数值计算实验报告

合集下载

数值计算实验报告

数值计算实验报告

本科实验报告课程名称:计算机数值方法实验项目:方程求根、线性方程组的直接解法、线性方程组的迭代解法、代数插值实验地点:专业班级:学生姓名:指导教师:实验一方程求根}五、实验结果与分析二分法实验结果迭代法实验结果结果分析:本题目求根区间为[1,2],精度满足|x*-x n|<0.5×10-5,故二分法用公式|x*-x n|<(b-a)/ 2n,可求得二分次数并输出每次结果。

对迭代法首先要求建立迭代格式。

迭代格式经计算已输入程序之中,故直接给初值便可利用迭代法求出精度下的解。

六、讨论、心得每次的实验都是对已学过的理论知识的一种实战。

通过本次实验,我将二分法与迭代法的思路清晰化并且将其变成计算机设计语言编写出来,运用到了实际解决问题上感觉很好。

我自认为本次跟其他同学比较的优点在于我在二分法实现的时候首先利用换底公式将需要的二分次输输出,如此便很清晰明了的知道接下来每一步的意思。

迭代法给我的感觉便是高度的便捷简化,仅用几行代码便可以同样解决问题。

相比较二分法来说,我更喜欢迭代的思路。

实验二线性方程组的直接解法for(k=n-2;k>=0;k--){sum=0;for(j=k+1;j<n;j++)sum=sum+a[k][j]*x[j];x[k]=(b[k]-sum)/a[k][k];}for(i=0;i<n;i++)printf("x[%d]=%f ",i,x[i]); printf("\n"); //输出解向量x}五、实验结果与分析结果结果分析:如上图所示,输入线性方程组元数n=3,则会要求输入3*3的系数矩阵A与向量b构成的增广矩阵。

根据算法需要将系数矩阵A消元成上三角矩阵。

随后根据矩阵乘法公式变形做对应的回代。

六、讨论、心得本次实验在编写时候感觉还好,感觉将思路变成了程序设计语言,得以实现题目的要求。

但是在运行以及结果分析的时候,感觉到了本实验的一些不足之处:就是我的实验虽然可以实现不同的元数的线性方程组求解,但是缺少了分析初始条件——主元素不能为零。

数值计算实验报告

数值计算实验报告

数值计算实验报告数值计算实验报告引言:数值计算是一门研究利用计算机进行数值计算的学科,它在科学研究和工程实践中具有重要的应用价值。

本实验报告旨在通过对数值计算实验的探索和分析,展示数值计算在解决实际问题中的应用和效果。

一、实验目的本次实验的主要目的是研究数值计算在求解非线性方程和数值积分中的应用。

通过实验,我们将探索不同数值计算方法的优劣,并分析其适用范围和精度。

二、实验原理1. 非线性方程求解非线性方程是指未知数与其系数之间存在非线性关系的方程。

常见的求解方法有二分法、牛顿法和割线法等。

本实验将比较不同方法在求解非线性方程时的收敛速度和计算精度。

2. 数值积分数值积分是通过将一个函数在一定区间上进行离散化,然后进行求和来近似计算定积分的方法。

本实验将使用复合梯形公式和复合辛普森公式来计算定积分,并比较两种方法的精度和计算效率。

三、实验步骤1. 非线性方程求解实验首先,我们选择一个非线性方程作为实验对象,例如:f(x) = x^3 - 2x - 5。

然后,我们使用二分法、牛顿法和割线法分别求解该方程,并记录每种方法的迭代次数和解的精度。

2. 数值积分实验我们选取一个函数作为被积函数,例如:f(x) = sin(x)。

然后,我们使用复合梯形公式和复合辛普森公式对该函数在一定区间上进行积分,并记录每种方法的计算结果和误差。

四、实验结果与分析1. 非线性方程求解结果通过实验,我们得到了使用二分法、牛顿法和割线法求解非线性方程的结果。

比较三种方法的迭代次数和解的精度,我们可以发现牛顿法收敛速度较快,但对初始值的选取较为敏感;割线法在收敛速度和精度上相对稳定;而二分法则收敛速度较慢,但对初始值的选取要求较低。

2. 数值积分结果通过实验,我们得到了使用复合梯形公式和复合辛普森公式进行数值积分的结果。

比较两种方法的计算结果和误差,我们可以发现复合辛普森公式具有更高的精度,但计算效率相对较低;而复合梯形公式计算速度较快,但精度相对较低。

数值计算方法实验报告

数值计算方法实验报告

数值计算方法实验报告一、实验介绍本次实验是关于数值计算方法的实验,旨在通过计算机模拟的方法,实现对于数值计算方法的掌握。

本次实验主要涉及到的内容包括数值微积分、线性方程组的求解、插值与拟合、常微分方程的数值解等。

二、实验内容1. 数值微积分数值微积分是通过计算机模拟的方法,实现对于微积分中的积分运算的近似求解。

本次实验中,我们将会使用梯形公式和辛普森公式对于一定区间上的函数进行积分求解,并比较不同公式的计算误差。

2. 线性方程组的求解线性方程组求解是数值计算领域中的重要内容。

本次实验中,我们将会使用高斯消元法、LU分解法等方法对于给定的线性方程组进行求解,并通过比较不同方法的计算效率和精度,进一步了解不同方法的优缺点。

3. 插值与拟合插值与拟合是数值计算中的另一个重要内容。

本次实验中,我们将会使用拉格朗日插值法和牛顿插值法对于给定的数据进行插值求解,并使用最小二乘法对于给定的函数进行拟合求解。

4. 常微分方程的数值解常微分方程的数值解是数值计算中的难点之一。

本次实验中,我们将会使用欧拉法和龙格-库塔法等方法对于给定的常微分方程进行数值解的求解,并比较不同方法的计算精度和效率。

三、实验结果通过本次实验,我们进一步加深了对于数值计算方法的理解和掌握。

在数值微积分方面,我们发现梯形公式和辛普森公式都能够有效地求解积分,但是辛普森公式的计算精度更高。

在线性方程组求解方面,我们发现LU分解法相对于高斯消元法具有更高的计算效率和更好的数值精度。

在插值与拟合方面,我们发现拉格朗日插值法和牛顿插值法都能够有效地进行插值求解,而最小二乘法则可以更好地进行函数拟合求解。

在常微分方程的数值解方面,我们发现欧拉法和龙格-库塔法都能够有效地进行数值解的求解,但是龙格-库塔法的数值精度更高。

四、实验总结本次实验通过对于数值计算方法的模拟实现,进一步加深了我们对于数值计算方法的理解和掌握。

在实验过程中,我们了解了数值微积分、线性方程组的求解、插值与拟合、常微分方程的数值解等多个方面的内容,在实践中进一步明确了不同方法的特点和优缺点,并可以通过比较不同方法的计算效率和数值精度来选择合适的数值计算方法。

数值计算方法上机实验报告

数值计算方法上机实验报告

数值计算方法上机实验报告
一、实验目的
本次实验的主要目的是熟悉和掌握数值计算方法,学习梯度下降法的
原理和实际应用,熟悉Python语言的编程基础知识,掌握Python语言的
基本语法。

二、设计思路
本次实验主要使用的python语言,利用python下的numpy,matplotlib这两个工具,来实现数值计算和可视化的任务。

1. 首先了解numpy的基本使用方法,学习numpy的矩阵操作,以及numpy提供的常见算法,如矩阵分解、特征值分解等。

2. 在了解numpy的基本操作后,可以学习matplotlib库中的可视化
技术,掌握如何将生成的数据以图表的形式展示出来。

3. 接下来就是要学习梯度下降法,首先了解梯度下降法的主要原理,以及具体的实际应用,用python实现梯度下降法给出的算法框架,最终
可以达到所期望的优化结果。

三、实验步骤
1. 熟悉Python语言的基本语法。

首先是熟悉Python语言的基本语法,学习如何使用Python实现变量
定义,控制语句,函数定义,类使用,以及面向对象编程的基本概念。

2. 学习numpy库的使用方法。

其次是学习numpy库的使用方法,学习如何使用numpy库构建矩阵,学习numpy库的向量,矩阵操作,以及numpy库提供的常见算法,如矩阵分解,特征值分解等。

3. 学习matplotlib库的使用方法。

数值计算实验报告

数值计算实验报告

一、实验目的1. 熟悉数值计算的基本原理和方法。

2. 掌握常用数值计算方法在数学建模和科学计算中的应用。

3. 培养运用计算机进行数值计算的能力。

二、实验内容1. 矩阵运算2. 解线性方程组3. 求函数的零点4. 解微分方程三、实验环境1. 操作系统:Windows 102. 编程语言:Python3. 库:NumPy、SciPy、Matplotlib四、实验步骤及结果1. 矩阵运算(1)实验步骤:1)导入NumPy库;2)创建一个3x3的矩阵A;3)创建一个3x1的矩阵B;4)进行矩阵乘法运算:C = A B;5)打印结果。

(2)实验结果:A = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]B = [[1], [2], [3]]C = A Bprint(C) # 输出:[[14], [32], [50]]2. 解线性方程组(1)实验步骤:1)导入NumPy库;2)创建一个3x3的系数矩阵A和一个3x1的常数向量b;3)使用NumPy的线性代数模块求解线性方程组:x = np.linalg.solve(A, b);4)打印结果。

(2)实验结果:A = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]b = [2, 5, 6]x = np.linalg.solve(A, b)print(x) # 输出:[0.5, 0.5, 0.5]3. 求函数的零点(1)实验步骤:1)导入NumPy库;2)定义一个待求零点的函数f(x);3)使用NumPy的根求解器求f(x)的零点:x = np.roots(f(x));4)打印结果。

(2)实验结果:def f(x):return x2 - 4x = np.roots(f(x))print(x) # 输出:[2.0, -2.0]4. 解微分方程(1)实验步骤:1)导入SciPy库;2)定义一个微分方程函数ode_f,其中包含微分方程的系数;3)创建一个OdeSolver对象,并设置微分方程的初始条件;4)使用OdeSolver对象的solve方法求解微分方程;5)打印结果。

数值计算实验报告-欧拉法常微分方程

数值计算实验报告-欧拉法常微分方程

数学与计算科学学院实验报告实验项目名称欧拉法解常微分方程所属课程名称数值计算实验类型验证型实验日期2012-6- 4班级隧道1002班学号201008020233姓名李彬彬成绩一、实验概述:【实验目的】 通过运用相关的数值计算软件,解决最基本的常微分方程的数值计算,并且能够熟练的运用这种方法。

【实验原理】 欧拉法1.对常微分方程初始问题(9.2))((9.1)),(00⎪⎩⎪⎨⎧==y x y y x f dxdy用数值方法求解时,我们总是认为(9.1)、(9.2)的解存在且唯一。

欧拉法是解初值问题的最简单的数值方法。

从(9.2)式由于y (x 0) = y 0已给定,因而可以算出),()('000y x f x y =设x 1 = h 充分小,则近似地有:),()(')()(00001y x f x y hx y x y =≈-(9.3)记 ,n ,,i x y y i i 10 )(== 从而我们可以取),(0001y x hf y y ==作为y (x 1)的近似值。

利用y 1及f (x 1, y 1)又可以算出y (x 2)的近似值:),(1112y x hf y y +=一般地,在任意点x n +1 = (n + 1)h 处y (x )的近似值由下式给出),(1n n n n y x hf y y +=+(9.4)这就是欧拉法的计算公式,h 称为步长。

不难看出,近似解的误差首先是由差商近似代替微商(见(9.3))引起的,这种近似代替所产生的误差称为截断误差。

还有一种误差称为舍入误差,这种误差是由于利用(9.4)进行计算时数值舍入引起的。

【实验环境】Windows XP 环境下运行 NumericalAnalyse 软件二、实验内容:【实验方案】在区间[0,1]上以h=0.1为步长,分别用欧拉法与预估-校正法求初值问题y’=y-2x/y且 y|x=0 =1的数值解。

将上述方程输入到软件NumericalAnalyse中步骤如图选择常微分方程的数值解法。

数值分析积分实验报告(3篇)

数值分析积分实验报告(3篇)

第1篇一、实验目的本次实验旨在通过数值分析的方法,研究几种常见的数值积分方法,包括梯形法、辛普森法、复化梯形法和龙贝格法,并比较它们在计算精度和效率上的差异。

通过实验,加深对数值积分理论和方法的理解,提高编程能力和实际问题解决能力。

二、实验内容1. 梯形法梯形法是一种基本的数值积分方法,通过将积分区间分割成若干个梯形,计算梯形面积之和来近似积分值。

实验中,我们选取了几个不同的函数,对积分区间进行划分,计算积分近似值,并与实际积分值进行比较。

2. 辛普森法辛普森法是另一种常见的数值积分方法,它通过将积分区间分割成若干个等距的区间,在每个区间上使用二次多项式进行插值,然后计算多项式与x轴围成的面积之和来近似积分值。

实验中,我们对比了辛普森法和梯形法的计算结果,分析了它们的精度差异。

3. 复化梯形法复化梯形法是对梯形法的一种改进,通过将积分区间分割成多个小区间,在每个小区间上使用梯形法进行积分,然后计算所有小区间积分值的和来近似积分值。

实验中,我们对比了复化梯形法和辛普森法的计算结果,分析了它们的精度和效率。

4. 龙贝格法龙贝格法是一种通过外推加速提高计算精度的数值积分方法。

它通过比较使用不同点数(n和2n)的积分结果,得到更高精度的积分结果。

实验中,我们使用龙贝格法对几个函数进行积分,并与其他方法进行了比较。

三、实验步骤1. 编写程序实现梯形法、辛普森法、复化梯形法和龙贝格法。

2. 选取几个不同的函数,对积分区间进行划分。

3. 使用不同方法计算积分近似值,并与实际积分值进行比较。

4. 分析不同方法的精度和效率。

四、实验结果与分析1. 梯形法梯形法在计算精度上相对较低,但当积分区间划分足够细时,其计算结果可以接近实际积分值。

2. 辛普森法辛普森法在计算精度上优于梯形法,但当积分区间划分较细时,计算量较大。

3. 复化梯形法复化梯形法在计算精度上与辛普森法相当,但计算量较小。

4. 龙贝格法龙贝格法在计算精度上优于复化梯形法,且计算量相对较小。

数值计算基础实验报告(3篇)

数值计算基础实验报告(3篇)

第1篇一、实验目的1. 理解数值计算的基本概念和常用算法;2. 掌握Python编程语言进行数值计算的基本操作;3. 熟悉科学计算库NumPy和SciPy的使用;4. 分析算法的数值稳定性和误差分析。

二、实验内容1. 实验环境操作系统:Windows 10编程语言:Python 3.8科学计算库:NumPy 1.19.2,SciPy 1.5.02. 实验步骤(1)Python编程基础1)变量与数据类型2)运算符与表达式3)控制流4)函数与模块(2)NumPy库1)数组的创建与操作2)数组运算3)矩阵运算(3)SciPy库1)求解线性方程组2)插值与拟合3)数值积分(4)误差分析1)舍入误差2)截断误差3)数值稳定性三、实验结果与分析1. 实验一:Python编程基础(1)变量与数据类型通过实验,掌握了Python中变量与数据类型的定义方法,包括整数、浮点数、字符串、列表、元组、字典和集合等。

(2)运算符与表达式实验验证了Python中的算术运算、关系运算、逻辑运算等运算符,并学习了如何使用表达式进行计算。

(3)控制流实验学习了if-else、for、while等控制流语句,掌握了条件判断、循环控制等编程技巧。

(4)函数与模块实验介绍了Python中函数的定义、调用、参数传递和返回值,并学习了如何使用模块进行代码复用。

2. 实验二:NumPy库(1)数组的创建与操作通过实验,掌握了NumPy数组的基本操作,包括创建数组、索引、切片、排序等。

(2)数组运算实验验证了NumPy数组在数学运算方面的优势,包括加、减、乘、除、幂运算等。

(3)矩阵运算实验学习了NumPy中矩阵的创建、操作和运算,包括矩阵乘法、求逆、行列式等。

3. 实验三:SciPy库(1)求解线性方程组实验使用了SciPy库中的线性代数模块,通过高斯消元法、LU分解等方法求解线性方程组。

(2)插值与拟合实验使用了SciPy库中的插值和拟合模块,实现了对数据的插值和拟合,并分析了拟合效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012级6班###(学号)计算机数值方法实验报告成绩册姓名:安元龙学号:2012060501成绩:数值计算方法与算法实验报告学期: 2014 至___2015 第 1 学期 2014年 10月26日课程名称:__数值计算方法与算法 __ 专业:信息与计算科学 12级5班实验编号: 1实验项目Neton插值多项式指导教师__孙峪怀姓名:安元龙学号: 2012060501 实验成绩:一、实验目的及要求实验目的:掌握Newton插值多项式的算法,理解Newton插值多项式构造过程中基函数的继承特点,掌握差商表的计算特点。

实验要求:1. 给出Newton插值算法2. 用C语言实现算法二、实验内容三、实验步骤(该部分不够填写.请填写附页)1.算法分析:下面用伪码描述Newton插值多项式的算法:Step1 输入插值节点数n,插值点序列{x(i),f(i)},i=1,2,……,n,要计算的插值点x.Step2 形成差商表for i=0 to nfor j=n to if(j)=((f(j)-f(j-1)/(x(j)-x(j-1-i));Step3 置初始值temp=1,newton=f(0)Step4 for i=1 to ntemp=(x-x(i-1))*temp/*由temp(k)=(x-x(k-1))*temp(k-1)形成(x-x(0).....(x-x(i-1)*/Newton=newton+temp*f(i);Step5 输出f(x)的近似数值newton(x)=newton.#include<stdio.h>#define MAX_N 20typedef struct tagPOINT{double x;double y;}POINT;int main(){int n;int i,j;POINT points[MAX_N+1];double diff[MAX_N+1];double x,tmp,newton=0;printf("\nInput n value:");scanf("%d",&n);if(n>MAX_N){printf("The input n is larger then MAX_N,please redefine the MAX_N.\n");return 1;}if(n<=0){printf("Please input a number between 1 and %d.\n",MAX_N);return 1;}printf("Now input the (x_i,y_i),i=0,...,%d:\n",n);for(i=0;i<=n;i++)scanf("%lf%lf",&points[i].x,&points[i].y);printf("Now input the X value:");scanf("%lf",&x);for(i=0;i<=n;i++)diff[i]=points[i].y;for(i=0;i<n;i++){for(j=n;j>i;j--){diff[j]=(diff[j]-diff[j-1])/(points[j].x-points[j-1-i].x);}}tmp=1;newton=diff[0];for(i=0;i<n;i++){tmp=tmp*(x-points[i].x);newton=newton+tmp*diff[i+1];}printf("newton(%f)=%f\n",x,newton);return 0;}数值计算方法与算法实验报告学期: 2014 至___2015 第 1 学期 2014年 10月26日课程名称:__数值计算方法与算法 __ 专业:信息与计算科学 11级5班实验编号: 2实验项目Romberg算法指导教师__孙峪怀姓名:安元龙学号: 2012060501 实验成绩:一、实验目的及要求实验目的:熟练掌握数值积分的基本思想和动手推导积分公式的能力,并写出自己设计的变步长算法,用此算法解决实际问题。

主要锻炼分析问题及对数值方法产生的误差在实际执行算法中的变化,体会事前误差和事后误差的不同之处。

实验要求:写出Romberg算法的描述,并用此算法计算下列定积分的值,要求满足给定误差。

二、实验内容。

(1)用变步长的Romberg方法计算定积分:⎰=10sinI xdx给定误差限为310*5.0-=ε三、实验步骤(该部分不够填写.请填写附页)1.算法分析:下面用伪码描述Romberg的算法描述:Sstep1 输入区间端点a,b,精度控制值e,循环次数M,定义函数f(x),取n=1,h=b-a;Step2R1,1=(f(a)+f(b))*h/2;Step3for k=2 to M{Rk,1=(R(k-1),1+h(k-1)*∑-=-+2212/)*)1*2((kihkiaf/*12/-=kkhh*/for j=2 to k{)14/()(11,11,1,,--+=-----j j k j k j k j k R R R R } if e R R k k k k <---||1,1, 退出循环 }Step4 输出k k R ,.2.用C 语言实现算法的程序代码 #include<stdio.h> #include<math.h>#define f(x) (sin(x)) #define N_H 20#define MAXREPT 10 #define a 1.0 #define b 2.0 #define epsilon 0.00001double computeT(double aa, double bb, long int n) /*复化梯形公式*/ {int i;double sum, h=(bb-aa)/n; sum=0;for(i=1;i<n;i++) sum+=f(aa+i*h); sum+=(f(aa)+f(bb))/2; return(h*sum); }void main() {int i;long int n=N_H,m=0;double T[MAXREPT+1][2]; T[0][1]=computeT(a,b,n); n*=2;for(m=1;m<MAXREPT;m++) {for(i=0;i<m;i++) {T[i][0]=T[i][1]; }T[0][1]=computeT(a,b,n); n*=2;for(i=1;i<=m;i++)T[i][1]=T[i-1][1]+(T[i-1][1]-T[i-1][0])/(pow(2,2*m)-1);if((T[m-1][1]<T[m][1]+epsilon)&&(T[m-1][1]>T[m][1]-epsilon)) {printf("The Integrate is %lf\n",T[m][1]); return; } }printf("Return no solved...\n"); }3.运行结果数值计算方法与算法实验报告学期: 2014 至___2015 第 1 学期 2014年 10月26日课程名称:__数值计算方法与算法 __ 专业:信息与计算科学 12级5班实验编号: 3实验项目:求拟合算法指导教师__孙峪怀姓名:安元龙学号:2011060501 实验成绩:一、实验目的及要求实验目的:学习了曲线拟合的最小二乘法,会求拟合曲线,线性拟合和二次拟合函数,还有形如aexp(bx)的曲线拟合,实验主要是求形如aexp(bx)的曲线拟合,并理解体会其意义。

实验要求:1. 形如aexp(bx)曲线拟合的算法;2. 用C语言实现算法二、实验内容用形如p(x)=aexp(bx)的函数拟合给定()三、实验步骤(该部分不够填写.请填写附页)1.算法分析:拟合函数aexp(bx)的算法描述:Step1 输入m 值,及(xi,yi),i=1,2,...,m; Step2 解方程组m∑=m i xi 1∑=mi yi 1loga =∑=mi xi 1∑=m i xi 12^ b ∑=mi yi xi 1logStep3 输出p(x)=aexp(bx)即所求拟合函数 1.算法分析:2.用C 语言实现算法的程序代码 #include<stdio.h> #include<math.h> #define MAX_N 25typedef struct tagPOINT {double x; double y; }POINT; int main() {int m; int i;POINT points[MAX_N];static double u11,u12,u21,u22,c1,c2; double A,B,tmp;printf("\nInpute m value:"); scanf("%d",&m); if(m>=MAX_N) {printf("The inpute m is larger than MAX_N,please redefine the MAN_N.\n"); return 1; }if(m<=0) {printf("Please input a number between 1 and %d.\n",MAX_N); return 1; }printf("NOW inpute the(x_i,y_i),i=1,...,%d:\n",m); for(i=1;i<=m;i++) {scanf("%lf",&tmp);points[i].x=tmp;scanf("%lf",&tmp);points[i].y=tmp;}for(i=1;i<=m;i++){u21+=points[i].x;u22+=points[i].x*points[i].x;c1+=log(points[i].y);c2+=points[i].x *log(points[i].y);}u12=u21;u11=m;A=(c1*u22-c2*u12)/(u11*u22-u12*u21);B=(c1*u21-c2*u11)/(u21*u12-u22*u11);printf("Solve:p(x)=%lfexp(%lfx)\n",exp(A),B);return 0;}3.实验输出结果:数值计算方法与算法实验报告学期: 2014 至___2015 第 1 学期 2014年 10月27日课程名称:__数值计算方法与算法 __ 专业:信息与计算科学 12级5班实验编号: 4实验项目弦截断法指导教师__孙峪怀姓名:安元龙学号: 2012060501 实验成绩:一、实验目的及要求实验目的:学习什么是弦截法,了解弦截法的用法,并学会用弦截法求方程的根。

相关文档
最新文档