内交于点F;③作射线OF,交边BC于点G,则点G 的坐标为( )A. (4,43) B. (43,4) C. (53,4) D. (4,53)2.在数学课上,老师提出如下问题:尺规作图:确定图1中CD所在圆的圆心.已知:CD.求作:CD所在圆的圆心O.曈曈的作法如下:如图2,(1)在CD上任意取一点M,分别连接CM,DM;(2)分别作弦CM,DM的垂直平分线,两条垂直平分线交于点O.点O就是CD所在圆的圆心.老师说:“曈曈的作法正确.”请你回答:曈曈的作图依据是_____.3.如图,在菱形ABCD中,AB=4,按以下步骤作图:①分别以点C和点D为圆心,大于12CD的长为半径画弧,两弧交于点M,N;②作直线MN,且MN恰好经过点A,与CD交于点E,连接BE,则BE的值为()A. 77774.如图,在已知的△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于12BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,若CD=AD,∠B=20°,则下列结论中错误的是()A. ∠CAD =40°B. ∠ACD =70°C. 点D 为△ABC 的外心D. ∠ACB =90° 5.如图,直线443y x =-+与x 轴、y 轴的交点为A ,B ,按以下步骤作图:①以点A 为圆心,适当长度为半径作弧,分别交AB ,x 轴于点C ,D ;②分别以点C ,D 为圆心,大于12CD 的长为半径作弧,两弧在∠OAB 内交于点M ;③作射线AM ,交y 轴于点E ,则点E 的坐标为( )A. (0,2)B. (0,3)C. (0,32)D. (0,43) 6.如图,在△ABC 中,AB =AC .(1)用尺规作图法在AC 边上找一点D ,使得BD =BC (保留作图痕迹,不要求写作法):(2)若∠A =30°,求∠ABD 的大小.7.如图,在Rt ABC 中,C 90∠=,B 30∠=.()1用直尺和圆规作O ,使圆心O 在BC 边,且O 经过A ,B 两点上(不写作法,保留作图痕迹); ()2连接AO ,求证:AO 平分CAB ∠.8.如图,在Rt△ABC中,∠C=90°,∠A=28°.(1)作AC边上的垂直平分线DE,交AC于点D,交AB于点E(用直尺和圆规作图,不写作法,但要保留作图痕迹);(2)连接CE,求∠BCE的度数.9.如图,▱ABCD中,(1)作边AB的中点E,连接DE并延长,交CB的延长线于点F;(用尺规作图,保留作图痕迹,不要求写作法):(2)已知▱ABCD的面积为8,求四边形EBCD的面积.中考数学专题训练-尺规作图 (2)一.选择题1.如图,矩形ABCD 中60BAC ∠=︒,以点A 为圆心,以任意长为半径作弧分别交AB ,AC 于点M ,N两点,再分别以点M ,N 为圆心,以大于12MN 的长为半径作弧交于点P ,作射线AP 交BC 于点E ,若2BE cm =,则CE 的长为( )A .6cmB .63cmC .4cmD .43cm2.如图,60AOB ∠=︒,以点O 为圆心,以任意长为半径作弧交OA ,OB 于C ,D 两点;分别以C ,D为圆心,以大于12CD 的长为半径作弧,两弧相交于点P ;以O 为端点作射线OP ,在射线OP 上截取线段4OM =,则M 点到OB 的距离为( )A .4B .3C .2D .233.如图,Rt OAB ∆的直角边OA 在x 轴上,OB 在y 轴的正半轴上,且(3,0)A ,4sin 5OAB ∠=.按以下步骤作图:①以点A 为圆心,适当长度为半径作弧,分别交OA ,AB 于点C ,D ;②分别以C ,D 为圆心,大于12CD 的长为半径作弧,两弧在OAB ∠内交于点M ;③作射线AM ,交y 轴于点E .则点E 的坐标为( )A .4(0,)3B .3(0,)2C .(0,3)D .(0,2)4.如图所示,在Rt ABC ∆中,90C ∠=︒,按以下步骤作图:①以点A 为圆心,以小于AC 的长为半径作弧,分别交AC 、AB 于点M ,N ;②分别以点M ,N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点O ; ③作射线OA ,交BC 于点E ,若6CE =,10BE =.则AB 的长为( )A .11B .12C .18D .205.如图,ABCD 中,4CD =,6BC =,按以下步骤作图:①以点C 为圆心,适当长度为半径作弧,分别交BC ,CD 于M ,N 两点:②分别以点M ,N 为圆心,以大于12MN 的长为半径画弧,两弧在ABCD 的内部交于点P ;③连接CP 并延长交AD 于点E ,交BA 的延长线于点F ,则AF 的长为( )A .1B .2C .2.5D .36.在ABC ∆中,5BC =,12AC =,90C ∠=︒,以点B 为圆心,BC 为半径作圆弧,与AB 交于D ,再分别以A ,D 为圆心,大于12AD 的长为半径作圆弧交于点M ,N ,作直线MN ,交AC 于E ,则AE 的长度为( )A .42B .4C .133D .57.如图,在菱形ABCD 中,按以下步骤作图:①分别以点C 和点D 为圆心,大于12CD 的同样的长为半径作弧,两弧交于M ,N 两点; ②作直线MN ,交CD 于点E ,连接BE .若直线MN 恰好经过点A ,则下列说法错误的是( )A .60ABC ∠=︒B .2ABE ADE S S ∆∆=C .若4AB =,则47BE =D .3tan 5CBE ∠= 8.如图,Rt ABC ∆中,90ACB ∠=︒.(1)以点C 为圆心,以CB 的长为半径画弧,交AB 于点G ,分别以点G ,B 为圆心,以大于12GB 的长为半径画弧,两弧交于点K ,作射线CK ;(2)以点B 为圆心,以适当的长为半径画弧,交BC 于点M ,交AB 的延长线于点N ,分别以点M ,N为圆心,以大于12MN 的长为半径画弧,两弧交于点P ,作直线BP 交AC 的延长线于点D ,交射线CK 于点E ;(3)过点D 作DF AB ⊥交AB 的延长线于点F ,连接CF .根据以上操作过程及所作图形,有如下结论:①CE CD =;②BC BE BF ==;③12CDFB S CF BD =⋅四边形; ④BCF BCE ∠=∠.所有正确结论的序号为( )A .①②③B .①③C .②④D .③④二.填空题9.如图,在ABC ∆中,按以下步骤作图: ①分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧相交于点M 和N ; ②作直线MN ,分别交边AB ,BC 于点D 和E ,连接CD .若90BCA ∠=︒,8AB =,则CD 的长为 .10.如图,BD 是矩形ABCD 的对角线,在BA 和BD 上分别截取BE ,BF ,使BE BF =,分别以E ,F为圆心,以大于12EF 的长为半径作弧,两弧在ABD ∠内交于点G ,作射线BG 交AD 于点P ,若5AP =,则点P 到BD 的距离为 .11.如图,四边形ABCD 中,//AD BC ,90D ∠=︒,4AD =,3BC =.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,射线BE 交AD 于点F ,交AC 于点O .若点O 恰好是AC 的中点,则CD 的长为 .12.如图,在ABC ∆中,90B ∠=︒,以点A 为圆心,适当长为半径画弧,分别交AB ,AC 于点D ,E ,再分别以D ,E 点为圆心,大于12DE 为半径画弧,两弧交于点F ,作射线AF 交边BC 于点G ,若1BG =,4AC =,则ACG ∆的面积为 .13.如图,在Rt ABC ∆中,90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若4CD =,12AB =,则ABD ∆的面积是 .14.如图,在菱形ABCD 中,按以下步骤作图:①分别以点A 和B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点E 、F ;②作直线EF 交BC 于点G ,连接AG ;若AG BC ⊥,3CG =,则AD 的长为 .三.解答题15.下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l 及直线l 外一点P .求作:直线PQ ,使得//PQ l .作法:如图,①任意取一点K ,使点K 和点P 在直线l 的两旁;②以P 为圆心,PK 长为半径画弧,交l 于点A ,B ,连接AP ;③分别以点P ,B 为圆心,以AB ,PA 长为半径画弧,两弧相交于点Q (点Q 和点A 在直线PB 的两旁);④作直线PQ .所以直线PQ 就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接BQ ,PQ = ,BQ = ,∴四边形PABQ 是平行四边形( )(填推理依据).//PQ l ∴.16.下面是小元设计的“过直线外一点作已知直线的平行线”的尺规作图过程.已知:如图,直线l 和直线外一点P .求作:过点P 作直线l 的平行线.作法:如图,①在直线l 上任取点O ;②作直线PO ;③以点O 为圆心OP 长为半径画圆,交直线PO 于点A ,交直线l 于点B ;④连接AB,以点B为圆心,BA长为半径画弧,交O于点C(点A与点C不重合);⑤作直线CP;则直线CP即为所求.根据小元设计的尺规作图过程,完成以下任务.(1)补全图形;(2)完成下面的证明:证明:连接BP、BC,=,AB BC∴AB BC=,∴∠=∠,=,又OB OP∴∠=∠,∴∠=∠,CPB OBP∴)(填推理的依据).CP l//(17.下面是小明设计的“在已知三角形的一边上取一点,使得这点到这个三角形的另外两边的距离相等”的尺规作图过程:∆.已知:ABC求作:点D,使得点D在BC边上,且到AB,AC边的距离相等.作法:如图,∠的平分线,交BC于点D.作BAC则点D即为所求.根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.⊥于点F,证明:作DE AB⊥于点E,作DF AC∠,AD平分BAC∴=()(括号里填推理的依据).18.如图,在O 中,点A 为弧CD 的中点过点B 作O 的切线BF ,交弦CD 的延长线于点F . (Ⅰ)如图①,连接AB ,若50F ∠=︒,求ABF ∠的大小;(Ⅱ)如图②,连接CB ,若35F ∠=︒,//AC BF ,求CBF ∠的度数.19.如图,已知MON ∠,A ,B 分别是射线OM ,ON 上的点.(1)尺规作图:在MON ∠的内部确定一点C ,使得//BC OA 且12BC OA =;(保留作图痕迹,不写作法) (2)在(1)中,连接OC ,用无刻度直尺在线段OC 上确定一点D ,使得2OD CD =,并证明2OD CD =.20.【概念认识】若以三角形某边上任意一点为圆心,所作的半圆上的所有点都在该三角形的内部或边上,则将符合条件且半径最大的半圆称为该边关联的极限内半圆.如图①,点P 是锐角ABC ∆的边BC 上一点,以P 为圆心的半圆上的所有点都在ABC ∆的内部或边上.当半径最大时,半圆P 为边BC 关联的极限内半圆.【初步思考】若等边ABC ∆的边长为1,则边BC 关联的极限内半圆的半径长为 .如图②,在钝角ABC ∆中,用直尺和圆规作出边BC 关联的极限内半圆(保留作图痕迹,不写作法).【深入研究】如图③,30AOB ∠=︒,点C 在射线OB 上,6OC =,点Q 是射线OA 上一动点.在QOC ∆中,若边OC 关联的极限内半圆的半径为r ,当1≤r ≤2时,求OQ 的长的取值范围.21.如图,已知线段AB . (1)仅用没有刻度的直尺和圆规作一个以AB 为腰、底角等于30︒的等腰ABC ∆.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若2AB cm =,则等腰ABC ∆的外接圆的半径为 cm .22.人们在长期的数学实践中总结了许多解决数学问题的方法,形成了许多光辉的数学思想,其中转化思想是中学数学中最活跃,最实用,也是最重要的数学思想,例如将不规则图形转化为规则图形就是研究图形问题比较常用的一种方法.51013的三角形的面积.问题解决:在解答这个问题时,先建立一个正方形网格(每个小正方形的边长为1)5、1013的格点三角形ABC ∆(如图1).5AB =是直角边分别为1和2的直角三角形的斜边,10BC =1和3的直角三角形的斜边,13AC =2和3的直角三角形的斜边,用一个大长方形的面积减去三个直角三角形的面积,这样不需求ABC ∆的高,而借用网格就能计算出它的面积.(1)请直接写出图1中ABC ∆的面积为 .(2)类比迁移:求出边长分别为5、22、17的三角形的面积(请利用图2的正方形网格画出相应的ABC ∆,并求出它的面积).23.如图,已知ABC ∆,利用尺规完成下列作图(不写画法,保留作图痕迹).(1)作ABC ∆的外接圆;(2)若ABC ∆所在平面内有一点D ,满足CAB CDB ∠=∠,BC BD =,求作点D .中考数学专题训练-尺规作图(3)1.尺规作图的定义:只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法.尺规作图可以要求写作图步骤,也可以要求不一定要写作图步骤,但必须保留作图痕迹。

中考数学专题复习 专题30 尺规作图问题(教师版含解析)

中考数学专题复习 专题30  尺规作图问题(教师版含解析)

中考专题30 尺规作图问题1.尺规作图的定义:只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法.尺规作图可以要求写作图步骤,也可以要求不一定要写作图步骤,但必须保留作图痕迹。

2.尺规作图的五种基本情况(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作已知线段的垂直平分线;(4)作已知角的角平分线;(5)过一点作已知直线的垂线。

3.对尺规作图题解法写出已知,求作,作法(不要求写出证明过程)并能给出合情推理。

4.中考专题要求(1)能完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线.(2)能利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形.(3)能过一点、两点和不在同一直线上的三点作圆.(4)了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明).【经典例题1】(2020年•台州)如图,已知线段AB ,分别以A ,B 为圆心,大于12AB 同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是( )A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD【标准答案】D【分析】根据作图判断出四边形ACBD是菱形,再根据菱形的性质:菱形的对角线平分一组对角、菱形的对角线互相垂直平分可得出标准答案.【答案剖析】由作图知AC=AD=BC=BD,∴四边形ACBD是菱形,∴AB平分∠CAD、CD平分∠ACB、AB⊥CD,不能判断AB=CD【知识点练习】(2019•丽水模拟题)如图,小红在作线段AB的垂直平分线时,是这样操作的:分别以点A,B为圆心,大于线段AB长度一半的长为半径画弧,相交于点C,D,则直线CD即为所求.连结AC,BC,AD,BD,根据她的作图方法可知,四边形ADBC一定是( )A.矩形B.菱形C.正方形D.等腰梯形【标准答案】B【答案剖析】根据垂直平分线的画法得出四边形ADBC 四边的关系进而得出四边形一定是菱形。

初中数学专题尺规作图(含答案)

初中数学专题尺规作图(含答案)

- 1 -第28课时 尺规作图◆考点聚焦1.掌握基本作图,尺规作图的要求与步骤..掌握基本作图,尺规作图的要求与步骤.2.利用基本作图工具画三角形、四边形、圆以及简单几何体的三视图,.利用基本作图工具画三角形、四边形、圆以及简单几何体的三视图,••对简单的作图能叙述作法.图能叙述作法.3.运用基本作图、结合相关的数学知识(平移、旋转、对称、.运用基本作图、结合相关的数学知识(平移、旋转、对称、••位似)等进行简单的图案设计.图案设计.4.运用基本作图解决实际问题..运用基本作图解决实际问题. ◆备考兵法1.熟练掌握基本作图..熟练掌握基本作图.2.在画几何体的三视图时,要注意其要求,.在画几何体的三视图时,要注意其要求,••即“长对正”“高平齐”“宽相等”. 3.认真分析题意,善于把实际问题转化为基本作图..认真分析题意,善于把实际问题转化为基本作图. ◆识记巩固1.尺规作图的定义:.尺规作图的定义:_______________________________________..2.基本作图包括:.基本作图包括:_____________________,,______________,,________________,,________________,,______________..3.三角形三边的垂直平分线的交点叫三角形的外心,.三角形三边的垂直平分线的交点叫三角形的外心,••三角形三内角平分线的交点叫三角形的内心,外心到三角形的三角形的内心,外心到三角形的_____________________的距离相等,内心到三角形的距离相等,内心到三角形的距离相等,内心到三角形_____________________的距离相等.的距离相等.的距离相等. 识记巩固参考答案:1.限定只能使用圆规和没有刻度的直尺作图.限定只能使用圆规和没有刻度的直尺作图2.作线段.作线段 作角作角作角 作线段的垂直平分线作线段的垂直平分线作线段的垂直平分线 过一点作已知直线的垂线过一点作已知直线的垂线过一点作已知直线的垂线 作角平分线作角平分线作角平分线 3.顶点.顶点 三边三边三边 ◆典例解析例1 (20082008,新疆建设兵团),新疆建设兵团),新疆建设兵团)(1)请用两种不同的方法,用尺规在所给的两个矩形中各作一个不为正方形的菱形,且菱形的四个顶点都在矩形的边上.(保留作图痕迹)(保留作图痕迹)(2)写出你的作法.)写出你的作法.解析解析 (1)所作菱形如图①,②所示.)所作菱形如图①,②所示.说明:作法相同的图形视为同一种,例如类似图③,说明:作法相同的图形视为同一种,例如类似图③,••图④的图形视图与图②是同一种.种.① ②③ ④ (2)图①的作法:作矩形A 1B 1C 1D 1四条边的中点E 1,F 1,G 1,H 1,连结H 1E 1,E 1F 1,G 1F 1,G 1H 1.四边形E 1F 1G 1H 1即为菱形.即为菱形.图②的作法:在B 2C 2上取一点E 2,使E 2C 2>A 2E 2且E 2不与B 2重合,连结A 2E 2. 以A 2为圆心,A 2E 2为半径画弧,交A 2D 2于H 2; 以E 2为圆心,A 2E 2为半径画弧,交B 2C 2于F 2; 连结H 2F 2,则四边形A 2E 2F 2H 2为菱形.为菱形.例2 如图,已知∠如图,已知∠AOB AOB AOB,,OA=OB OA=OB,点,点E 在OB 边上,四边形AEBF 是矩形.请你只用无刻度的直尺在图中画∠刻度的直尺在图中画∠AOB AOB 的平分线(请保留画图痕迹).解析解析 连结连结AB AB.因为.因为OA=OB OA=OB,因此△,因此△,因此△ABO ABO 为等腰三角形.要作出∠为等腰三角形.要作出∠AOB AOB 的平分线,的平分线,••只要确定出AB 的中点即可.因AEBF 为矩形,为矩形,因此连结因此连结AB AB,,EF EF,,相交于M .根据矩形的性质,M 即为AB 的中点.连结OM OM,射线,射线OM 即为所求的角平分线.即为所求的角平分线.例3 台球是一项高雅的体育运动,其中包含了许多物理学,几何学知识.如图是一台球是一项高雅的体育运动,其中包含了许多物理学,几何学知识.如图是一个台球桌,目标球F 与本球E 之间有一个G 球阻挡,现在击球者想通过击打E 球先撞击球台的AB 边,经过一次反弹后再撞击F 球,他应将E 球打到AB 边上的哪一点?边上的哪一点?••请在图中用尺规作图这一点H ,并作出E 球的运行路线(不写画法,保留作图痕迹).解析解析 作点作点E 关于直线AB 的对称点E 1,连结E 1F ,E 1F 与AB 相交于点H ,球E•E•的运动的运动路线是EH EH→→HF HF..点评点评 本例是把实际问题通过抽象,把求本例是把实际问题通过抽象,把求H 点的问题先转化为作E•E•点关于直线点关于直线AB 的对称点问题加以解决.数学课程标准对尺规作图提出了明确要求,是中考的重要内容之一,在复习时要掌握基本作图,要善于把具体问题的作图转化为基本作图.在复习时要掌握基本作图,要善于把具体问题的作图转化为基本作图.••学会对作图问题进行分析,归纳,掌握画法.进行分析,归纳,掌握画法. ◆中考热身1.(20082008,江苏镇江)如图,在△,江苏镇江)如图,在△,江苏镇江)如图,在△ABC ABC 中,作∠中,作∠ABC ABC 的平分线BD BD,交,交AC 于D ,作线段BD 的垂直平分线EF EF,分别交,分别交AB 于E ,BC 于F ,垂足为O ,连结DF DF,在所作图中,寻找一,在所作图中,寻找一对全等三角形,并加以证明.(不定作法,保留作图痕迹)(不定作法,保留作图痕迹)2.(20082008,山西太原)如图,在△,山西太原)如图,在△,山西太原)如图,在△ABC ABC 中,∠中,∠BAC=2BAC=2BAC=2∠∠C .(1)在图中作出△在图中作出△ABC ABC 的内角平分线AD AD;;(要求:(要求:尺规作图,尺规作图,尺规作图,保留作图痕迹,保留作图痕迹,保留作图痕迹,••不写证明) (2)在已作出的图形中,写出一对相似三角形,并说明理由.)在已作出的图形中,写出一对相似三角形,并说明理由.3.(20082008,四川成都)如图,已知点,四川成都)如图,已知点A 是锐角∠是锐角∠MON MON 内的一点,试分别在OM OM,,ON 上确定点B ,点C ,使ABC•ABC•的周长最小,的周长最小,写出你作图的主要步骤并标明你所确定的点写出你作图的主要步骤并标明你所确定的点___________________________..(要求画出草图,保留作图痕迹)求画出草图,保留作图痕迹)◆迎考精练 一、基础过关训练1.在Rt Rt△△ABC 中,已知∠中,已知∠C=90C=90C=90°,°,°,AD AD 是∠是∠BAC BAC 的平分线.以AB 上一点O 为圆心,为圆心,AD•AD•AD•为为弦作⊙弦作⊙O O (不写作法,保留作图痕迹).2.请你画出一个以BC 为底边的等腰△为底边的等腰△ABC ABC ABC,使底边上的高,使底边上的高AD=BC AD=BC.. (1)求tanB 和sinB 的值.的值.(2)在你所画的等腰△)在你所画的等腰△ABC ABC 中,假设底边BC=5米,求腰上的高BE BE..3.作一条直线,平分如图所示图形的面积:.作一条直线,平分如图所示图形的面积:4.现有m ,n 两堵墙,两个同学分别站在A 处和B 处,请问小明在哪个区域内活动才不会被任何一个同学发现?(画图,用阴影表示)被任何一个同学发现?(画图,用阴影表示)5.按下列要求作图,不写画法,要保留作图痕迹..按下列要求作图,不写画法,要保留作图痕迹.(1)在图1中,作出AB 的中点M ,作出∠,作出∠BCD BCD 的平分线CN CN,延长,延长CD 到点P ,使DP=2CD DP=2CD;; (2)如图2是一个破损的机器部件,它的残留边缘是圆弧,请作图找出圆弧所在的圆心.图1 图26.如图,.如图,Rt Rt Rt△△ABC 的斜边AB=5AB=5,,cosA=35. (1)用尺规作图作线段AC 的垂直平分线(保留作图痕迹,不要求写作法,证明); (2)若直线L 与AB AB,,AC 分别相交于D ,E 两点,求DE 的长.的长.7.成绵高速公路OA 和绵广高速公路OB 在绵阳市相交于点O ,在∠在∠AOB•AOB•AOB•内部有两个城镇内部有两个城镇C ,D ,若要修一个大型农贸市场P ,使P 到OA 与OB 的距离相等,且PC=PD PC=PD,用尺规作出,用尺规作出市场P 的位置.(不写作法,保留作图痕迹)(不写作法,保留作图痕迹)二、能力提升训练8.已知正方形ABCD 的面积为S .(1)求作:四边形A 1B 1C 1D 1,使得点A 1和点A 关于点B 对称,点B 1和点B 关于点C 对称,点C 1和点C 关于点D 对称,点D 1和点D 关于点A 对称;(只要求画出图形,不要求写作法)求写作法)(2)用S 1表示(1)中所作出的四边形A 1B 1C 1D 1的面积;的面积; (3)若将已知条件中的正方形改为任意四边形,面积仍为S ,并按(1)•的要求作出一个新的四边形,面积为S 2,则S 1与S 2是否相等?为什么?是否相等?为什么?参考答案: 中考热身中考热身1.解:(1)画角平分线,线段的垂直平分线.)画角平分线,线段的垂直平分线. (2)△)△BOE BOE BOE≌△≌△≌△BOF BOF BOF≌△≌△≌△DOF DOF DOF.. 证明(略)证明(略)证明(略) 2.解:(1)如图,)如图,AD AD 即为所求即为所求(2)△)△ABD ABD ABD∽△∽△∽△CBA CBA CBA,理由如下:,理由如下:,理由如下: ∵AD 平分∠平分∠BAC BAC BAC,∠,∠,∠BAC=2BAC=2BAC=2∠∠C , ∴∠∴∠BAD=BAD=BAD=∠∠BCA BCA..又∵∠又∵∠B=B=B=∠∠B ,∴△,∴△ABD ABD ABD∽△∽△∽△CBA CBA CBA..3.分别作点A 关于OM OM,,ON 的对称点A ′,′,A A ″;连结A ′A ″,分别交OM OM,,ON 于点B ,点C ,则点B ,点C 即为所求即为所求 作图略作图略作图略 迎考精练迎考精练 基础过关训练基础过关训练1.点拨:作AD 的垂直平分线与AB 的交点即为圆心,的交点即为圆心,OA OA 为半径.(作图略)(作图略) 2.解:①画线段BC BC::②作BC 的垂直平分线MN 与BC 相交于D ; ③在DM 上截取DA=BC DA=BC;;④连结AB AB,,AC AC,△,△,△ABC ABC 即为所求.即为所求.(1)tanB=2tanB=2,,sinB=255,(2)BE=25米.米.3.点拨:过几何体中心的任一条直线均可将该图形分成面积相等的两部分.(•如图)4.解:小明在图中的阴影部分区域就不会被两个同学发现..解:小明在图中的阴影部分区域就不会被两个同学发现.5.(1)作图略.(2)点拨:在残片的圆弧上任选两条弦,分别作它们的中垂线,其交点即为圆心.交点即为圆心.6.点拨:(1)①分别以A ,C 为圆心,以大于12AC 为半径画弧,两弧相交于M ,N ;•②连结MN MN,过,过MN 的直线即为所求的直线L . (2)DE=2DE=2.. 7.点拨:(1)作∠)作∠AOB AOB 的角平分线OE OE;; (2)作DC 的垂直平分线MN MN;;(3)MN 交OE 于P 点,点,P P 即为所求.即为所求. 能力提升训练能力提升训练8.解:(1)如图1.图1 图2 (2)设正方形ABCD 的边长为a ,∴S=a 22. 依题意A 1D 1=A 1B 1=B 1C 1=C 1D 1=5a . 易证A 1B 1C 1D 1是正方形,是正方形,∴S 1111A B C D =5a 2,∴S 1=5S . (3)S 1=S 2.证明如下:.证明如下:如图2,连结BD 1,BD .在△BDD 1中,AB 是中线,是中线, ∴S △ABD =S △ABD1.在△AA 1D 1中,BD 1是中线,是中线, ∴S △ABD1=S △A1BD1,S △AA1D1=2S △ABD1, 同理S △OC1B1=2S △CBD , ∴S △AA1D1+S △OC1B1=2S . 同理S △DD1C1+S △BA1B1=2S , ∴S 四边形1111A B C D =5S=S 2, ∴S 1=S 2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《尺规作图》专题训练
基本作图,要求保留作图痕迹,不要求写作法
1、作一条线段等于已知线段
已知:线段a,求作:线段AB,使AB=a 。

2、作一全角等于已知角
已知:∠MPN
求作:∠ABC,使∠ABC=∠MPN 。

3、作角的平分线
已知:∠MPN
求作:∠MPN 的角平分线PO
4、作线段的垂直平分线
已知:线段AB
求作:线段AB 的垂直平分线MN 。

5、过定点作已知直线的垂线:
6、
(1)点在直线上;
(2)点在直线外
6、已知三边作三角形
已知:线段a 、b 、c
求作:△ABC,使AB=a 、BC=b 、AC=c 。

7、已知两边及其夹角作三角形
c
b a
已知:线段a、b、∠α
求作:△ABC,使AB=a、BC=b、∠B=∠α。

8、已知两角及其夹边作三角形
已知:线段a、∠α、∠β求作:△ABC,使∠A=∠α、∠B=∠β、AB=a。

9、已知底边及底边上的高作等腰三角形
已知:线段a、h
求作:△ABC,使AB=AC,BC=a、BC边上的高AD=h。

10、已知底边上的高与顶角作等腰三角形
已知:线段h、∠α
求作:△ABC,使AB=AC,∠A=∠α,高AD=h。

11、已知底边及腰长作等腰三角形
已知:线段a、b
求作:△ABC,使AB=AC=a,BC=b。

12、已知一直角边及斜边作直角三角形
已知:线段a 、c
求作:Rt △ABC,使∠C=90°、AB=c 、BC=a
作三角形的外接圆
已知:△ABC
求作:△ABC 的外接圆⊙O
作三角形的内切圆
已知:△ABC
求作:△ABC 的内切圆⊙O
如图,1O7国道OA 与320国道OB 在我市相交于O 点,在∠AOB 的内部有工厂C 与D,现要修建一个货站P,使P 到OA 、OB 的距离相等,且使PC =PD,用尺规作出货站P 的位置。

16、如图,直线AB ⊥CD,垂足为P,∠ACP=45°,
利用尺规在图中作一段劣弧,使得它在A 、C 两
点分别与直线AB 与CD 相切。

17、已知,矩形ABCD
A
A
B C B C
(1)作图:作出点C关于BD所在直线的对称点E
(2)在(1)的条件下,连结ED ,EB,EB交AD于F,
求证:△AFB≌△EFD.
18、已知直线AB及直线AB外一点C,
过点C作CD∥AB
19、已知,如图,在Rt△ABC中,∠C=90º,
∠BAC的角平分线AD交BC边于D,以AB 边上一点O为圆心,过A,D两点作⊙O
20、如图,在Rt△ABC中,∠C=90º,请
在△ABC内部裁出一个半圆,圆心在AC
边上,且与AB、BC都相切。

A
B
D
C。

相关文档
最新文档