电力电子课件2.7 漏抗影响
漏抗对整流电路的影响

漏抗对整流电路的影响整流电路是一种将交流电转换为直流电的电路。
在正常运行时,整流电路能够有效地将交流电信号变为直流电信号,以供电子设备稳定运行。
然而,整流电路在实际使用中还会受到漏抗的影响,从而导致电路性能下降或故障。
首先,我们来了解一下什么是漏抗。
漏抗是指在变压器或电感器的工作中,由于铁芯周围空气间隙或绝缘材料的不完善,使得变压器的磁通未能充分引入铁芯,而从铁芯上方或侧边溜掉一部分,这部分磁通称为漏抗磁通,漏抗磁通必然伴随着漏抗磁阻抗。
漏抗的存在会导致电感器工作效能降低,从而对整流电路产生影响。
首先,漏抗会降低整流电路的转换效率。
在没有漏抗时,电感器可以完全转换交流电信号为直流电信号。
而当有漏抗存在时,部分电流会通过漏抗磁通损耗掉,导致输出的直流电信号减少。
因此,漏抗对整流电路的转换效率具有直接的负面影响。
其次,漏抗还会引起整流电路的电压损耗。
漏抗磁通产生的电流将会导致电压降低,从而导致整流电路输入电压的损失。
这将会影响到电子设备的正常运行,特别是在输入电压较低的情况下,电子设备可能无法正常工作。
此外,漏抗还会导致整流电路的温升增加。
漏抗造成的电压降低会使整流电路输出功率下降。
为了获得所需的输出功率,整流电路需要提高输入功率,这会导致整流电路的能量损耗增加。
这些能量被转化为热量,导致整流电路的温度升高。
当温度升高到一定程度时,可能会导致电路元件的老化、损坏甚至起火。
最后,漏抗还会对整流电路的稳定性产生影响。
漏抗的存在使得整流电路的输出信号具有更大的波动性和噪声。
这将会对电子设备的正常工作产生干扰,特别是对于需要稳定直流电源的设备,漏抗的影响更为显著。
综上所述,漏抗对整流电路具有诸多影响,包括转换效率降低、电压损失、温升增加和稳定性下降等。
在实际应用中,为了减少漏抗对整流电路的影响,我们可以通过优化设计、选择合适的电感器和变压器等方式来提高整流电路的性能。
电力电子技术(第二版)课件

电力电子技术的发展趋势
总结词
未来电力电子技术的发展趋势包括更高频率的电能转换、更高效的能量管理和系统集成、 以及更智能的控制策略。
详细描述
随着电力电子技术的不断发展,未来的电能转换将向更高频率的方向发展,这将有助于减小设备体积和重量, 提高系统效率。同时,随着能源危机和环境问题的日益严重,更高效的能量管理和系统集成成为电力电子技 术的重要发展方向。此外,人工智能和自动控制技术的不断发展,也将推动电力电子技术向更智能的控制策
VS
详细描述
交流调压电路主要由自耦变压器或接触器 组成,通过控制自耦变压器或接触器的通 断状态,改变交流电的电压波形,从而实 现交流电压的调节。交流调压电路广泛应 用于灯光调节、电机调速、加热器控制等 场合。
04
电力电子技术的应用
电力系统
电力系统控制
分布式发电与微电网
利用电力电子技术实现对电力系统电 压、电流、频率等的精确控制,提高 电力系统的稳定性和可靠性。
电力电子技术(第二版)课件
• 电力电子技术概述 • 电力电子器件 • 电力电子电路 • 电力电子技术的应用 • 电力电子技术的未来展望
01
电力电子技术概述
定义与特点
总结词
电力电子技术是利用半导体电力电子器件进行电能转换和控制的学科领域。
详细描述
电力电子技术主要研究将电能从一种形式转换为另一种形式,例如从交流(AC)转换为直流(DC),或从一个 电压级别转换到另一个电压级别。它涉及的半导体电力电子器件包括晶体管、可控硅整流器(SCR)、可关断晶 闸管(GTO)等。
节能控制
通过电力电子技术实现设备的节能控制,降低能耗,提高能源利用 效率。
智能家居与楼宇自动化
利用电力电子技术实现智能家居和楼宇自动化,提高居住环境的舒 适度和节能性。
电力电子技术第一章

2、正向压降UF
指规定条件下,流过稳定的额定电流时,器件两端的 正向平均电压(又称管压降)。
PPT文档演模板
电力电子技术第一章
1.2.2 电力二极管的基本特性与参数
3、反向重复峰值电压URRM
指器件能重复施加的反向最高峰值电压(额定电 压)。此电压通常为击穿电压的2/3。使用中通常按照 电路中电力二极管可能承受的反向峰值电压的两倍来选 定此项参数。
图1-3 电力二极管的伏安特性
PPT文档演模板
电力电子技术第一章
1.2.2 电力二极管的基本特性与参数
二、 动态特性 (开关特性)
电力二极管的电压-电流特性
是随时间变化的
延迟时间:td= t1- t0, 电流下降时间:tf= t2- t1 反向恢复时间:trr= td+ tf 恢复特性的软度:下降 时间与延迟时间 的比值 tf /td,或称恢复系数,用 Sr表示。
通或者 关断的控制。
❖电压驱动型
----仅通过在控制端和公共端之间施加一定的
电压信号就可实现导通或者关断的控制。
PPT文档演模板
电力电子技术第一章
1.2 不可控器件—电力二极管
➢1.2.1 电力二极管的工作原理 ➢1.2.2 电力二极管的基本特性与参数
一、电力二极管的伏安特性 二、电力二极管的开关特性 三、电力二极管的主要参数
Diode)常用于开关频率在1KHz以下的整流电路 中,其反向恢复时间在5μs以上,额定电流可 达数千安培,额定电压达数千伏以上。
PPT文档演模板
电力电子技术第一章
1.2.2 电力二极管的基本特性与参数
②快恢复二极管
第2章 电力电子技术课件.ppt

电子技术的基础
——— 电子器件:晶体管和集成电路
电力电子电路的基础
——— 电力电子器件
本章主要内容:
概述电力电子器件的概念、特点和分类等问题。 介绍常用电力电子器件的工作原理、基本特性、主 要参数以及选择和使用中应注意问题。
1-1
2.1.1 电力电子器件的概念和特征
电力电子器件
雪崩击穿 齐纳击穿 均可能导致热击穿
1-13
2.2.1 PN结与电力二极管的工作原理
■二极管的基本原理——PN结的单向导电性 ◆当PN结外加正向电压(正向偏置)时,在外电路上则形成自 P区流入而从N区流出的电流,称为正向电流IF,这就是PN结的 正向导通状态。 ◆当PN结外加反向电压时(反向偏置)时,反向偏置的PN结 表现为高阻态,几乎没有电流流过,被称为反向截止状态。 ◆ PN结具有一定的反向耐压能力,但当施加的反向电压过大 ,反向电流将会急剧增大,破坏PN结反向偏置为截止的工作状 态,这就叫反向击穿。 ☞按照机理不同有雪崩击穿和齐纳击穿两种形式 。 ☞反向击穿发生时,采取了措施将反向电流限制在一定范围 内,PN结仍可恢复原来的状态。 ☞否则PN结因过热而烧毁,这就是热击穿。
由一种载流子参与导电的器件
2) 双极型器件
由电子和空穴两种载流子参与导电的器件
3) 复合型器件
由单极型器件和双极型器件集成混合而成的器件
1-8
2.1.3 电力电子器件的分类
按照驱动电路信号的性质(电力二极管除外) 电流驱动型
——通过从控制端注入或者抽出电流来实现导通或者 关断的控制。
电压驱动型
——仅通过在控制端和公共端之间施加一定的电压信 号就可实现导通或者关断的控制。
1-14
电力电子技术课件-第1章 电力电子器件 200页

(1) 欲使晶闸管导通需具备两个条件:
① 应在晶闸管的阳极与阴极之间加上正向电 压。
② 应在晶闸管的门极与阴极之间也加上正向 电压和电流。
(2) 晶闸管一旦导通,门极即失去控制作用, 故晶闸管为半控型器件。
(3) 为使晶闸管关断,必须使其阳极电流减小 到一定数值以下,这只有用使阳极电压减 小到零或反向的方法来实现。
(4) 擎住电流IL 晶闸管从断态转换到通态时移去触发信号
之后,要器件维持通态所需要的最小阳极 电流。对于同一个晶闸管来说,通常擎住 电流IL约为维持电流IH的(2~4)倍。
(5) 门极触发电流IGT 在室温且阳极电压为6V直流电压时,使晶
(1) 额定电压
断态重复峰值电压UDRM和反向重复峰值电压URRM 中较小的那个数值标作器件型号上的额定电压。 通常选用晶闸管时,电压选择应取(2~3)倍的安 全裕量。
(2) 额定电流IT(AV) 在环境温度为+40℃和规定冷却条件下,器件在
电阻性负载的单相工频正弦半波电路中,管子全导 通(导通角> 170°),在稳定的额定结温时所允许 的最大通态平均电流。
功率二极管的开关特性
2. 功率二极管的主要参数
(1) 反向重复峰值电压URRM 取反向不重复峰值电压URSM的80%称为反 向重复峰值电压URRM,也被定义为二极管 的额定电压URR。显然,URRM小于二极管 的反向击穿电压URO。
(2) 额定电流IFR
二极管的额定电流IFR被定义为其额定发 热所允许的正弦半波电流平均值。其正向 导通流过额定电流时的电压降UFR一般为 1~2V。当二极管在规定的环境温度为 +40℃和散热条件下工作时,通过正弦半波 电流平均值IFR时,其管芯PN结温升不超过 允 电许流值为。若正弦电流的最大值为Im,则额定
电力电子技术课件

电力电子技术课件一、引言电力电子技术是指利用电子器件和电力电子器件来进行电能的变换、控制和调节的技术领域。
随着现代电力系统的发展和电能质量的要求不断提高,电力电子技术在电力系统中的应用越来越广泛。
本课件将介绍电力电子技术的基本原理、常见的电力电子器件以及其在电力系统中的应用。
二、电力电子技术的基本原理1. 电力电子器件的工作原理1.1 二极管的工作原理1.2 可控硅的工作原理1.3 晶闸管的工作原理1.4 MOSFET的工作原理1.5 IGBT的工作原理2. 电力电子器件的特性参数2.1 二极管的特性参数2.2 可控硅的特性参数2.3 晶闸管的特性参数2.4 MOSFET的特性参数2.5 IGBT的特性参数三、常见的电力电子器件1. 二极管1.1 整流二极管1.2 快恢复二极管1.3 肖特基二极管2. 可控硅2.1 半控型可控硅2.2 全控型可控硅2.3 可关断可控硅3. 晶闸管3.1 双向晶闸管3.2 单向晶闸管3.3 门极可关断晶闸管4. MOSFET4.1 N沟道MOSFET4.2 P沟道MOSFET5. IGBT5.1 IGBT的结构与工作原理5.2 IGBT的优点与应用四、电力电子技术在电力系统中的应用1. 交流电压控制1.1 交流电压调制技术1.2 交流电压控制器的设计与实现2. 直流电压控制2.1 直流电压调制技术2.2 直流电压控制器的设计与实现3. 电力变换与调节3.1 交流-直流变换技术3.2 直流-交流变换技术3.3 直流-直流变换技术4. 电力电子器件的保护与故障诊断4.1 电力电子器件的热保护4.2 电力电子器件的过流保护4.3 电力电子器件的过压保护4.4 电力电子器件的故障诊断与维修五、总结电力电子技术是现代电力系统中不可或缺的重要技术,通过本课件的学习,我们了解了电力电子技术的基本原理、常见的电力电子器件以及其在电力系统中的应用。
希望本课件能够帮助大家更好地理解和应用电力电子技术,提高电力系统的可靠性和效率。
电力电子技术第五版(王兆安)课件

VS
漏抗对整流器换相的影响
漏抗的存在使得换相过程变得复杂,可能 导致换相失败或产生过大的换相过电压。
整流电路的谐波和功率因数
谐波
整流电路输出的非正弦波形含有丰富的谐波 成分,对电网和负载造成不良影响。
功率因数
整流电路的功率因数通常较低,因为谐波和 无功功率的存在使得视在功率大于有功功率 。提高功率因数的方法包括采用功率因数校 正电路和采用高功率因数的整流器等。
用效率。
交通运输
电动汽车、高铁、航空器等交 通工具的电力驱动系统大量采
用电力电子技术。
工业自动化
电机驱动、电源供应、自动化 控制等方面广泛应用电力电子
技术,提高生产效率。
信息技术
数据中心、云计算等领域需要 高效、可靠的电源供应,电力 电子技术发挥着重要作用。
课程目标与学习方法
课程目标
掌握电力电子技术的基本原理、分析方法、设计方法和实验 技能,具备从事电力电子技术应用和研究的初步能力。
电压型和电流型逆变电路
电压型逆变电路
电压型逆变电路以电压源作为输入,通过控制开关元 件的通断,得到所需的交流输出电压。其特点是输出 电压波形质量高,但需要较大的滤波电感。
电流型逆变电路
电流型逆变电路以电流源作为输入,通过控制开关元 件的通断,得到所需的交流输出电流。其特点是输出 电流波形质量高,但需要较大的滤波电容。
BIG DATA EMPOWERS TO CREATE A NEW ERA
电力电子技术第五版(王兆
安)课件
• 电力电子技术概述 • 电力电子器件 • 整录
CONTENTS
01
电力电子技术概述
BIG DATA EMPOWERS TO CREATE A NEW
电力电子技术完整版全套PPT电子课件

contents
目录
• 电力电子技术概述 • 电力电子器件 • 电力电子电路 • 电力电子技术的控制策略 • 电力电子技术的实验与仿真
01
电力电子技术概述
电力电子技术的定义与发展
定义
电力电子技术是一门研究利用半 导体器件对电能进行变换和控制 的科学。
发展历程
饱和压降等特性
05
广泛应用于电机控制、电源转
换等领域
06
03
电力电子电路
整流电路
整流电路的工作原理
介绍整流电路的基本工作原理,包括 半波整流、全波整流和桥式整流等。
整流电路的应用
列举整流电路在电力电子领域的应用 ,如电源供应器、电池充电器和电机 驱动器等。
整流电路的类型
详细阐述不同类型的整流电路,如单 相半波整流电路、单相全波整流电路 、三相半波整流电路和三相全波整流 电路等。
光调光器和电加热温度控制器等。
一般工业应用
01
02
03
电动机控制
利用电力电子技术实现对 电动机的启动、调速、制 动等控制,提高工业生产 效率。
电热控制
通过电力电子技术对电热 设备进行控制,实现精确 的温度控制和节能效果。
照明控制
利用电力电子技术研发的 照明控制系统,可实现对 照明设备的智能控制和节 能管理。
。
应用领域
适用于对控制精度要求不高、成 本敏感的场合,如某些电源管理
、电机驱动等。
优缺点分析
优点在于实现简单、成本低;缺 点在于控制精度低、易受干扰、
调试困难。
数字控制技术
原理与特点
基于数字电路和微处理器实现控制,具有控制精度高、灵活性好 、易于实现复杂控制算法等特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
γ随其它参数变化的规律(了解)
当α一定时,Id、XB越大, γ越大 这是由于Id、XB愈大,漏感中储存能量愈多,换相过程加长,换 相重叠角增加。
当Id、XB 不变时,α增加,γ越小 这是由于控制角α愈大,电源供给能量减少.能量释放快,换相 重叠角减小
已知电路的形式和参数XB根据负载电流Id和控制角a的大小,就 可以利用公式计算出换相重叠角
不同整流电路的m值
单相半波: 单相桥式: 三相半波: 三相桥式: 六相半波: 双反星:
m=1 m=2 m=3 m=6 m=6 m=6
15
换相重叠角的计算
换相重叠角 的大小与电路的参数及控制角有
关。
T
a LB ia
将坐标轴取在a、b两相的自然换相点处ik ,cb则LLaBB
ib ic
相和b相电压可表示为
R
L
ud ua
ub
ud uc
O
id ic
ia
ib
ic
ia
I
O
16
换相重叠角的计算
因为有 得到
17
换相重叠角的计算
将上式在整个换相期间积分
可以解到
所以可以得到 换相角的公式
18
m相的换相角推广
三相半波的换相重叠角γ 对于m相可控整流电路,换相重叠角γ
对于三相全控桥电路,可m=6,相电压有效 值认改为线电压有效值
2)同时ia=Id逐渐减小,且 ia+ib=Id
3)ib 增大到Id时,ia=0 Ta关断,换流过程结束
ud ua
换相重叠角——换相过程持续的时 间,用电角度γ表示。
O
ua
ub
T ik
a LB ia b LB ib c LB ic
R
L
ud
ub
uc
id ic
ia
ib
ic
ia
Id
O
5
短路电压与回路中的漏感电势相 平衡
9
作业:2-19(只作图、不计算)
10
Backup
11
换相压降ΔUd:
换相压降ΔUd: 由于负载电流换相所引起的电压降
Ud
1
(2 / 3)
( )
(ub
ud )d (t)
T ik
a LB ia b LB ib
Ud
3
2
LB
dik dt
d (t )
3
2
Id
0 LBdik
c LB ic
R
L
ud
ud ua
ub
uc
U d
3
2
X BId
O
变压器漏抗XB=ωLB
id ic
ia
ib
ic
ia
O
12
变压器的漏抗求法
变压器漏抗XB=ωLB
通常可用下式求取
13
二.换相压降和整流平均电压
对于三相半波
U d
Байду номын сангаас
3
2
X BId
对于m相可控整流电路:一周期中有m个波头,换相 m次
整流平均电压Ud:
Ud0为α=0时不考虑漏感影响的Ud 14
19
第七节
电源变压器漏抗对可控整流电路的影响
换相的物理过程
以三相半波可控整流为例,其余场合类似 理想的换向过程:认为晶闸管的换流是瞬时完成的。
2
实际电路由于变压器漏感的存在,电流不能突变,SCR换相有一过 程。
换相的物理过程和整流电压波形( 以三相半波电感性负载为例, 然后将结论推广)
考虑包括变压器漏感影响,该漏感 可用图中的电感LB表示。
3
换相短路和环流的产生
Ta换相到Tb的过程:
因a b两相均有漏感,
故ia ib均不能突变, Ta和Tb同时导通 ,
等效环流电流方向和Ta、 Tb、晶闸管有无冲突?
相当于将a b两相短路,
ua
在两相组成的回路中产生等效
ub
环流ik
4
换相过程分析 (以Tb导通过程为例)
1)Tb一来脉冲就导通, ib由0 逐渐增大,
在换相过程中,输出整流电压
ud ua
ua
ub
T ik
a LB ia b LB ib c LB ic
R
L
ud
ub
uc
O
id ic
ia
ib
ic
ia
Id
O
6
换相的影响
换相期间,输出整流电压是换相的两相相电压的平均值 由于换相的影响,输出电压的平均值有所下降
7
变压器漏感对整流电路的影响
出现换相重叠角γ ,整流输出电压平均值Ud降低 换相使电网电压出现缺口,成为干扰源。 晶闸管的di/dt 减小,有利于晶闸管的安全开通。有时人 为串入进线电抗器以抑制晶闸管的di/dt。