实验3 页式存储管理的缺页中断及淘汰算法模拟
模拟分页式存储管理中硬件的地址转换和产生缺页中断

合肥学院计算机科学与技术系实验报告2011~2012学年第一学期课程操作系统原理课程设计名称模拟分页式存储管理中硬件的地址转换和产学生姓名学号专业班级10计本(2)班指导教师2011年11月1.实验目的:通过实验模拟分页式存储管理中硬件的地址转换和产生缺页中断帮助理解在分页式存储管理中怎样虚拟存储器。
2.实验内容:分页式虚拟存储系统是把作业信息的副本存放在磁盘上,当作业被选中时,可把作业的开始几页先装入主存且启动执行。
作业执行时,指令中的逻辑地址指出了参加运算的操作存放的页号和单元号,硬件的地址转换机构按页号查页表,若该页对应标志为“1”,则表示该页已在主存,这时根据关系式:绝对地址=块号×块长+单元号计算出欲访问的主存单元地址。
如果块长为2的幂次,则可把块号作为高地址部分,把单元号作为低地址部分,两者拼接而成绝对地址。
若访问的页对应标志为“0”,则表示该页不在主存,这时硬件发“缺页中断”信号,由操作系统按该页在磁盘上的位置,把该页信息从磁盘读出装入主存后再重新执行这条指令。
3.实验步骤:任务分析:(1)分页式虚拟存储系统是把作业信息的副本存放在磁盘上,当作业被选中时,可把作业的开始几页先装入主存且启动执行。
为此,在为作业建立页表时,应说明哪些页已在主存,其中,标志----用来表示对应页是否已经装入主存,标志位=1,则表示该页已经在主存,标志位=0,则表示该页尚未装入主存。
主存块号----用来表示已经装入主存的页所占的块号。
在磁盘上的位置----用来指出作业副本的每一页被存放在磁盘上的位置。
(2)作业执行时,指令中的逻辑地址指出了参加运算的操作存放的页号和单元号,硬件的地址转换机构按页号查页表,若该页对应标志为“1”,则表示该页已在主存,这时根据关系式:绝对地址=块号×块长+单元号计算出欲访问的主存单元地址。
如果块长为2的幂次,则可把块号作为高地址部分,把单元号作为低地址部分,两者拼接而成绝对地址。
操作系统存储器管理实验报告.doc

一目的与要求(1) 请求页式虚存管理是常用的虚拟存储管理方案之一。
(2) 通过请求页式虚存管理中对页面置换算法的模拟,加深理解虚拟存储技术的特点。
(3) 模拟页式虚拟存储管理中硬件的地址转换和缺页中断,并用先进先出调度算法(FIFO)处理缺页中断.二实验内容或题目(1)本实验要求使用C语言编程模拟一个拥有若干个虚页的进程在给定的若干个实页中运行、并在缺页中断发生时分别使用FIFO和LRU算法进行页面置换的情形。
(2)虚页的个数可以事先给定(例如10个),对这些虚页访问的页地址流(其长度可以事先给定,例如20次虚页访问)可以由程序随机产生,也可以事先保存在文件中。
(3)要求程序运行时屏幕能显示出置换过程中的状态信息并输出访问结束时的页面命中率。
(4)程序应允许通过为该进程分配不同的实页数,来比较两种置换算法的稳定性。
三实验步骤与源程序(1)实验步骤1、理解好相关实验说明。
2、根据实验说明,画出相应的程序流程图。
3、按照程序流程图,用C语言编程并实现。
(2)流程图如下:①虚页和实页结构在虚页结构中,pn代表虚页号,因为共10个虚页,所以pn的取值范围是0—9。
pfn代表实页号,当一虚页未装入实页时,此项值为-1;当该虚页已装入某一实页时,此项值为所装入的实页的实页号pfn。
time项在FIFO算法中不使用,在LRU中用来存放对该虚页的最近访问时间。
在实页结构中中,pn代表虚页号,表示pn所代表的虚页目前正放在此实页中。
pfn代表实页号,取值范围(0—n-1)由动态指派的实页数n所决定。
next是一个指向实页结构体的指针,用于多个实页以链表形式组织起来,关于实页链表的组织详见下面第4点。
②程序流程图如下:(3)源程序如下:#include<iostream.h>#define M 40int N;struct Pro{int num,time;};int Input(int m,Pro p[M]){cout<<"请输入实际页数:";do{cin>>m;if(m>M)cout<<"数目太多,请重试"<<endl;else break;}while(1);//cout<<"请输入各页面号:";for(int i=0;i<m;i++){cout<<"第"<<i<<"个页面号为:";cin>>p[i].num;p[i].time=0;}return m;}void print(Pro *page1)//打印当前的页面{Pro *page=new Pro[N];page=page1;for(int i=0;i<N;i++)cout<<page[i].num<<" ";cout<<endl;}int Search(int e,Pro *page1 ){Pro *page=new Pro[N];page=page1;for(int i=0;i<N;i++)if(e==page[i].num)return i; return -1;}int Max(Pro *page1){Pro *page=new Pro[N];page=page1;int e=page[0].time,i=0;while(i<N)//找出离现在时间最长的页面{if(e<page[i].time)e=page[i].time;i++;}for( i=0;i<N;i++)if(e==page[i].time)return i;return -1;}int Compfu(Pro *page1,int i,int t,Pro p[M]){Pro *page=new Pro[N];page=page1;int count=0;for(int j=i;j<M;j++){if(page[t].num==p[j].num )break;else count++;}return count;}int main(){cout<<"可用内存页面数:";cin>>N;Pro p[M];Pro *page=new Pro[N];char c;int m=0,t=0;float n=0;m=Input(m,p);do{for(int i=0;i<N;i++)//初试化页面基本情况{page[i].num=0;page[i].time=2-i;}i=0;cout<<"************************"<<endl;cout<<"*****f:FIFO页面置换*****"<<endl;cout<<"*****l:LRU页面置换******"<<endl;cout<<"*****o:OPT页面置换******"<<endl;cout<<"*****按其它键结束*******"<<endl;cout<<"************************"<<endl;cout<<"请选择操作类型(f,l,o):";cin>>c;if(c=='f')//FIFO页面置换{n=0;cout<<"页面置换情况: "<<endl;while(i<m){if(Search(p[i].num,page)>=0)i++;//找到相同的页面else{if(t==N)t=0;else{n++;//page[t].num=p[i].num;print(page);t++;}}}cout<<"缺页次数:"<<n<<" 缺页率:"<<n/m<<endl; }if(c=='l')//LRU页面置换{ n=0;cout<<"页面置换情况: "<<endl;while(i<m){int k;k=t=Search(p[i].num,page);if(t>=0)page[t].time=0;else{n++;t=Max(page);page[t].num=p[i].num;page[t].time=0;}if(t==0){page[t+1].time++;page[t+2].time++;}if(t==1){page[2].time++;page[0].time++;}if(t==2){page[1].time++;page[0].time++;}if(k==-1) print(page); i++;}cout<<"缺页次数:"<<n<<" 缺页率:"<<n/m<<endl;}if(c=='o')//OPT页面置换{n=0;while(i<m){if(Search(p[i].num,page)>=0)i++;else{int temp=0,cn;for(t=0;t<N;t++){if(temp<Compfu(page,i,t,p)){temp=Compfu(page,i,t,p); cn=t;}}page[cn]=p[i];n++;print(page);i++;}}cout<<"缺页次数:"<<n<<" 缺页率:"<<n/m<<endl; }}while(c=='f'||c=='l'||c=='o');return 0;});四测试数据与实验结果五结果分析与实验体会通过上机,我了解了许多关于操作系统的专业知识。
模拟请求页式存储管理中硬件的地址转换和缺页中断处理

一.实验内容模拟请求页式存储管理中硬件的地址转换和缺页中断处理 二.实验原理装入新页置换旧页时,若旧页在执行中没有被修改过,则不必将该页重写磁盘。
因此,页表中增加是否修改过的标志,执行“存”指令和“写”指令时将对应的修改标志置成“1”三.要求及方法:① 设计一个地址转换程序来模拟硬件的地址转换和缺页中断。
当访问的页在主存时则形成绝对地址,但不去模拟指令的执行,可以输出转换后的绝对地址来表示一条指令已执行完成。
当访问的页不在主存中时,则输出“*页号”来表示硬件产生了一次缺页中断。
模拟地址转换流程见图1。
② 编制一个FIFO 页面调度程序;FIFO 页面调度算法总是先调出作业中最先进入主存中的哪一页。
因此可以用一个数组来表示(或构成)页号队列。
数组中每个元素是该作业已在主存中的页面号,假定分配给作业的页架数为m ,且该作业开始的m 页已装入主存,则数组可由m 个元素构成。
P[0],P[1],P[2],…,P[m-1]它们的初值为P[0]:=0,P[1]:=1,P[2]:=2,…,P[m-1]:=m-1用一指针K 指示当要调入新页时应调出的页在数组中的位置,K 的初值为“0”,当产生缺页中断后,操作系统总是选择P[K]所指出的页面调出,然后执行:P[K]:=要装入的新页页号 K :=(k+1)mod m在实验中不必实际地启动磁盘执行调出一页和装入一页的工作,而用输出“OUT 调出的页号”和“IN 要装入的新页页号”来模拟一次调出和装入过程,模拟程序的流程图见附图1。
按流程控制过程如下:提示:输入指令的页号和页内偏移和是否存指令⎩⎨⎧ 0 1非存指令存指令,若d 为-1则结束,否则进入流程控制过程,得P1和d,查表在主存时,绝对地址=P1×1024+d③假定主存中页架大小为1024个字节,现有一个共7页的作业,其副本已在磁盘上。
系统为该作业分配了4个页架,且该作业的第0页至第3页已装入内存,其余3页未装入主四.主要代码及其说明#include <stdio.h>#include <string.h>#include <stdlib.h>#define M 1024#define R 4typedef struct _PTable{int Number; //页号int Flag; //标志int Fnum; //页架号int Mflag; //修改标志int Position; //该页存放在磁盘上的位置}PTable;//初始化PTable ptable[]={{0, 1, 5, 0, 11},{1, 1, 8, 0, 12},{2, 1, 9, 0, 13},{3, 1, 1, 0, 21},{4, 0, -1, 0, 22},{5, 0, -1, 0, 23},{6, 0, -1, 0, 121},};void menu();int change(char op,int number,int add);void display();int p[]={0,1,2,3},k=0;void main(void){int number,add,n;char op;while(n){display();fflush( stdin );printf("输入:操作页号页内地址(存指令用\"c\"代表)\n");scanf("%c %d %d",&op,&number,&add);change(op,number,add);printf("\"是否继续! (按1 继续按任意键结束)\"\n");scanf("%d",&n);system( "cls ");if(n==1)continue;elsebreak;}}void menu(){printf("操作码\t页号\t页内地址页架标志修改标志出入状态绝对地址(L)\n");}int change(char op,int number,int add){bool flag1=false;bool flag2=false;int i,address,cout,temp;;for(i=0;i<7;i++){if(op=='c'){ptable[number].Mflag=1;}if(ptable[i].Number==number && ptable[i].Flag==1){address=ptable[i].Fnum*M+add;flag1=true;}if(ptable[i].Number==number && ptable[i].Flag==0){cout=i;temp = p[k]; //将要出的页if(ptable[temp].Mflag==1){flag2=true;}//修改页表ptable[number].Flag=1; //修改新页标志ptable[number].Fnum=ptable[temp].Fnum; //修改新页页架address=ptable[number].Fnum*M+add;ptable[temp].Flag=0; //修改旧页ptable[temp].Fnum=-1; //修改页架ptable[temp].Mflag=0; //修改修改标志p[k]=number; //新页k=(k+1)%R;}}menu();if(flag1)printf("%c\t %d\t %d\t %d\t %d\t %d\t 无出入\t%d\n",op,number,add,ptable[number].Fnum,ptable[number].Flag,ptable[number].Mflag,address);else if(flag2)printf("%c\t *%d\t %d\t %d\t %d\t%d OUT:%d,IN:%d %d\n",op,number,add,number,ptable[number].Fnum,ptable[number].Flag,ptable[number].Mflag,temp,number,address);elseprintf("%c\t *%d\t %d\t %d\t %d\t %d\t IN%d\t %d\n",op,number,add,ptable[number].Fnum,ptable[number].Flag,ptable[number].Mflag,number,address);return 0;}void display(){int i;printf("********当前页表中的状态*********\n");printf("页号标志页架修标志\n");for(i=0;i<7;i++){printf("%d\t%d\t%d\t%d\n",ptable[i].Number,ptable[i].Flag,ptable[i].Fnum,ptable[i]. Mflag);}printf("当前主存中的页号为: ");for(i=0;i<4;i++){printf("%d ",p[i]);}printf("\n*********************************\n");}五,实验截图。
模拟请求页式存储管理中硬件的地址转换和缺页中断

课程名称操作系统原理实验名称模拟请求页式存储管理中硬件的地址转换和缺页中断姓名学号专业班级实验日期成绩指导老师(①实验目的②实验原理③主要仪器设备④实验内容与步骤⑤实验数据记录与处理⑥实验结果分析⑦问题建议)一、实验目的模拟请求页式存储管理中硬件的地址转换和缺页中断,并用先进先出调度算法(FIFO)处理缺页中断。
二、实验内容内容:模拟请求页式存储管理中硬件的地址转换和缺页中断处理思想:装入新页置换旧页时,若旧页在执行中没有被修改过,则不必将该页重写磁盘。
因此,页表中增加是否修改过的标志,执行“存”指令和“写”指令时将对应的修改标志置成模拟算法流程三、程序及截图程序:#include<iostream>#include<iomanip>#include<list>using namespace std;char useSign[12][5]={{'+'},{'-'},{'*'},{"存"},{"取"},{'-'},{"移位"},{'+'},{"存"},{"取"},{'+'},{"存"}};int PageAddress[12]={70,50,15,21,56,40,53,23,37,78,01,84};int PageNum[12]={0,1,2,3,0,6,4,5,1,2,4,6};int S_Station;int pPageNum[7];//页号pPageint pSign[7];int pStool[7];//页架号int pModify[7];//修改标志int pStation[7];//磁盘位置static int z=0;void Store(){for(int i=0;i<7;i++){if(i<4){pSign[i]=1;}elsepSign[i]=0;pPageNum[i]=i;pModify[i]=0;}int p1=1,p2=2,p3=3;for(i=0;i<7;i++){if(i<3){pStation[i]=p1;p1++;}elseif(i<6){pStation[i]=p2;p2++;}elsepStation[i]=p3;}pStool[0]=5;pStool[1]=8;pStool[2]=9;pStool[3]=1;}void CShow(){cout<<"操作";cout<<"页号";cout<<"页内地址";cout<<"标志";cout<<"绝对地址";cout<<"修改页号";cout<<"页架号";cout<<"绝对地址";cout<<endl;}void Find(){int m_Pagenum;int m_Station;int Y_Station;//绝对地址int m_Stool;cout<<"输入页号及页内地址查询操作:";cin>>m_Pagenum>>m_Station;CShow();int i,j=0;//string m_Modify;for(i=0;i<12;i++){if(PageAddress[i]==m_Station){break;}}Y_Station=pStool[m_Pagenum]*1024+m_Station;if(pSign[m_Pagenum]==1){if(strcpy(useSign[i],"存")!=0){pModify[m_Pagenum]=1;}}cout<<useSign[i]<<" ";cout<<m_Pagenum<<" ";cout<<m_Station<<" ";cout<<pSign[m_Pagenum]<<" ";if(Y_Station!=m_Station){cout<<Y_Station<<" ";cout<<" ";cout<<pStool[m_Pagenum]<<" ";cout<<Y_Station<<endl;}else{cout<<"*"<<m_Pagenum<<" ";for(j=z;j<7;j++){if(pSign[j]==1){z++;break;}}cout<<m_Pagenum<<"->"<<j<<" ";pStool[m_Pagenum]=pStool[j];pSign[j]=0;pStool[j]=0;cout<<pStool[m_Pagenum]<<" ";cout<<pStool[m_Pagenum]*1024+m_Station<<endl;}}int main(void){Store();char judge='Y';while(judge=='Y'){Find();cout<<"是否继续输入?Y = 是N=否"<<endl;cin>>judge;}return 0;}截图:五.心得体会在实验过程中,遇到了一些问题但是在调试的过程中,会出现很多错误,有的自己可以解决,也有一些在同学的帮助下,基本都解决了所有问题。
存储管理算法实验报告-计算机操作系统教程(第三版)

存储器管理(一)一、实验目的模拟分页式虚拟存储管理中硬件的地址转换和缺页中断,以及选择页面调度算法处理缺页中断。
二、实验目的在计算机系统中,为了提高主存利用率,往往把辅助存储器(如磁盘)作为主存储器的扩充,使多道运行的作业的全部逻辑地址空间总和可以超出主存的绝对地址空间。
用这种办法扩充的主存储器称为虚拟存储器。
通过本实验帮助同学理解在分页式存储管理中怎样实现虚拟存储器。
三、实验题目示例程序给出了模拟分页式存储管理中硬件的地址转换和产生缺页中断;请写出用先进先出(FIFO)页面调度算法处理缺页中断或用最近最少用(LRU)页面调度算法处理缺页中断的程序。
四、示例程序源代码#include "stdio.h"#define blockLength 128typedef enum {NO=0,YES}FLAG;typedef struct pagetable {int pageNumber;FLAG flag;int memoryBlock;int place;}PAGETAB;typedef struct job{int pageNumber;int unitNumber;}JOB;PAGETAB pageTAB[7]={0,YES,5,11,1,YES,8,12,2,YES,9,13,3,YES,1,21,4,NO,-1,22,5,NO,-1,23,6,NO,-1,121};JOB work[12] = {0,70,1,50,2,15,3,21,0,56,6,40,4,53,5,23,1,37,2,78,4,1,6,84};int main(int argc, char* argv[]){//first init page table// and work list// look for the work list and pick one to fix the page tablefor(int i=0; i<12;i++){printf("Instruction sequence :%d\n",i+1);int j = work[i].pageNumber;printf("The page %d is in the memory? %s!\n",j,(pageTAB[j].flag == YES)?"YES":"NO");if(pageTAB[j].flag == YES){int absoluteAddress = pageTAB[j].memoryBlock*blockLength+work[i].unitNumber; printf("Instruction absolute address:%d\n",absoluteAddress);}else{printf("missing page interrupt, page fault interrupt!\n");}}return 0;}存储器管理(二)一、实验目的:掌握分页式存储管理的基本概念和实现方法。
缺页中断算法实验报告

一、实验目的1. 理解缺页中断的概念及其在操作系统中的作用。
2. 掌握常见的页面置换算法,如先进先出(FIFO)、最近最少使用(LRU)等。
3. 通过模拟实验,验证不同页面置换算法对缺页中断次数的影响。
4. 深入了解页式虚拟存储管理中地址转换的过程。
二、实验环境1. 操作系统:Windows 102. 编程语言:C/C++3. 实验工具:Visual Studio三、实验内容1. 模拟缺页中断的产生2. 实现不同的页面置换算法3. 分析页面置换算法对缺页中断次数的影响4. 模拟地址转换过程四、实验步骤1. 模拟缺页中断的产生(1)定义一个模拟指令序列,包含多个页面号。
(2)创建一个模拟的页表,用于记录每个页面是否在内存中。
(3)根据指令序列,遍历页表,判断访问的页面是否在内存中。
(4)如果页面不在内存中,则产生缺页中断。
2. 实现不同的页面置换算法(1)先进先出(FIFO)算法:- 定义一个队列,用于存储内存中的页面号。
- 当发生缺页中断时,将新页面号入队,同时判断队列长度是否超过内存块数。
- 如果队列长度超过内存块数,则将队首元素出队,模拟页面置换过程。
(2)最近最少使用(LRU)算法:- 定义一个链表,用于存储内存中的页面号。
- 当发生缺页中断时,将新页面号插入链表尾部。
- 如果链表长度超过内存块数,则从链表头部删除元素,模拟页面置换过程。
3. 分析页面置换算法对缺页中断次数的影响(1)定义一个变量,用于记录缺页中断次数。
(2)遍历模拟指令序列,根据不同的页面置换算法处理缺页中断。
(3)统计不同算法下的缺页中断次数,并进行比较。
4. 模拟地址转换过程(1)根据指令中的逻辑地址,计算页号和偏移量。
(2)根据页号,查找页表,判断页面是否在内存中。
(3)如果页面在内存中,则根据偏移量计算物理地址。
(4)如果页面不在内存中,则产生缺页中断。
五、实验结果与分析1. 模拟缺页中断的产生通过模拟指令序列,成功产生了缺页中断。
页式虚拟存储管理缺页中断的模拟系统的设计

燕山大学课程设计说明书课程设计名称:操作系统OS题目:页式存储管理中页面置换(淘汰)的模拟程序班级:计算机应用二班开发小组名称:CAMPUS课题负责人:课题组成员:姓名学号班级自评成绩课题开发日期:2011-1-10至2011-1-14一.概述1目的通过分析、设计和实现页式虚拟存储管理缺页中断的模拟系统,熟悉和掌握请求分页式存储管理的实现过程,重点掌握当请求页面不在内存而内存块已经全部被占用时的替换算法,熟悉常见替换算法的原理和实现过程,并利用替换算法的评价指标——缺页次数和缺页率,来对各种替换算法进行评价比较。
2.主要完成的任务自行输入实际页数、内存可用页面数、存取内存时间、存取快表时间及缺页中断时间,然后由用户随机输入各页面号,模拟系统自动运行出FIFO、LRU、OPT、LFU四种算法的缺页次数、缺页率、命中率、总存取时间、存取平均时间等结果。
3 使用的开发工具(1)使用系统:Windows7(2)使用语言:C++(3)开发工具:Visual C++ 6.04 解决的主要问题设计的结果程序能实现FIFO、OPT、LRU、LFU算法模拟页式存储管理缺页中断,主要能够处理以下的问题:(1) 用户能够输入给作业分配的内存块数;(2) 用户能够输入给定的页面,并计算发生缺页的次数以及缺页率;(3) 程序可由用户输入页面序列;(4)系统自动计算总存取时间及平均存取时间。
二使用的基本概念和原理1.概念FIFO即先进先出页面置换算法,该算法总是淘汰最先进入内存的页面,即选择在内存中驻留时间最久的页面予以淘汰。
LRU 即最近最久未使用页面置换算法,该算法选择最近最久未使用的页面予以淘汰。
OPT 即最佳值换算法,其选择淘汰的页面是在最长时间内不再被访问的页面。
LFU 即最近使用最少页面置换算法,其淘汰的页面是最近一段时间内使用最少的页面。
缺页中断存取页面时页面不在内存中需从外存调入的现象。
缺页次数即在存取页面过程中发生缺页中断的次数。
页式虚拟FIFO存储管理缺页中断的模拟算法

页式虚拟FIFO存储管理缺页中断的模拟算法FIFO一课程设计目的与功能1目的通过分析、设计和实现页式虚拟存储管理缺页中断的模拟系统,熟悉和掌握请求分页式存储管理的实现过程,重点掌握当请求页面不在内存而内存块已经全部被占用时的替换算法,熟悉常见替换算法的原理和实现过程,并利用替换算法的评价指标——缺页次数和缺页率,来对各种替换算法进行评价比较。
设计并实现出的结果程序要能够很好地显示页面调入和替换详细信息。
2初始条件(1)预备内容:阅读操作系统的内存管理章节内容,了解有关虚拟存储器、页式存储管理等概念,并体会和了解缺页和页面置换的具体实施方法。
(2)实践准备:掌握一种计算机高级语言的使用3 开发环境(1)使用系统:Windows XP(2)使用语言:C++(3)开发工具:Visual C++ 6.04功能设计的结果程序能实现OPT、FIFO、随机淘汰算法模拟页式存储管理缺页中断,主要能够处理以下的情形:(1) 用户能够输入给作业分配的内存块数;(2) 用户能够输入给定的页面,并计算发生缺页的次数以及缺页率;(3) 程序可随机生成页面序列,替代用户输入;(4) 缺页时,如果发生页面置换,输出淘汰的页号。
二需求分析,整体功能及设计数据结构或模块说明1 需求分析在纯页式存储管理提高了内存的利用效率,但并不为用户提供虚存,换句话说,当一个用户程序的页数大于当前总空闲内存块数时,系统就不能将该程序装入运行。
即用户程序将受到物理内存大小的限制。
为了解决这个问题,人们提出了能提供虚存的存储管理技术——请求分页存储管理技术和请求分段技术。
本设计实现请求分页管理技术。
请求分页系统是在分页系统的基础上,增加了请求调页功能和页面置换功能所形成的页式虚拟存储系统。
它允许只装入部分页面的程序和数据,便启动运行。
以后,再通过调页功能和页面置换功能,陆续把即将要运行的页面调入内存,同时把暂时不运行的页面换出到外存上。
置换时以页面为单位,为了能实现请求调页和置换功能,系统必须提供必要的硬件支持和相应的软件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三请求页式管理的地址变换及页面淘汰算法模拟
一、实验目的
1. 通过实验,掌握请求页式存储管理的地址变换过程
2. 通过实验,掌握请求页式存储管理的先进先出页面淘汰算法
二、实验内容
1.编程模拟实现页式管理的动态地址变换过程
2.编程模拟实现当发现要访问的页不再主存时,发生缺页中断,并调用先进先出页面淘汰算法
三、实验步骤
1. 定义页式管理中的页面长度,页表长度,页表结构。
2.定义实现先进先出页面淘汰算法的函数。
(注意要定义一个全局变量用于记录当前最早到达的页号)
3.定义完成动态地址变换的函数。
3. 在主函数先输入一个作业的页表信息(必须要有在主存的页),再通过循环的方式不断输入一个数字表示逻辑地址,根据刚才创建的作业的页表信息,如果该逻辑地址所在的页已经在主存则直接计算该逻辑地址所对应的物理地址,若该逻辑地址所在的页不在主存则调用先进先出淘汰算法,淘汰一页,调入所要的页,然后再计算该逻辑地址所对应的物理地址。
循环结束,程序退出。
四、实现提示
1、#define n 100 /*假定的页面长度*/
#define length 10 /*假定的页表长度*/
struct
{
int lnumber; //逻辑页号
int flag; //该页是否在主存,可用“1”“0”表示*/
int wnumber; //物理页号
int next; //用于记录该页后下一个到达的页号
}page[length]; /*页表结构定义*/
2、先进先出页面淘汰算法
int first=0;
void fcfs(int in_number) //in_number表示要求调入的逻辑页号{
printf("发生缺页中断,淘汰第%d页\n",page[first].lnumber);
page[first].flag=0; /* 所淘汰页的存在标志改为0*/
page[in_number].wnumber=page[first].wnumber;
page[in_number].flag=1; /* 所调入页的存在标志改为1*/
printf("从磁盘调入逻辑第%d页成功!其对应的物理页面号为:%d\n",in_number,page[in_number].wnumber);
first= page[first].next;
}
3、动态地址变换函数
void compute_address(int laddress)
//laddress表示要变换的逻辑地址,在其中调用fcfs函数
{ }。