2018年高中数学必修一课件 人教版A版 1.1 集合

合集下载

人教版高中数学必修一一集合PPT课件

人教版高中数学必修一一集合PPT课件

集合相等:只要构成这两个集合的元素 是一样的,则这个集合是相等的。
例:{两边相等的三角形}和{等腰三角形}
问题
如果用A表示高一(3)班学生组成的集合,a表示高 一(3)班的一位同学,b表示高一(4)班的一位同 学,那么a、b与集合A分别有什么关系?由此看出元 素与集合之间有什么关系?
元素与集合的关系
为_______;用描述法表示为 .
(2)集合{(x, y) | x y 6, x N, y N}
用列举法表示为
.
复习回顾
1、元素和集合的定义 2、集合的特性 3、元素和集合的关系 4、集合的表示方法
实数有相等关系,大小关系, 类比 实数之间的关系,集合之间是否具备类 似的关系?
新课
常用的数集
数集 自然数集(非负整数集)
正整数集 整数集
有理数集 实数集
符号
N N* 或N+
Z Q R
判断Q与N,N*,Z的关系? 课堂练习P5 第1题
解析:判断一个元素是否在某个集合中,关键在于 弄清这个集合由哪些元素组成的.
集合的表示方法
问题 (1) 如何表示“地球上的四大洋”组成的集合?
(2) 如何表示“方程(x-1)(x+2)=0的所有实数根”组 成的集{合太? 平洋,大西洋,印度洋,北冰洋} {1,-2}
③ A={x|x2-3x+2=0}, B={1,2}.
练习1:观察下列各组集合,并指明两个
集合的关系
① A=Z ,B=N;
AB
② A={长方形}, B={平行四边形方形};AB
③ A={x|x2-3x+2=0}, B={1,2}.
练习1:观察下列各组集合,并指明两个
集合的关系

人教A版高中数学必修第一册 1.1.1集合的概念公开课课件(最新、好用、值得收藏)

人教A版高中数学必修第一册 1.1.1集合的概念公开课课件(最新、好用、值得收藏)

集合与元素
例1 下列语句能确定集合的是(__2_)_(__3_)_.(只填序号) (1)著名的数学家; (2)平面直角坐标系中第三象限的所有点; (3)2016年里约热内卢奥运会的所有比赛项目; (4)接近0的所有实数.
[解析](1)不能,“著名”没有明确的标准; (2)能,因为第三象限的点是确定的; (3)能,因为奥运会比赛项目是确定的; (4)不能,“接近”没有明确标准. 综上,能确定集合的是(2)和(3).
A.1
B.2
C.3
D.4
[解析] 显然①④可以构成集合.故选B.
练习2 已知集合A是方程x²+px+q=0的解组成的集合, 若-1∈A且2∈A,求p、q的值.
[解思法路二引:导由] 题判意断得一,个-1元,2素是是方某程个x²+集px合+q的=元0的素两的根条,件是什么? [由解韦]∵达A定是理方可程知x²+px-1++q2==的-p解,组成的集合,且-1∈A,2∈A, ∴-1,p2=是-1方,程x²+px+(-q1=)x02的=q两,根. 得 (q=--12). ²-p+q=0, p=-1 ∴∴p的2²值+2为p-+1q,=0q,的值得为-2.q=-2 ∴p的值为-1,q的值为-2. [想一想] 还有其他方法吗?
导入
看下面的例子: (1)1~10之间的所有偶数; (2)立德中学今年入学的全体高一学生; (3)所有的正方形; (4)到直线l的距离等于定长d的所有点; (5)方程x²-3x+2=0的所有实数根; 1,2 (6)地球上的四大洋;太平洋,大西洋,印度洋,北冰洋
例(1)中,我们把1~10之间的每一个偶数作为元素,这些元素的全 体就是一个集合;同样地,例(2)中,把立德中学今年入学的每一 位高一学生作为元素,这些元素的全体也是一个集合.

高中数学必修一(人教版)《1.1 集合的概念》课件

高中数学必修一(人教版)《1.1 集合的概念》课件

【对点练清】
1.集合 M 是由大于-2 且小于 1 的所有实数构成的,则下列关系式正确的是
A. 5∈M
B.0∉M
()
C.1∈M
D.-π2∈M
解析: 5>1,故 5∉M;-2<0<1,故 0∈M;1 不小于 1,故 1∉M;-
2<-π2<1,故-π2∈M.故选 D.
答案:D
2.设集合D是由满足y=x2的所有有序实数对(x,y)组成的,则-1________D, (-1,1)________D.(用符号“∉”或“∈”填空) 解析:-1不是有序实数对,∴-1∉D.(-1,1)满足y=x2,∴(-1,1)∈D. 答案:∉ ∈
题型一 集合的概念及特征 准确认识集合的含义
【学透用活】
“集合”是一个原始的不加定义的概念,它同平面几何中的“ 描述性
点”“线”“面”等概念一样都只是描述性的说明 集合是一个整体,暗含“所有”“全部”“全体”的含义,因 整体性 此一些对象一旦组成了集合,这个集合就是这些对象的总体 现实生活中我们看到的、听到的、闻到的、触摸到的、想到的 广泛性 各种各样的事物或一些抽象的符号等,都可以看作“对象”, 即集合中的元素
素的个数为
()
A.1
B.2
C.3
D.4
解析: 方程x2 - 3x +2=0的解为1,2,方程x2 -5x+6=0的解为2,3由于两方程 有相同的解2,在集合中作为1个元素,故A中有3个元素,故选C .
答案:C
பைடு நூலகம்
知识点二 元素与集合的关系及常用数集 (一)教材梳理填空 1.元素与集合的关系:
关系
概念
a属于集 如果a是集合A的元素,就说a 合A _属__于__集合A

高中数学人教A版必修1课件:1、1、1集合的含义与表示

高中数学人教A版必修1课件:1、1、1集合的含义与表示
重点:集合的含义及表示方法。 难点:1.对新概念、新符号的理解与区分;
2.集合表示方法的恰当选择。
3
自主学习:
根据自学提纲(知识点),自学P2~3页。 1、元素、集合的概念? 2、集合中元素的三大特征? 3、集合与元素间的关系,符号表示? 4、一些常用的数集及其记法?
4
学生展示:
1、集合、元素的概念 元素 ——我们把研究的对象统称为元素;
平面内两直线的 位置关系有几种?
交集的性质:
A
A B
B
1.A∩A= A ; 2.A∩∅=∅∩A= ∅ ; 3. A∩B ⊆ A,A∩B ⊆B; 4. 如果A⊆B,则A∩B= A反之,
如果 A∩B=A,则 A⊆B .
P11 练习1~3
4.A={(x,y)|4x+y=6}, B={(x,y)|3x+2y=7},求A∩B。
即 A∪B= {x | x∈A,或x∈B}
AB
A
A
BB
例4 设A={4,5,6,8}, B={3,5,7,8},求A∪B. 提示:利用韦恩图
A
46
58 37
B
解: A∪B={4,5,6,8}∪{3,5,7,8} ={3,4,5,6,7,8}
例5 设集合A={x|-1<x<2},集合B={x|1<x<3},
思考2:集合{1,2}与集合{(1,2)}相同吗?
集合{y | y x2, x R} 与集合 {y x2} 相同吗? 思考3: 集合{(x, y) | y x2, x R} 的几何意义如何?
y y x2
x o
课堂小结
1.元素与集合的概念:一般地,我们把研究对象统称为 元素,把一些元素组成的总体叫做集合(简称为集); 2.集合元素的三大特征:确定性、互异性、无序性; 3.元素与集合之间的关系:属于(∈)或 不属于(∉) ; 4.数集及有关符号:N、N﹡、N₊、Z、Q、R; 5. 集合的分类:有限集、无限集、空集; 6. 集合的表示方法:列举法、描述法、 Venn图。

人教A版高中数学必修1 课件 :第一章 1.1 1.1.3 第一课时

人教A版高中数学必修1 课件 :第一章 1.1 1.1.3 第一课时

(2)A∩B中的元素是“所有”属于集合A且属于集合B的元 素,而不是部分,特别地,当集合A和集合B没有公共元素时, 不能说A与B没有交集,而是A∩B=∅.
2.掌握两种技巧 (1)对于元素个数有限的集合,可直接根据集合的 “交”“并”定义求解,但要注意集合元素的互异性. (2)对于元素个数无限的集合,进行交、并运算时,可借助 数轴,利用数轴分析法求解,但要注意端点值取到与否.
「自测检评」
1.(2018·天津卷)设集合A={1,2,3,4},B={-1,0,2,3},C=
{x∈R|-1≤x<2},则(A∪B)∩C=( )
A.{-1,1}
B.{0,1}
C.{-1,0,1}
D.{2,3,4}
解析:选C ∵A={1,2,3,4},B={-1,0,2,3},
∴A∪B={-1,0,1,2,3,4}.
(4)性质:①A∪B=B∪A;②A∪A=A;③A∪∅=A;④A⊆ B⇔A∪B=B.
[思考辨析]|判断正误| 1.A∪B的元素个数等于集合A中元素的个数与集合B中元素 个数的和.( × ) 2.并集定义中的“或”能改为“和”.( × ) 3.若A∪B=A∪C,则B=C.( × )
知识点二|交集
阅读教材P9的内容,完成下列问题. (1)定义:一般地,由属于集合A且属于集合B的所有 3 __元__素______组成的集合,叫做A与B的交集. (2)符号表示:A与B的交集记作 4 __A__∩_B_____,即A∩B={x|x ∈A,且x∈B}.
题型三 交集、并集性质的应用 【例3】 已知A={x|2a≤x≤a+3},B={x|x<1或x>5}. (1)若A∩B=∅,求a的取值范围; (2)是否存在实数a,使得A∪B=R,若存在,求出实数a的 值,不存在,说明理由.

人教版高中数学必修一课件:1.1《集合》 (共23张PPT)

人教版高中数学必修一课件:1.1《集合》 (共23张PPT)
(2)互异性:
一个给定集合中的元素是互不相同的.即集合 中的元素是不重复出现的。
(3)无序性:
元素完全相同的两个集合相等,而与列举顺序 无关。
【注】两个集合相等当且仅当构成
这两个集合的元素是完全一样的.
三、元素与集合的关系
常见数集:
1. 自然数集(非负整数集): N 2. 正整数集: N*或N+ 3. 整数集: Z 4. 有理数集: Q 5. 实数集: R
(2) 描述法:
{ x I | P( x)}
元素符号 范围 元素的特征
【例2】试分别用列举法和描述法表示下列 集合 (1)方程x2-2=0的所有实数根组成的集合; (2)由大于10小于20的所有整数组成的集合.
【思考题】用列举法表示集合:
ab 1) A { x | x ,
a, b为非零实数}
3.
方程组
x x
y9 y3
的解集用列举
法或描述法表示为

4、已知x2∈ {1, x, 0}, 求实数x的值.
52、) 补充 : 含有三个实数的集合可
表示为{ a, b , 1 }, 也可表示为 a
{a 2 , aabb,,00},}求, 求a 2a0120006 b b . 20120006.
6、已知集合A={x∈R|mx2-2x+3=0, m∈R}且A中只有一个元素,求m的值.
课堂练习 P5 练习1、2
小结
1. 集合的概念; 2. 元素与集合的关系; 3. 集合的元素特征; 4. 集合的表示方法;

ab
2) B {k N | 6 Z} 3k
思考:B { 6 Z | k N }呢? 3k
1. 已知集合S中有三个元素 a, b, c

高中数学人教A版必修第一册第一章集合的含义课件

高中数学人教A版必修第一册第一章集合的含义课件
1867年在库默尔指导下以数论方面的论文获博士学位。1869年在哈雷大学通过讲师资格考 试,后即在该大学任讲师,1872年任副教授,1879年任教授。
大学期间康托尔主修数论,但受外尔斯特拉斯的影响,对数学推导的严格性和数学分析感兴趣。
哈雷大学教授H.E.海涅鼓励他研究函数论。他于1870、1871、1872年发表三篇关于三角级数 的论文。在1872年的论文中提出了以基本序列(即柯西序列)定义无理数的实数理论, 并初步提出以高阶导出集的性质作为对无穷集合的分类准则。函数论研究引起他进一 步探索无穷集和超穷序数的兴趣和要求。
① 高一级身高较高的同学,能否构成集合?

② 高一级身高160cm以上的同学,能否构成集合?

①确定性: 集合中的元素必须是确定的。即确定了一个集
合,任何一个元素是不是这个集合的元素也就
确定了。 (具有某种属性)
二、集合中元素的特性
先思考以下两个问题:
集合中的元素是互异的。
① 高一级身高较高的同学,能否构成集合? 1、集合中元素的三个特性:
在整数和实数两个不同的无穷集合之外,是否还有更大的无穷?从1874年初起,康托尔开 始考虑面上的点集和线上的点集有无一一对应。经过三年多的探索,1877
说,“我见到了,但我不相信。”这似乎抹煞了维数的区别。论文于1878年发表后引起了很 大的怀疑。P.D.G.杜布瓦-雷蒙和克罗内克都反对,而戴德金早在1877年7月就看到,不 同维数空间的点可以建立不连续的一一对应关系,而不能有连续的一一对应。此问题直到1910 年才由L.E.J.布劳威尔给出证明。
作 aA ; 如 果 a不 是 集 合 A 的 元 素 , 就 说 a不 属 于 1845年3月3日生于圣彼得堡(今苏联列宁格勒),1918年1月6日病逝于哈雷。

高中数学人教A必修一课件-1.1.1集合的含义与表示

高中数学人教A必修一课件-1.1.1集合的含义与表示
思考题(P4)(1)你能用自然语言描述集 合{2,4,6,8}吗? (2)你能用列举法表示不等式x-7<3吗?
集合的表示方法
3、描述法:
将集合的所有元素都具有的性质(共同特征) 表示出来的方法叫做描述法,可写成{x︱p(x)} 的情势。其中x为元素符号及取值范围。
共同特征性质
Venn图:形象 直观
(1)中国的直辖市 (2)中国的高个子 (3)所有的直角三角形 (4)x,3x+2,5y-x,x+y (5)本的元素必须是确定 的.
(2)互异性:集合中的元素必须是互不相同 的。
(3)无序性:集合中的元素是无先后顺序的. 集合中的任何两个元素都可以交换位置.
集合的有关概念
元素(element)---我们把研究的对象 统称为元素
集合(set)---把一些元素组成的总体叫 做集合, 简称集.
一般用大括号”{ }”表示集合,也常用 大写的拉丁字母A、B、C…表示集合. 用小写的拉丁字母a,b,c…表示元素
注:组成集合的元素可以是物,数,图,点等
下列对象能不能构成集合?元素 是什么?有多少个?
注意:只要构成两个集合的元素是一 样的,我们就称这两个集合是相等的。
思考:
判断以下元素的全体是否组成集合,并 说明理由; (1) 大于3小于11的偶数; (2) 我国的小河流。
判断下列例子能否构成集合
地球的四大洋

身材较肥的人
×
著名的数学家
×
高一(17)班眼睛很近视的同学 ×
注:像”很”,”非常”,”比较”这些不确定的词 都不能构成集合。
a,b,c…
• 例2试分别用列举法和描述法表示下 列集合:
• (1)方程x2-2=0的所有实数根组成的集 合;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以-1∈A,所以A错误; 令-11=3k-1,k=- 10 ∉Z,
3
所以-11∉A,所以B错误;
令-34=3k-1,k=-11,所以-34∈A,所以D错误. 因为k∈Z,所以k2∈N,则3k2-1∈A,所以C正确.
(2)选C.由{a,b,c}={0,1,2}得,a,b,c的取值有以下情
况:
当a=0时,b=1,c=2或b=2,c=1,此时不满足条件; 当a=1时,b=0,c=2或b=2,c=0,此时不满足条件; 当a=2时,b=1,c=0,此时不满足条件; 当a=2时,b=0,c=1,此时满足条件.
9 B. 8
A.9 2
C.0
D.0或
9 8
【解析】选D.若集合A中只有一个元素,个相等实根.
当a=0时,x= 2 ,符合题意,
3
当a≠0时,由Δ=(-3)2-8a=0得a=
9 9 ,所以a的值为0或 . 8 8
【加固训练】 1.(2017·洛阳模拟)已知集合A={1,2,4},则集合
C.{a}∈A
D.a∉A
【解析】选D.因为2 2 不是自然数,所以a∉A.
2.(必修1P12T6改编)设集合A={x|x2-16<0},B={x|3x7≥8-2x},则A∩B= A.{x|-4<x<4} C.{x|3≤x<4} ( )
B.{x|-4≤x≤4} D.{x|3≤x≤4}
【解析】选C.因为A={x|-4<x<4},B={x|x≥3}, 所以A∩B={x|3≤x<4}.
⇔A=B


A⊆B或B⊇A ___________
表示 关系 真子集
文字语言
符号语言


A中任意一个元素均为B A Ü B 或B A 中的元素,且B中至少有 _____________ 一个元素不是A中的元素 任何集合 的子 空集是_________ ∅ ⊆ A 任何非空集合 的 集,是_____________ ∅B(B≠∅) 真子集
2.集合子集的个数
若集合A中有n个元素,则其子集的个数为2n,真子集的 个数为2n-1.
3.A∪B=A⇔B⊆A;A∩B=A⇔A⊆B.
【小题快练】 链接教材 练一练
1.(必修1P12T5(2)改编)若集合A={x∈N|x≤ 10 },a= 2 2 ,则下面结论中正确的是 ( )
A.{a}⊆A
B.a⊆A
【解析】选C.因为A={y|y=2x,x∈R},B={x|x2-1<0},所 以集合A表示大于0的实数,而集合B表示在-1与1之间的
实数,所以A∪B=(-1,+∞).
5.(2016·浙江高考)已知全集U={1,2,3,4,5,6},集合 P={1,3,5},Q={1,2,4},则( ðU P)∪Q= A.{1} C.{1,2,4,6} B.{3,5} D.{1,2,3,4,5} ( )
(4)五个特定的集合: 自然 数集 N __ 正整 数集 *或N N + ______ 有理 数集 Q __
集合 符号
整数集 Z __
实数集 R __
2.集合间的基本关系 表示 关系 相 等
文字语言 集合A与集合B中的所有
相同 元素_____ A中任意一个元素均为B 中的元素
符号语言 A⊆B 且_____ B⊆A _____
第一章 集合与常用逻辑用语
第一节 集 合
【知识梳理】 1.集合的相关概念 确定性 、_______ 无序性 、_______. 互异性 (1)集合元素的三个特性:_______
∈ 不属于,记 (2)元素与集合的两种关系:属于,记为___,
∉ 为__.
列举法 、_______ 描述法 、_______. 图示法 (3)集合的三种表示方法:_______
【解析】选C.( ðU P)∪Q={2,4,6}∪{1,2,4} ={1,2,4,6}.
考点一
集合的概念
【典例1】(1)已知A={x|x=3k-1,k∈Z},则下列表示正
确的是
A.-1∉A
(
)
B.-11∈A D.-34∉A
C.3k2-1∈A
(2)(2017·宁德模拟)已知集合{a,b,c}={0,1,2},且下 列三个关系:①a≠2;②b=2;③c≠0有且只有一个正确, 则a+2b+5c等于 A.4 B.5 ( ) C.7 D.11
综上得,a=2,b=0,c=1,代入a+2b+5c=7.
【规律方法】 与集合中的元素有关问题的求解策略 (1)确定集合的元素是什么,即集合是数集还是点集. (2)看这些元素满足什么限制条件. (3)根据限制条件列式求参数的值或确定集合中元素的 个数,但要注意检验集合是否满足元素的互异性.
【变式训练】若集合A={x∈R|ax2-3x+2=0}中只有一个 元素,则a= ( )
3.(必修1P12T1改编)已知集合A={0,1,2},集合B满足
A∪B={0,1,2},则集合B有________个.
【解析】由题意知B⊆A,则集合B有8个. 答案:8
感悟考题
试一试
4.(2016·山东高考)设集合A={y|y=2x,x∈R},B={x| x2-1<0},则A∪B= ( A.(-1,1) C.(-1,+∞) ) B.(0,1) D.(0,+∞)
【解题导引】(1)判断元素x是不是A的元素,只需由
x=3k-1解出k,而k∈Z时便说明x∈A,否则x∉A,从而按照 这个方法判断每个选项的正误即可.
(2)根据集合相等的条件,列出a,b,c所有的取值情况,
再判断是否符合条件,求出a,b,c的值后代入式子求值.
【规范解答】(1)选C.k=0时,x=-1,
B={(x,y)|x∈A,y∈A}中元素的个数为 (
A.3 B.6 C.8 D.9
)
【解析】选D.集合B中元素有(1,1),(1,2),(1,4), (2,1),(2,2),(2,4),(4,1),(4,2),(4,4),共9个.
3.集合的基本运算
并集
图形 表示
交集
补集
符号 表示
{x|x∈A或 A∪B=__________ x∈B} ______
A∩B= {x|x∈A ________ 且x∈B} ________
{x|x∈U ________ 且x∉A} _______
ðU A =
【特别提醒】 1.集合的分类 集合按元素个数的多少分为有限集、无限集,有限集常 用列举法表示,无限集常用描述法表示.
相关文档
最新文档