排 列 组 合 公 式 及 排 列 组 合 算 法 ( 2 0 2 0 )

合集下载

排列组合95608讲课讲稿

排列组合95608讲课讲稿

排列组合一、知识梳理 1、排列2、组合组合定义 从n 个不同元素中,任取m (m≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合组合数 从n 个不同元素中,任取m (m≤n)个元素的所有组合个数m nCm nC=!!()!n m n m -性质mnC =n m nC-11m m m n nn C C C -+=+二常见排列组合解题方法1、相邻元素捆绑策略例1. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为2、不相邻问题插空策略例2.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为3.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?4.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?5、重排问题求幂策略例5.把6名实习生分配到7个车间实习,共有多少种不同的分法练习题:1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 422. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法( )6、多排问题直排策略例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法前 排练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是7、元素相同问题隔板策略例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为nm 种 一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研一班二班三班四班六班七班练习题:1.10个相同的球装5个盒中,每盒至少一有多少装法?2.100x y z w +++=求这个方程组的自然数解的组数8、平均分组问题除法策略例12. 6本不同的书平均分成3堆,每堆2本共有多少分法?练习题:1 将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法?2.10名学生分成3组,其中一组4人, 另两组3人但正副班长不能分在同一组,有多少种不同的分组方法3.某校高二年级共有六个班级,现从外地转 入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为______9、合理分类与分步策略例13.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有多少选派方法练习题:1.从4名男生和3名女生中选出4人参加某个座 谈会,若这4人中必须既有男生又有女生,则不同的选法共有2. 3成人2小孩乘船游玩,1号船最多乘3人, 2号船最多乘2人,3号船只能乘1人,他们任选2只船或3只船,但小孩不能单独乘一只船, 这3人共有多少乘船方法. 10、树图策略 将n 个相同的元素分成m 份(n ,m 为正整数),每份至少一个元素,可以用m-1块隔板,插入n 个元素排成一排的n-1个空隙中,所有分法数为11m n C -- 平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要一定要除以n n A (n 为均分的组数)避免重复计数。

排列组合公式排列组合公式

排列组合公式排列组合公式

推论
• 方程x1+x2+…+xn=r 的非负整数解的个数。 • n≤r时,此方程的正整数解的个数 • n元集合的r-可重组合数,要求每个元素至少
出现一次。 • 正整数r的n-长有序分拆的个数 • 求x1+x2+x3+x4=20的整数解的数目,其中x1 ≥
3, x2 ≥ 1,x3 ≥ 0,x4 ≥ 5。
排列组合公式排列组合公式
有约束条件的排列:引例
• 用两面红旗、三面黄旗依次悬挂在一根旗杆 上,问可以组成多少种不同的标志?
排列组合公式排列组合公式
5、有约束条件的排列
• 设有k个元素a1,a2,…,ak,由它们组成一 个n-长的排列,其中对1≤i≤k,ai出现的次数 为ni,n1+n2 +… +nk=n,求排列的总数。

(2x13x25x3)6
x13x2 x32
(x1x2 xr)n
项,其中
n n1 1, nn 22, ,n r为 nrn非负 n1整 n2n 数 nrx1n1x2n2 xrnr
排列组合公式排列组合公式
例题
• 数1400有多少个正因数? • 1400=23 × 52 × 7 • (3+1)(2+1)(1+1)=24
排列组合公式排列组合公式
多边形
排列组合公式排列组合公式
例题
• 对角线的条数为C(10,2)-10=45-10=35 • 任选两条对角线,可能相交在多边形内部,可能
交点为多边形的顶点,可能无交点(交点在多边 形外) • 任选四个顶点,对应一个交点,每个对角线分成 两段 • 每个对角线是一段 • 35+C(10,4) × 2=455

组合与组合数公式

组合与组合数公式
组合与组合数公式
漯河实验高中高三数学组朱联朋
第一章 1.2.2 组 合
学习目标
XUE XI MU BIAO
1.理解组合的定义,正确认识组合与排列的区别与联系. 2.理解排列数与组合数之间的联系,掌握组合数公式,能运用组合数
公式进行计算. 3.会解决一些简单的组合问题.

知识梳理

题型探究

随堂演练
②选出2名男教师或2名女教师参加会议,有__2_1__种不同的选法;
解析 可把问题分两类情况: 第 1 类,选出的 2 名是男教师有 C26种方法; 第 2 类,选出的 2 名是女教师有 C24种方法. 根据分类加法计数原理,共有 C26+C24=15+6=21(种)不同选法.
③现要从中选出男、女教师各2名去参加会议,有_9_0__种不同的选法.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
4.若 A3m=6C4m,则 m 等于
A.9
B.8
√C.7
D.6
解析 A3m=6C4m,∴m≥4 且 m∈N*, ∴m(m-1)(m-2)=6·mm-4×13m×-22×1m-3, 即m-4 3=1,∴m=7.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
5.从4台甲型电视机和5台乙型电视机中任意取出3台,其中至少有甲型和
乙型电视机各1台,则不同的取法种数为
A.84
√B.70
C.60
D.48
解析 根据结果分类:第一类,两台甲型机,有 C24·C15=30(种); 第二类,两台乙型机,有 C14·C25=40(种). 根据分类加法计数原理,共有 C24·C15+C14·C25=70(种)不同的取法.

排列组合基础知识

排列组合基础知识

排列组合基础知识排列组合基础知识一、两大原理1.加法原理(1)定义:做一件事,完成它有n 类方法,在第一类方法中有1m 中不同的方法,第二类方法中有2m 种不同的方法......第n 类方法中n m 种不同的方法,那么完成这件事共有n m m m N +++= (21)种不同的方法。

(2)本质:每一类方法均能独立完成该任务。

(3)特点:分成几类,就有几项相加。

2.乘法原理(1)定义做一件事,完成它需要n 个步骤,做第一个步骤有1m 中不同的方法,做第二个步骤有2m 种不同的方法......做第n 个步骤有n m 种不同的方法,那么完成这件事共有n m m m N ...21=种不同的方法。

(2)本质:缺少任何一步均无法完成任务,每一步是不可缺少的环节。

(3)特点:分成几步,就有几项相乘。

二、排列组合1.排列(1)定义:从n 个不同的元素中,任取m 个(n m ≤)元素,按照一定的顺序排成一列,叫做从n 个不同的元素中,选取m 个元素的一个排列,排列数记为m n P ,或记为m n A 。

(2)使用排列的三条件①n 个不同元素;②任取m 个;③讲究顺序。

(3)计算公式)!(!)1)....(2)(1(m n n m n n n n A m n -=+---= 尤其:!,,110n P n P P n n n n ===2.组合(1)定义:从n 个不同的元素中,任取m 个(n m ≤)元素并为一组,叫做从n 个不同的元素中,选取m 个元素的一个组合,组合数记为m n C 。

(2)使用三条件①n 个不同元素;②任取m 个;③并为一组,不讲顺序。

(3)计算公式12)...1()1)...(1()!(-+--=-==m m m n n n m n m n P P C m m m n mn尤其:m n n m n n n n n C C C n C C -====,1,,110例1.由0,1,2,3,4,5可以组成多少个没有重复数字的五位奇数?A.226B.246C.264D.288解析:由于首位和末位有特殊要求,应优先安排,以免不合要求的元素占了这两个位置,末位有13C 种选择,然后排首位,有14C 种选择,左后排剩下的三个位置,有34A 种选择,由分步计数原理得:13C 14C 34A =288例2.旅行社有豪华游5种和普通游4种,某单位欲从中选择4种,其中至少有豪华游和普通游各一种的选择有()种。

小学奥数专题排列组合

小学奥数专题排列组合

排列问题题型分类:1.信号问题2.数字问题3.坐法问题4.照相问题5.排队问题组合问题题型分类:1.几何计数问题2.加乘算式问题3.比赛问题4.选法问题常用解题方法和技巧1.优先排列法2.总体淘汰法3.合理分类和准确分步4.相邻问题用捆绑法5.不相邻问题用插空法6.顺序问题用“除法”7.分排问题用直接法8.试验法9.探索法10.消序法11.住店法12.对应法13.去头去尾法14.树形图法15.类推法16.几何计数法17.标数法18.对称法分类相加,分步组合,有序排列,无序组合基础知识(数学概率方面的基本原理)一.加法原理:做一件事情,完成它有N类办法,在第一类办法中有M1中不同的方法,在第二类办法中有M2中不同的方法,……,在第N类办法中有M n种不同的方法,那么完成这件事情共有M1+M2+……+M n种不同的方法。

二.乘法原理:如果完成某项任务,可分为k个步骤,完成第一步有n1种不同的方法,完成第二步有n2种不同的方法,……完成第k步有nk种不同的方法,那么完成此项任务共有n1×n2×……×nk种不同的方法。

三.两个原理的区别做一件事,完成它若有n类办法,是分类问题,每一类中的方法都是独立的,故用加法原理。

每一类中的每一种方法都可以独立完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理.任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来.四.排列及组合基本公式1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 P mn表示.P mn=n(n-1)(n-2)……(n-m+1)=n!(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号C mn表示.C mn = P mn/m!=n!(n-m)!×m!一般当遇到m比较大时(常常是m>时),可用C mn = C n-mn来简化计算。

行列式的几种基本计算方法

行列式的几种基本计算方法
2 预备知识
2.1 行列式的定义
在一个排列中, 如若一组数位置的前后和次序的大小相反, 简单的说就是如果后面的数比前面的数小, 那么这就是一个逆序. 而排列中逆序的总数就是逆序数. 当逆序数为偶数时, 则为偶排列, 反而言之. 比如中, 是逆序, 且逆序数为, 则这个排列为奇排列.
阶行列式的定义 . 也可记为或, 其中为排列的逆序数, 就是对所有级排列求和.
行列式在我们的高等数学中是一种非常有用的计算工具, 而对于现实生活中的一些实际问题, 行列式都或多或少的与之有着一定的联系.
比如:在数学中可利用行列式来求解线性方程组, 或者也可以通过统计数据建立线性关系来判断其变化规律, 做出相应的预测, 还可以预知自然生态中物种的存活期等等的这些生活中的实际问题. 那么, 了解行列式, 认识行列式, 并且掌握行列式的算法就显得尤为重要. 当行列式的阶数相对比较低(不超过三阶)时, 一般可以按照行列式的定义或性质直接计算出结果. 但是对于阶数比较高的阶行列式, 用定义和性质直接去计算就行不通了, 因此, 对于研究阶行列式的基本计算方法, 在数学中是十分有必要的. 本文首先给出了行列式的定义并讨论了行列式的性质, 从而引出行列式的一些基本的常见的计算方法, 并通过例题对计算方法进行了简单的说明.
性质三 一行的公因式可以提出来, 即
实际上假如, 就有如果行列式中有一行(列)为, 那么行列式为.
推论 假如一个行列式中有一行(列)的元素是, 则行列式等于.
性质四 把行列式的其中一行(列)的倍数添加到另一行(列), 则前后两个行列式依然相等. 即
性质五 如若行列式中有两行(列)的对应元素相同, 则行列式值为0.
所以的系数为.
故原行列式等于 .
3. 6 拆项法

排列组合方法大全

排列组合方法大全

排列组合方法大全(总7页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除排列组合方法归纳大全复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

排列组合公式总结大全(3篇)

排列组合公式总结大全(3篇)

第1篇在数学中,排列组合是研究有限集合中元素的不同排列和组合方式的一种数学分支。

它广泛应用于统计学、概率论、计算机科学、组合数学等领域。

以下是对排列组合中常用公式的总结,以供参考。

一、排列1. 排列的定义:从n个不同的元素中,任取m(m≤n)个不同的元素,按照一定的顺序排成一列,称为从n个不同元素中取出m个元素的一个排列。

2. 排列数公式:A(n, m) = n! / (n-m)!其中,n!表示n的阶乘,即n! = n × (n-1) × (n-2) × ... × 2 × 1。

3. 排列的运算性质:(1)交换律:A(n, m) = A(n-m, n-m)(2)结合律:A(n, m) × A(m, k) = A(n, k)(3)逆运算:A(n, m) × A(m, n-m) = n!二、组合1. 组合的定义:从n个不同的元素中,任取m(m≤n)个不同的元素,不考虑它们的顺序,这样的取法称为从n个不同元素中取出m个元素的一个组合。

2. 组合数公式:C(n, m) = n! / [m! × (n-m)!]3. 组合的运算性质:(1)交换律:C(n, m) = C(n-m, n-m)(2)结合律:C(n, m) × C(m, k) = C(n, k)(3)逆运算:C(n, m) × C(m, n-m) = C(n, n)三、排列与组合的关系1. 排列与组合的关系:A(n, m) = C(n, m) × m!2. 排列与组合的区别:(1)排列考虑元素的顺序,组合不考虑元素的顺序。

(2)排列的运算性质与组合的运算性质不同。

四、排列组合的应用1. 排列组合在概率论中的应用:计算随机事件发生的概率。

2. 排列组合在计算机科学中的应用:设计算法、密码学、数据结构等。

3. 排列组合在统计学中的应用:抽样调查、数据分析等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

秒杀排列组合(上)————排列篇首先为什么要写排列组合?因为排列组合在数学中占有重要的地位,其与概率论也有密切关系;并且排列组合问题在求职的笔试,面试出现的概率特别高,而我在网上又没有搜到比较全面题型的文章;同时,我觉得编写排列组合程序对学习递归也是很有帮助的;当然,最重要的原因是排列组合本身就很有趣!所以就总结下排列组合的各种问法,分两篇写:上篇写排列,下篇写组合。

首先从各【导师实操追-女孩教-学】大IT公司的题中总结出排列组合的对象都是整形数组或字符数组,排列问题可以按输入数据分为两大类:输入数据【扣扣】有重复和无重复,又可以按输出数据分为两大类:输出数据有【⒈】重复和无重复;而排列问题也偶尔会考非递归。

首先提一【0】下全排列的几种算法:1—【1】—字典序法2——递增进位数制法; 3——递减进位数制法【б】4——邻位交换法5——n进制数法6——递归生成法7——循【⒐】环移位法8——回溯法由于侧【5】重点在输入数据无重复,所以先看输入数据无重复类型:其中又【2】可以分为全排列和分组后排列:首先写基【6】本的全排列:1.输出数组a的全排列(不可重复取)如a={1,2,3}。

输出123,132,213,231,312,321这个是最基本,也是最经典的排列算法思想:可以输出1加上23的全排列,2加13的全排列,3加上12的全排列,运用递归求比如23的全排列.依次递归下去;比如现在要2开头求全排,首先要交换1,2的位置,让a[0]变为2,在用递归求13的所有全排列,前面加个2就是2开头的所有全排列了,最后运用回溯再把1,2调换回来。

代码清单:public class PaiLie {public void runPermutation(int[] a){getAllPermutation(a, 0);-*index用于控制如上述分析中2加上13的所有全列的*-public void getAllPermutation(int[] a,int index){-*与a的元素个数相同则输出*-if(index == a.length-1){for(int i = 0; i a.length; i++){System.out.print(a[i] + " ");System.out.println();return;for(int i = index; i a.length; i++){swap(a ,index, i);getAllPermutation(a, index+1);swap(a ,index, i);public void swap(int[] a, int i, int j) {int temp = a[i];a[i] = a[j];a[j] = temp;public static void main(String[] args) {PaiLie robot = new PaiLie();int[] a = {1,2,3};robot.runPermutation(a);2.输出数组a的全排列(可重复取)如a={1,2}。

输出11,12,21,22如果知道a的length,可以用暴力法求解(n的循环)如果不知道a的length的情况下:算法思想:用一个辅助空间b数组存储待输出的排列,用一个参数index记录一个排列的个数代码清单:public class PaiLie {public void runPermutation(int[] a) {if(null == a || a.length == 0)return;int[] b = new int[a.length];--辅助空间,保存待输出排列数getAllPermutation(a, b, 0);public void getAllPermutation(int[] a, int[] b, int index){if(index == a.length){for(int i = 0; i index; i++){System.out.print(b[i] + " ");System.out.println();return;for(int i = 0; i a.length; i++){b[index] = a[i];getAllPermutation(a, b, index+1);public static void main(String[] args){PaiLie robot = new PaiLie();int[] a = {1,2,3};robot.runPermutation(a);3.输出数组a的全排列(非递归)如a={1,2,3}。

输出123,132,213,231,312,321全排列的非递归算法也不唯一,我写一个最常用的按字典序非递归算法所谓字典序就是按照排列数的从大到小或从小到大输出,如123,132,2.,3.算法思想:如果能按顺序输出序列是这个算法的核心,为了保证按顺序输出先对数组a进行排序。

然后从后向前找到第一个顺序对(12是顺序对,21不是)标记为i,然后再从后面向前找到第一个比i大的数,记录为j,随后交换i,j对应的值,再逆序数组a[i+1]到a[length-1]。

听到这里大家一定很迷糊,我们来举个例子,比如说2431这个数我们先在i,因为31是逆序,43是逆序,24是顺序,所以i=0;接着我们找j,第一个比2大的数是3,所以j=3,然后交换i,j变成(3,4,2,1)我们看看为什么要交换2,3?因为这个算法的核心思想是按字典序,而2431是以2开头的最大排列,下一个数就得是以3开头了(如果原数是2341按算法就是先要变成2431),接着3421这个数要进行i+1到length-1之间的逆序,变成3124,这个是2431的下一个数。

所以可以看出交换后的数从下位开始到最后一定是一个逆序排列,所以逆序后才变成了相对的“最小值”。

--代码清单:import java.util.Arrays;public class PaiLie {public void runNoRecursionOfPermutation(int[] a){Arrays.sort(a);--对数组排序while(true){printArray(a);--输出一个排列int i;--从后向前,记录一对顺序值中的小值下标int j;--从后向前,记录比i大的第一个数for(i = a.length-2; i = 0; i--){if(a[i] a[i+1])--如果找到i跳出else if(i == 0)--说明是最大逆序数退出函数return;for(j = a.length-1; j i; j--){if(a[j] a[i])--找到j跳出swap(a, i, j);--交换i,jreverse(a, i+1, a.length-1);--翻转public void swap(int[] a, int i, int j) {int temp = a[i];a[i] = a[j];a[j] = temp;public void reverse(int[] a, int i, int j){ while(i j)swap(a, i++, j--);public void printArray(int[] a) {for(int i = 0; i a.length; i++){System.out.print(a[i] + " ");System.out.println();public static void main(String[] args) {PaiLie robot = new PaiLie();int[] a = {1,2,3};robot.runNoRecursionOfPermutation(a);4.输出从数组a中取n个数的所有排列如a={1,2,3} n=2输出12,21,13,31,23,32算法思想:求出a中选取n个数的所有组合,分别对其进行全排列。

代码清单:public class PaiLie {public void runPermutation(int[] a, int n) {if(null == a || a.length == 0 || n = 0 || n a.length)return;int[] b = new int[n];--辅助空间,保存待输出组合数getCombination(a, n , 0, b, 0);public void getCombination(int[] a, int n, int begin, int[] b, int index) {if(n == 0){--如果够n个数了,输出b数组getAllPermutation(b,0);--得到b的全排列return;for(int i = begin; i a.length; i++){b[index] = a[i];getCombination(a, n-1, i+1, b, index+1);public void getAllPermutation(int[] a,int index){-*与a的元素个数相同则输出*-if(index == a.length-1){for(int i = 0; i a.length; i++){System.out.print(a[i] + " ");System.out.println();return;for(int i = index; i a.length; i++){swap(a ,index, i);getAllPermutation(a, index+1);swap(a ,index, i);public void swap(int[] a, int i, int j) {int temp = a[i];a[i] = a[j];a[j] = temp;public static void main(String[] args){PaiLie robot = new PaiLie();int[] a = {1,2,3};int n = 2;robot.runPermutation(a,n);输入数据有重复类型:这类如a={1,3,2,3} 3出现了两次,用以上排列会造成输出重复。

5.输出数组a的全排列(递归)如a={1,1,2}输出112,121,211算法思想:我们改进一下1的算法,在for中判断是否有包含重复元素,也就是index和i之间是否有和a[i]相等的值,比如对于2313这个数列,当index=0(a[index] = 2),i=3(a[i]= 3)的时候,如果要交换这两个数变成3312的话就是计算重复了,因为它们之间有1个3,当i=1的时候,它已经转换过3312了。

相关文档
最新文档