分式方程知识点总结
分式方程知识点及典型例题

第二讲 分式方程【知识要点】1.分式方程的概念以及解法;2.分式方程产生增根的原因3.分式方程的应用题【主要方法】1.分式方程主要是看分母是否有外未知数;2.解分式方程的关健是化分式方程为整式方程;方程两边同乘以最简公分母3.解分式方程的应用题关健是准确地找出等量关系,恰当地设末知数. 题型一:用常规方法解分式方程解下列分式方程(1)x x 311=- (2)0132=--x x(3)114112=---+x x x (4)x x x x -+=++4535题型二:特殊方法解分式方程解下列方程(1)4441=+++x x x x ; (2)569108967+++++=+++++x x x x x x x x(3)41315121+++=+++x x x x题型三:求待定字母的值(1)若关于x 的分式方程3132--=-x m x 有增根,求m 的值.(2)若分式方程122-=-+x a x 的解是正数,求a 的取值范围.(3)若分式方程x m x x -=--221无解,求m 的值。
(4)若关于x 的方程11122+=-+-x x x k x x 不会产生增根,求k 的值。
(5)若关于x 分式方程432212-=++-x x k x 有增根,求k 的值。
题型四:解含有字母系数的方程解关于x 的方程 (1 ))0(≠+=--d c d c x b a x (2)b x a 211+=)2(a b ≠;(3))(11b a xb b x a a ≠+=+.题型五:列分式方程解应用题一、工程类应用性问题1、一项工程,甲、乙、丙三队合做4天可以完成,甲队单独做15天可以完成,乙队单独做12天可以完成,丙队单独做几天可以完成?2、某 市为治理污水,需要铺设一段全长3000米的污水输送管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成了任务,实际每天铺设多长管道?二、行程中的应用性问题2、甲、乙两地相距828km,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的1.5倍.直达快车比普通快车晚出发2h,比普通快车早4h 到达乙地,求两车的平均速度.3、甲、乙两人分别从相距36千米的A、B两地同时相向而行,甲从A地出发和行至1千米时,发现有物件遗忘在A地,便立即返回,取到物件后又立即从A 地向B地行进,这样甲、乙两人恰好在AB中点处相遇,又知甲比乙每小时多走0.5千米,求甲、乙两人的速度?三、轮船顺逆水应用问题3、轮船在顺水中航行30千米的时间与在逆水中航行20千米所用的时间相等,已知水流速度为2千米/时,求船在静水中的速度。
八年级数学《分式方程》知识点

分式方程是中学数学的重要内容,它是求解方程的一类特殊方法。
因此,分式方程的知识点有以下几方面:
一、分式方程的概念
分式方程是指用一个分式的方式表示方程的一种方法,它是一种由分式组成的等式,它的左右两端都是分式,从而把求根的问题转换成分式的比较,并设法确定方程的根。
二、求解分式方程的步骤
1.将分式方程中的项相同的分式化简,并且把等式的左右两端分别化简成分数或最简分式。
2.将分式方程中间,求解未知数的方法就是将分式的左右两端乘以分母,使之成为整式,然后使整式等于0,再解出未知数。
3.有时会出现分式方程中的未知数不能解出的情况,此时可以将此分式方程化为一元一次不等式来求解。
三、分式方程的应用
分式方程在解决一些实际问题时有着重要作用,如求解收益、组成比例、比较等。
由此可见,掌握分式方程的方法对解决实际问题有着重要意义。
四、注意事项
1.求解分式方程时需要注意把等式的左右两端分别化简成分数或最简分式。
2.使用分式方程时,要注意看清题干的字眼,要分清求解的是方程还是不等式,然后采取不同的方法
3.求解分式方程时还要注意确保所求解的方程或不等式有解。
4.分式方程的解可以使用数学软件得出。
八年级分式方程数学知识点

八年级分式方程数学知识点一、基本概念分式方程是指未知量中包含分数表达式的方程,可用一组数值解求出未知量的值。
如:\frac{x+1}{2}=3,其中x为未知量。
二、分式方程的解法1. 化简分式,使其成为整式方程。
如:\frac{x+1}{2}=3化简为x+1=6。
2. 通分,消去分母。
如:\frac{3}{x-2}=\frac{1}{x+1}通分后为3(x+1)=x-2。
3. 变形化简后求解。
如:\frac{2}{2x+3}-\frac{3}{x-1}=\frac{4}{x^2-x-3}变形化简后得到x=-1或x=\frac{5}{2}。
三、分式方程的注意事项1. 化简前应检查分母是否有值为0的情况。
如:\frac{x}{x^2-4x+4}=1化简前需考虑x^2-4x+4=0的情况,即x=2。
2. 通分时应注意分母因式分解。
如:\frac{x}{2x-4}-\frac{2}{x+1}=\frac{3x}{x^2-3x+2}通分前需分解(x-1)(x-2)。
3. 将解代回原分式方程检验。
如:\frac{4}{x+3}-\frac{5}{x-1}=\frac{1}{x-2}解得x=5/2,代入原式验证是否成立。
四、分式方程的应用例题1. 甲、乙两地的距离为480km,两地之间有一辆车和一辆自行车相向而行,行至中途时,车停下了,自行车继续前进,最后到达乙地时,车和自行车的距离为40km。
已知车行驶的速度比自行车快20km/h,求车和自行车的速度各是多少。
设自行车的速度为x km/h,车的速度为x+20 km/h,时间为t,车行驶的距离为(x+20)×t,自行车行驶的距离为x×(t+2)。
由题意可得(x+20)t+x(t+2)=480及(x+20)t-x(t+2)=40,解得x=20,车速为40km/h,自行车速度为20km/h。
2. 一条河流的宽度为200m,在河岸的A、B两处浅滩的位置分别离河口12km、18km处。
分式与分式方程

分式与分式方程一认识分式知识点一分式的概念1、分式的概念从形式上来看,它应满足两个条件:(1)写成的形式(A、B表示两个整式) (2)分母中含有这两个条件缺一不可2、分式的意义(1)要使一个分式有意义,需具备的条件是(2)要使一个分式无意义,需具备的条件是(3)要使分式的值为0,需具备的条件是知识点二、分式的基本性质分式的分子与分母都乘以(或除以)同一个分式的值不变用字母表示为AB =,A M A A MB M B B M⨯÷=⨯÷(其中M是不等于零的整式)知识点三、分式的约分1、概念:把一个分式的分子和分母中的公因式约去,这种变形称为分式的约分2、依据:分式的基本性质注意:(1)约分的关键是正确找出分子与分母的公因式(2)当分式的分子和分母没有公因式时,这样的分式称为最简分式,化简分式时,通常要使结果成为最简分式或整式。
(3)要会把互为相反数的因式进行变形,如:(x--y )2=(y--2)2二、分式的乘除法 【巩固训练】 1、要使分式51x -有意义,则x 的取值范围是( )(A)x ≠1 (B)x >1 (C)x <1 (D)x ≠-12、分式242x x -+的值为0,则x 的取值是A .2x =-B .2x =±C .2x =D .0x =3、函数y=中自变量x 的取值范围是( ) A . x >3 B .x <3 C .x ≠3 D . x ≠﹣34.式子有意义的x 的取值范围是( ) 5.分式的值为零,则x 的值为( )A . ﹣1B .0 C .±1 D . 16.当x= 时,分式无意义.7、使式子1+1 x -1有意义的x 的取值范围是 。
8、在函数3xy x =+中,自变量x 的取值范围是 . 9、已知关于x 的方程123++x nx =2的解是负数,则n 的取值范围为 . 10、化简:111x x x ---= . 11、化简212(1)211a a a a +÷+-+-的结果是( )A .11a - B .11a + C .211a - D .211a + 12、 化简:111x x x ---= . 13、化简的结果为( ) A . ﹣1 B . 1 C .D .14、化简+的结果为 .15、化简分式的结果是( )A .2B .C .D .-216.若m 为正实数,且13m m -=,221m m-则= 17分式方程2102x x-=-的根是( ) A .x =1 B .x =-1 C .x =2D .x =-218、分式方程xx 325=-的解是( )A .x =3B .x =3-C .x =34D .x =34-19、分式方程的解是( ) A . x =﹣2B .x =1 C . x =2 D . x =320、已知关于x 的方程123++x nx =2的解是负数,则n 的取值范围为 . 21.分式方程21311x x x+=--的解是_________________.22. 从三个代数式:①222b ab a +-,②b a 33-,③22b a -中任意选择两个代数式构造成分式,然后进行化简,并求当a =6,b =3时该分式的值.23、先化简,再求值:,其中,.24.先化简,再求值:23111x x x x -⎛⎫÷+- ⎪--⎝⎭,其中x =3-2.25.先化简,再求值: (1)12a )111(2++÷+-a a a ,其中a=3-1.6.(2)244412222+-÷⎪⎭⎫ ⎝⎛++--+-a a a a a a a a ,其中a=2-1.26、.先化简,再求值: 22111121x x x x x x x ++⎛⎫+÷ ⎪---+⎝⎭, 2.x =其中27.解方程:.28.解分式方程:12422=-+-x xx .29.甲计划用若干个工作日完成某项工作,从第三个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是A.8B.7C.6D.530、小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,并且在距离学校60米的地方追上了他。
分式方程知识点归纳总结

分式方程知识点归纳总结分式方程(也称有理方程)是含有分式的等式,其中分子和(或)分母中至少有一个包含一个或多个未知量。
解分式方程的过程是确定使得等式成立的未知量的值。
下面是分式方程的一些常见知识点的总结:1.分式的定义域:对于一个分式,需要注意其定义域,即分母不能为零。
当分母为零时,分式没有意义。
因此,在解分式方程时,需要排除使分母为零的解。
2.分式方程的简化:可以通过约分的方法,将分式方程进行简化。
约分是将分子和分母同时除以他们的最大公约数。
这样可以简化方程,使求解更易于处理。
3.分式方程的通分:当分式方程中出现了不同的分母时,可以通过通分的方式将分式方程转换为求解多项式方程。
通分是将所有分母进行相同因式的乘法,使所有分母都相同。
然后分别将分子相加或相减,并保持分母不变。
这样,就可以将分式方程转化为多项式方程。
4.分式方程的解的确定性:一般而言,分式方程的解并不唯一、因此,在解分式方程时,需要注意是否有解,以及解的个数。
当方程的分子和分母为多项式时,可以通过将方程转化为多项式方程的方式来求解。
而对于含有绝对值、根号等特殊函数的分式方程,可能存在特殊解或无解的情况。
5.分式方程的解法:求解分式方程的常用方法有以下几种:a.通过消去分母的方式来求解。
首先将方程中的每一个分式都通分,这样可以得到一个多项式方程。
然后通过求解得到的多项式方程,找到使方程成立的未知量的值。
b.通过移项和合并同类项的方式转化为多项式方程。
首先将方程中的每一个分式都移动到一个方程的一边,将所有未知量合并,并将同类项相加。
最终得到一个多项式方程,通过求解多项式方程来求解分式方程。
c.通过换元的方式转化为多项式方程。
首先令一个新的未知量等于原方程中的一个分式,将分式方程转化为一个多项式方程。
然后通过求解新的多项式方程,找到使方程成立的未知量的值。
最后,将得到的解代入原方程中,验证是否是原方程的解。
以上是分式方程的一些常见知识点的总结。
分式及分式方程知识点总结

分式及分式方程知识点总结分式(Fraction)是由两个整数构成的比值,其中一个是分子(Numerator),另一个是分母(Denominator)。
分式可以表示为 a/b,其中 a 是分子,b 是分母。
分式可以是一个整数、一个小数、或者是两个整数的比值。
分式可以用于表示实际问题中的比例、率、百分比等。
在数学中,分式经常被用于代替除法运算,因为分式的形式更加简洁。
在处理分式时,有几个关键概念和知识点需要了解。
一、分式的简化与等价分式2.等价分式:如果两个分式的值相等,那么它们是等价的。
可以通过将一个分式的分子乘以另一个分式的分母,分母乘以另一个分式的分子,化简两个分式,然后判断它们的值是否相等,确定它们是否等价。
二、分式的加减乘除2.分式的乘除:两个分式的乘积等于它们的分子乘积作为新分子,分母乘积作为新分母;两个分式的除法等于第一个分式的分子乘以第二个分式的倒数作为新分子,第一个分式的分母乘以第二个分式的分子作为新分母。
三、分式方程分式方程(Fractional Equation)是包含一个或多个分式的方程。
解分式方程的关键是找到合适的方法将方程转化为整式方程。
1.方法一:通分2.方法二:消去如果分式方程中有一个分式,可以通过消去(Cancellation)或者消去因子(Cancellation Factor)的方式将分母消去,得到一个整式方程。
3.方法三:代入如果分式方程比较复杂,无法通过通分或者消去的方法解得,可以通过代入(Substitution)的方法,将一个变量用另一个变量的表达式代入,然后去掉分式,得到一个整式方程进行求解。
需要注意的是,在解分式方程时,需要验证得到的解是否满足原方程,因为有时候方程中的一些值可能导致分母为零,从而使分式无解。
四、常见的分式及分式方程1.比例和比例方程:比例是两个分式的等价形式,比例方程是一个或多个比例的方程。
2.百分比和百分比方程:百分比是分数的一种特殊形式,百分比方程是包含百分比的方程。
分式方程的解法知识点总结

分式方程的解法知识点总结分式方程是指含有分式(也称为有理式)的方程,其中包含未知数。
解决分式方程的步骤主要包括消去分母、重整方程以及求解方程等。
一、消去分母对于分式方程,首先要进行的操作是消去分母。
通过乘以分母的倒数,可以将方程转化为整式方程,从而更容易求解。
消去分母的主要步骤如下:1. 找到方程中所有的分母,包括分式中的分母以及分式之间的分母。
2. 将每个分母的倒数乘到方程的每一项上,确保每一项都没有分母。
3. 简化方程,合并同类项。
二、重整方程在完成消去分母的操作后,接下来的步骤是重整方程。
通过将所有项移到方程的一侧,使方程等式两边都为零,方便解方程。
重整方程的步骤如下:1. 将方程中所有项移到方程的一边,使方程等式右边为零。
2. 合并同类项,简化方程。
三、求解方程重整方程之后,就可以通过各种方法求解方程了。
常见的求解分式方程的方法包括:1. 因式分解法:将方程进行因式分解,使方程的每个因式等于零,从而求得方程的解。
2. 通分法:对于方程中含有多个分式的情况,可以通过通分的方式将方程化简为整式方程,然后进行求解。
3. 变量代换法:将分式方程中的未知数进行变量代换,引入新的变量,并通过求解新的整式方程来得到原方程的解。
总结起来,解决分式方程的一般步骤为:1. 消去分母,将方程转化为整式方程。
2. 重整方程,归零方程等式右边。
3. 求解方程,采用因式分解、通分或变量代换等方法求得方程的解。
需要注意的是,在解决分式方程时,要注意方程的定义域,排除使分母为零的值,以确保解的可行性。
综上所述,分式方程的解法主要包括消去分母、重整方程以及求解方程等步骤。
通过掌握这些解法,可以有效地求解各种类型的分式方程。
七年级数学分式方程知识点

七年级数学分式方程知识点在七年级的数学学习中,分式方程是一个很重要的知识点。
分式方程是指方程中出现了分式的形式。
下面我们将会详细介绍分式方程的相关内容。
一、分式的概念分式是指把一个整体分成若干份,其中的一份就是分式。
例如:$\frac{3}{4}$,表示将一个整体分成四份,取其中的3份。
二、分式方程的概念分式方程是指方程中出现了分式的形式。
例如:$\frac{x}{2}-1=\frac{x+1}{3}$,此方程中存在两个分式。
三、解分式方程的方法1.化为通分式如果分母不同,那么我们需要将分式通分后才能进行计算。
例如:$\frac{2}{3x}+\frac{3}{4x}=\frac{5}{6x}$,我们可以将此方程化为通分式:$\frac{8+9}{12x}=\frac{5}{6x}$,化简后得到$7x=30$,解得$x=\frac{30}{7}$。
2.去分母如果方程中存在分母为0的情况,则要排除该情况。
去分母可使用两种方法。
(1)交叉相乘法此方法需要将方程等号两侧的分式分别乘上对方的分母,然后将分子相乘。
例如:$\frac{2}{x-4}+\frac{3}{x+3}=\frac{5}{x-2}$,我们可对此方程使用交叉相乘法:$(x-2)\cdot 2+(x-4)\cdot 3=(x-4)(x+3)\cdot \frac{5}{1}$,化简后得到$2x-5=0$,解得$x=\frac{5}{2}$。
(2)通分方法通分方法需要将方程等号两侧的分式通分后,然后消去分式分母。
例如:$\frac{3}{x-1}-\frac{2}{x+2}=\frac{1}{2x}$,将此方程通分:$\frac{6}{2x(x-1)}-\frac{4}{2x(x+2)}=\frac{x-1}{2x(x-1)(x+2)}$,化简后得到$2x^2-3x-2=0$,解得$x=\frac{3\pm\sqrt{17}}{4}$。
四、分式方程的注意事项1.在分式方程中,分母不为0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式方程知识点总结
一.分式方程、无理方程的相关概念:
1.分式方程:分母中含有未知数的方程叫做分式方程。
2.无理方程:根号内含有未知数的方程。
(无理方程又叫根式方程)
3.有理方程:整式方程与分式方程的统称。
二.分式方程与无理方程的解法:
1.去分母法:
用去分母法解分式方程的一般步骤是:
①在方程的两边都乘以最简公分母,约去分母,化成整式方程;
②解这个整式方程;
③把整式方程的根代入最简公分母,看结果是不是零,使最简公分母不为零的根是原方程的根,使最简公分母为零的根是增根,必须舍去。
在上述步骤中,去分母是关键,验根只需代入最简公分母。
2.换元法:
用换元法解分式方程的一般步骤是:
②换元:换元的目的就是把分式方程转化成整式方程,要注意整体代换的思想;
③三解:解这个分式方程,将得出来的解代入换的元中再求解;
④四验:把求出来的解代入各分式的最简公分母检验,若结果是零,则是原方程的增根,必须舍去;若使最简公分母不为零,则是原方程的根。
解无理方程也大多利用换元法,换元的目的是将无理方程转化成有理方程。
三.增根问题:
1.增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的增根。
2.验根:因为解分式方程可能出现增根,所以解分式方程必须验根。
3.增根的特点:增根是原分式方程转化为整式方程的根,增根必定使各分式的最简公分母为0。
解分式方程的思想就是转化,即把分式方程整式方程。
常见考法
(1)考查分式方程的概念、分式方程解和增根的机会比较少,通常与其他知识综合起来命题,题型以选择、填空为主;(2)分式方程的解法,是段考、中考考查的重点。
误区提醒
(1)去分母时漏乘整数项;
(2)去分母时弄错符号;。