(完整版)排列组合练习题3套(含答案)
小学数学《排列组合》练习题(含答案)

小学数学《排列组合》练习题(含答案)1、计算①4356C A -;②2265C A ÷。
解答:①4356C A -=5432⨯⨯⨯-654321⨯⨯⨯⨯=120-20=100。
②2265C A ÷5465321⨯=⨯÷=⨯ 2、某班要从30名同学中选出3名同学参加数学竞赛,有多少种选法?如果从30名同学中选出3名同学站成一排,又有多少种站法?解答: 参加竞赛的选法:330302928321C ⨯⨯⨯⨯==4060种 站成一排的站法:330A =30×29×28=24360种参加竞赛的选法有4060种,站成一排的站法有24360种3、7个不同的小球放入4个不同的盒子中,每个盒子只能放一个,一共有多少种情况? 解答:47A =7654⨯⨯⨯=840(种)一共有840种不同的情况。
4、7个相同的小球放入4个不同的盒子中,每个盒子至少放一个,一共有多少种情况? 解答:1+1+1+0=3,1+2+0+0=3,3+0+0+0=3,分三种情况①选出一个盒子,不再放入球,其他三个盒子再各放入一个:14C ;②选出两个盒子,分别再放入一个球,两个球:24A③选出一个盒子,再放入三个球:14C总的放法:14C +24A +14C =20(种)5、从1,3,5,7,9中任取三个数字,从2,4,6,8中任取两个数字,组成没有重复数字的五位数,一共可以组成多少个数?解答:第一步,从1,3,5,7,9中任取三个数字,这是一个组合问题,有35C 种方法; 第二步,从2、4、6、8中任取两个数字,也是一个组合问题,有24C 种方法;第三步,用取出的5个数字组成没有重复数字的五位数,有55A 种方法。
再由分步计数原理求总的个数。
325545A 7200C C ⨯⨯=(个) 一共能组成7200个没有重复数字的五位数。
6、在6名女同学,5名男同学中选出4名女同学,3名男同学站成一排,有多少种排法? 解答:437657A C C ⨯⨯=765000(种)有765000种排法。
小学数学 《 排列组合》练习题(含答案)

小学数学《排列组合》练习题(含答案)例1 由数字0、1、2、3可以组成多少个没有重复数字的偶数?分析注意到由四个数字0、1、2、3可组成的偶数有一位数、二位数、三位数、四位数这四类,所以要一类一类地考虑,再由加法原理解决.第一类:一位偶数只有0、2,共2个;第二类:两位偶数,它包含个位为0、2的两类.若个位取0,则十位可有C13种取法;若个位取2,则十位有C12种取法.故两位偶数共有(C13+C12)种不同的取法;第三类:三位偶数,它包含个位为0、2的两类.若个位取0,则十位和百位共有P23种取法;若个位取2,则十位和百位只能在0、1、3中取,百位有2种取法,十位也有2种取法,由乘法原理,个位为2的三位偶数有2×2个,三位偶数共有(P23+2×2)个;第四类:四位偶数.它包含个位为0、2的两类.若个位取 0,则共有P33个;若个位取 2,则其他 3位只能在 0、 1、 3中取.千位有2种取法,百位和十位在剩下的两个数中取,再排成一列,有P22种取法.由乘法原理,个位为2的四位偶数有2×P22个.所以,四位偶数共有(P33+2×P22)种不同的取法.解:由加法原理知,共可以组成2+(C13+C12)+(P23+2×2)+(P33+2×P22)=2+5+10+10=27个不同的偶数.补充说明:本题也可以将所有偶数分为两类,即个位为0和个位为2的两类.再考虑到每一类中分别有一位、两位、三位、四位数,逐类讨论便可求解.例2 国家举行足球赛,共15个队参加.比赛时,先分成两个组,第一组8个队,第二组7个队.各组都进行单循环赛(即每个队要同本组的其他各队比赛一场).然后再由各组的前两名共4个队进行单循环赛,决出冠亚军.问:①共需比赛多少场?②如果实行主客场制(即A、B两个队比赛时,既要在A队所在的城市比赛一场,也要在B队所在的城市比赛一场),共需比赛多少场?分析比赛的所有场次包括三类:第一组中比赛的场次,第二组中比赛的场次,决赛时比赛的场次.①中,第一组中8个队,每两队比赛一场,所以共比赛C28场;第二组中7个队,每两队比赛一场,所以共比赛C27场;决赛中4个队,每两队比赛一场,所以共比赛C24场.②中,由于是实行主客场制,每两个队之间要比赛两场,比赛场次是①中的2倍.另外,还可以用排列的知识来解决.由于主客场制不仅与参赛的队有关,而且与比赛所在的城市(即与顺序)有关.所以,第一组共比赛P28场,第二组共比赛P27场,决赛时共比赛P24场.解:由加法原理:①实行单循环赛共比赛②实行主客场制,共需比赛2×(C28+C27+C24)=110(场).或解为:P28+P27+P24=8×7+7×6+4×3=56+42+12=110(场).例3在一个半圆周上共有12个点,如右图,以这些点为顶点,可以画出多少个①三角形?②四边形?分析①我们知道,不在同一直线上的三个点确定一个三角形,由图可见,半圆弧上的每三个点均不共线(由于A、B既可看成半圆上的点,又可看成线段上的点,为不重复计算,可把它们归在线段上),所以,所有的三角形应有三类:第一类,三角形的三个顶点全在半圆弧上取(不含A、B两点);第二类,三角形的两个顶点取在半圆弧上(不包含A、B),另一个顶点在线段上取(含A、B);第三类,三角形的一个顶点在半圆弧上取,另外两点在线段上取.注意到三角形的个数只与三个顶点的取法有关,而与选取三点的顺序无关,所以,这是组合问题.解:三个顶点都在半圆弧上的三角形共有两个顶点在半圆弧上,一个顶点在线段上的三角形共有一个顶点在半圆弧上,两个顶点在线段上的三角形共有由加法原理,这12个点共可以组成C37+(C27×C15)+(C17×C25)=35+105+70=210(个)不同的三角形.也可列式为C312-C35=220—10=210(个).分析②用解①的方法考虑.将组成四边形时取点的情况分为三类:第一类:四个点全在圆弧上取.(不包括A、B)有C17种取法.第二类:两个点取自圆弧.两个点取自直线AB.有取法C27×C25种.第三类:圆弧上取3个点,直线上取1个点,有C37×C15种取法.解:依加法原理,这12个点共可组成:C47+ C27×C25+C37×C15=35+210+175=420个不同的四边形.还可直接计算,这12个点共可组成:C412-C45-C35·C17=495-5-70=420个不同的四边形.例4 如下图,问①下左图中,有多少个长方形(包括正方形)?②下右图中,有多少个长方体(包括正方体)?分析①由于长方形是由两组分别平行的线段构成的,因此只要看上左图中水平方向的所有平行线中,可以选出几组两条平行线,竖直方向上的所有平行线中,可以选出几组两条平行线?②由于长方体是由三组分别平行的平面组成的.因此,只要看上页右图中,平行于长方体上面的所有平面中,可以选出几组两个互相平行的平面,平行于长方体右面的所有平面中,可以选出几组两个互相平行的两个平面,平行于长方体前面的所有平面中,可以选出几组两个互相平行的平面.解:①C25×C27=210(个)因此,上页左图中共有210个长方形.②C25×C26×C24=900(个)因此,上页右图中共有900个长方体.例5 甲、乙、丙、丁4人各有一个作业本混放在一起,4人每人随便拿了一本,问:①甲拿到自己作业本的拿法有多少种?②恰有一人拿到自己作业本的拿法有多少种?③至少有一人没有拿到自己作业本的拿法有多少种?④谁也没有拿到自己作业本的拿法有多少种?分析①甲拿到自己的作业本,这时只要考虑剩下的三个人拿到其他三本作业本的情况.由于其他三人可以拿到自己的作业本,也可以不拿到自己的作业本.所以,共有P33种情况.②恰有一人拿到自己的作业本.这时,一人拿到了自己的作业本,而其他三人都没能拿到自己的作业本.拿到自己作业本的可以是甲、乙、丙、丁中的一人,共4种情况.另外三人全拿错了作业本的拿法有2种.故恰有一人拿到自己作业本的情况有4×2种情况.③至少有一人没有拿到自己的作业本.这时只要在所有拿法中减去四人全拿到自己作业本的拿法即可.由于4人拿作业本的所有拿法是P44,而4人全拿到自己作业本只有1种情况.所以,至少有一人没拿到自己作业本的拿法有P44-1种情况.④谁也没拿到自己的作业本.可分步考虑(假设四个人一个一个地拿作业本,考虑四人都拿错的情况即可).第一个拿作业本的人除自己的作业本外有3种拿法.被他拿走作业本的人也有3种拿法.这时,剩下的两人只能从剩下的两本中拿,要每人都拿错,只有一种拿法.所以,由乘法原理,共有3×3×1种不同的情况.解:①甲拿到自己作业本的拿法有P33=3×2×1= 6种情况;②恰有一人拿到自己作业本的拿法有4×2=8种情况;③至少有一人没有拿到自己作业本的拿法有P44-1=4×3×2×1-1=23种情况;④谁也没有拿到自己作业本的拿法有3×3×1=9种情况.由前面的各例题可以看到,有关排列组合的问题多种多样,思考问题的方法灵活多变,入手的角度也是多方面的.所以,除掌握有关的原理和结论,还必须学习灵活多样的分析问题、解决问题的方法.习题五1.由数字0、1、2、3、4可以组成多少个①三位数?②没有重复数字的三位数?③没有重复数字的三位偶数?④小于1000的自然数?2.从15名同学中选5人参加数学竞赛,求分别满足下列条件的选法各有多少种?①某两人必须入选;②某两人中至少有一人入选;③某三人中恰入选一人;④某三人不能同时都入选.3.如右图,两条相交直线上共有9个点,问:一共可以组成多少个不同的三角形?4.如下图,计算①下左图中有多少个梯形?②下右图中有多少个长方体?5.七个同学照相,分别求出在下列条件下有多少种站法?①七个人排成一排;②七个人排成一排,某两人必须有一人站在中间;③七个人排成一排,某两人必须站在两头;④七个人排成一排,某两人不能站在两头;⑤七个人排成两排,前排三人,后排四人,某两人不在同一排.习题五解答1.①100;②48;③30;④124.2.①C313=286;②C515-C513=1716;③C13·C412=1485;④C515-C212=2937.3.C15·C23+C26·C13=60;或C39-C36-C34=60.4.①C26×C26=225;②C25×C26×C25=1500.5.①P77=5040;②2P66=1440;③2P55=240;④5×4×P55=2400;⑤2×3×4×P55=2880.。
排列组合测试题(含答案)

排列组合 一、选择题:1. 将3个不同的小球放入4个盒子中,则不同放法种数有A .81B .64C .12D .142.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有A .33AB .334AC .523533A A A -D .2311323233A A A A A + 3.,,,,a b c d e 共5个人,从中选1名组长1名副组长,但a 不能当副组长,不同的选法总数是A.20 B .16 C .10 D .64.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是A .男生2人女生6人B .男生3人女生5人C .男生5人女生3人D .男生6人女生2人.5. 6.A .180B .90C .45D .3606.由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有A .60个B .48个C .36个D . 24个7.3张不同的电影票全部分给10个人,每人至多一张,则有不同分法的种数是A .1260B .120C .240D .720 8.n N ∈且55n <,则乘积(55)(56)(69)n n n ---等于A .5569nn A -- B .1569n A - C .1555n A - D .1469n A -9.从不同号码的5双鞋中任取4只,其中恰好有1双的取法种数为A .120B .240C .280D .6010.不共面的四个定点到面α的距离都相等,这样的面α共有几个A .3B .4C .6D .711.设含有10个元素的集合的全部子集数为S ,其中由3个元素组成的子集数为T ,则T S的值为 A.20128 B .15128 C .16128 D .2112815.4名男生,4名女生排成一排,女生不排两端,则有 种不同排法. (8640 )17.在1,2,3,...,9的九个数字里,任取四个数字排成一个首末两个数字是奇数的四位数,这样的四位数有_________________个. (840) 18.用1,4,5,x 四个不同数字组成四位数,所有这些四位数中的数字的总和为288,则x = . (2) 5.若2222345363,n C C C C ++++=则自然数n =_____.(13)19.n 个人参加某项资格考试,能否通过,有 种可能的结果( 2n )20.已知集合{}1,0,1S =-,{}1,2,3,4P =,从集合S ,P 中各取一个元素作为点的坐标,可作出不同的点共有_____个. (23)22.{}A=,则含有五个元素,且其中至少有两个偶1,2,3,4,5,6,7,8,9数的子集个数为23.8张椅子排成,有4个人就座,每人1个座位,恰有3个连续空位的坐法共有多少种_______ 48025.7个人排成一排,在下列情况下,各有多少种不同排法(1)甲排头:(2)甲不排头,也不排尾:(3)甲、乙、丙三人必须在一起:(4)甲、乙之间有且只有两人:(5)甲、乙、丙三人两两不相邻:(6)甲在乙的左边(不一定相邻):(7)甲、乙、丙三人按从高到矮,自左向右的顺序:(8)甲不排头,乙不排当中:解:(1)甲固定不动,其余有66720A =,即共有66720A =种;(2)甲有中间5个位置供选择,有15A ,其余有66720A =,即共有16563600A A =种; (3)先排甲、乙、丙三人,有33A ,再把该三人当成一个整体,再加上另四人,相当于5人的全排列,即55A ,则共有5353720A A =种;(4)从甲、乙之外的5人中选2个人排甲、乙之间,有25A ,甲、乙可以交换有22A ,把该四人当成一个整体,再加上另三人,相当于4人的全排列,则共有224524960A A A =种;(5)先排甲、乙、丙之外的四人,有44A ,四人形成五个空位,甲、乙、丙三人排这五个空位,有35A ,则共有34541440A A =种;(6)不考虑限制条件有77A ,甲在乙的左边(不一定相邻),占总数的一半,即77125202A =种;(7)先在7个位置上排甲、乙、丙之外的四人,有47A ,留下三个空位,甲、乙、丙三人按从高到矮,自左向右的顺序自动入列,不能乱排的,即47840A =(8)不考虑限制条件有77A ,而甲排头有66A ,乙排当中有66A ,这样重复了甲排头,乙排当中55A 一次,即76576523720A A A -+=1.6个人坐在一排10个座位上,问(1)空位不相邻的坐法有多少种(2)4个空位只有3个相邻的坐法有多少种(3) 4个空位至多有2个相邻的坐法有多少种解:6个人排有66A 种, 6人排好后包括两端共有7个“间隔”可以插入空位.(1)空位不相邻相当于将4个空位安插在上述7个“间隔”中,有4735C =种插法,故空位不相邻的坐法有646725200A C =种。
(完整版)排列组合练习题___(含答案)

排列组合练习题1、三个同学必须从四种不同的选修课中选一种自己想学的课程,共有 不同的选法。
3、乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安排在第一、三、五位置,其余 7名队员选2名安排在第二、四位置,那么不同 的出场安排共有 ________________________ 中。
4、从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天, 要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共 有 有8本不同的书,从中取出6本,奖给5位数学优胜者,规定第一名(仅一人)得2本,其它每人一本,则共有 __________ 种不同的奖法。
有8本不同的书,其中数学书3本,外文书2本,其他书3本,若将这些书排成 一列放在书架上,则数学书恰好排在一起,外文书也恰好排在一起的排法共有 中。
五种不同的收音机和四种不同的电视机陈列一排, 任两台电视机不靠在一起,有 种陈列方法。
10、五个人排成一排,要求甲、乙不相邻,且甲、丙也不相邻的不同排法的种数是 11、6名男生6名女生排成一排,要求男女相间的排法有 12、4名男生和3名女生排成一排,要求男女相间的排法有种排法。
14、一排有8个座位,3人去坐,要求每人左右两边都有空位的坐法有2、8名同学争夺3项冠军,获得冠军的可能性有种。
5、 6、 有3位老师、4名学生排成一排照相,其中老师必须在一起的排法共有种。
7、9、 有6名同学站成一排:甲、乙、丙不相邻有种不同的排法。
种。
种。
13、有4男4女排成一排,要求女的互不相邻有 种排法;要求男女相间有 种。
22、由1、2、3、4、5、6组成没有重复数字的六位数,其中个位数字小于十位数字, 十位数字小于百位数字,则这样的数共有23、A , B, C, D, E 五人站一排,B 必须站A 右边,则不同的排法有24、晚会原定的5个节目已排成节目单,开演前又加了 2个节目,若将这2个节目 插入原节目单中,则不同的插法有 ________________________ 种。
(完整版)排列组合练习题3套(含答案)

(完整版)排列组合练习题3套(含答案)排列练习⼀、选择题1、将3个不同的⼩球放⼊4个盒⼦中,则不同放法种数有()A、81B、64C、12D、142、n∈N且n<55,则乘积(55-n)(56-n)……(69-n)等于()A、 B、 C、 D、3、⽤1,2,3,4四个数字可以组成数字不重复的⾃然数的个数()A、64B、60C、24D、2564、3张不同的电影票全部分给10个⼈,每⼈⾄多⼀张,则有不同分法的种数是()A、2160B、120C、240D、7205、要排⼀张有5个独唱和3个合唱的节⽬表,如果合唱节⽬不能排在第⼀个,并且合唱节⽬不能相邻,则不同排法的种数是()A、 B、 C、 D、6、5个⼈排成⼀排,其中甲、⼄两⼈⾄少有⼀⼈在两端的排法种数有()A、 B、 C、 D、7、⽤数字1,2,3,4,5组成没有重复数字的五位数,其中⼩于50000的偶数有()A、24B、36C、46D、608、某班委会五⼈分⼯,分别担任正、副班长,学习委员,劳动委员,体育委员,其中甲不能担任正班长,⼄不能担任学习委员,则不同的分⼯⽅案的种数是()A、B、C、D、⼆、填空题1、(1)(4P84+2P85)÷(P86-P95)×0!=___________(2)若P2n3=10Pn3,则n=___________2、从a、b、c、d这四个不同元素的排列中,取出三个不同元素的排列为__________________________________________________________________3、4名男⽣,4名⼥⽣排成⼀排,⼥⽣不排两端,则有_________种不同排法4、有⼀⾓的⼈民币3张,5⾓的⼈民币1张,1元的⼈民币4张,⽤这些⼈民币可以组成_________种不同币值。
三、解答题1、⽤0,1,2,3,4,5这六个数字,组成没有重复数字的五位数,(1)在下列情况,各有多少个?①奇数②能被5整除③能被15整除④⽐35142⼩⑤⽐50000⼩且不是5的倍数2、7个⼈排成⼀排,在下列情况下,各有多少种不同排法?(1)甲排头(2)甲不排头,也不排尾(3)甲、⼄、丙三⼈必须在⼀起(4)甲、⼄之间有且只有两⼈(5)甲、⼄、丙三⼈两两不相邻(6)甲在⼄的左边(不⼀定相邻)(7)甲、⼄、丙三⼈按从⾼到矮,⾃左向右的顺序(8)甲不排头,⼄不排当中3、从2,3,4,7,9这五个数字任取3个,组成没有重复数字的三位数(1)这样的三位数⼀共有多少个?(2)所有这些三位数的个位上的数字之和是多少?(3)所有这些三位数的和是多少?排列与组合练习(1)⼀、填空题1、若,则n的值为()A、6B、7C、8D、92、某班有30名男⽣,20名⼥⽣,现要从中选出5⼈组成⼀个宣传⼩组,其中男、⼥学⽣均不少于2⼈的选法为()A、 B、 C、 D、3、空间有10个点,其中5点在同⼀平⾯上,其余没有4点共⾯,则10个点可以确定不同平⾯的个数是()A、206B、205C、111D、1104、6本不同的书分给甲、⼄、丙三⼈,每⼈两本,不同的分法种数是()A、 B、 C、 D、5、由5个1,2个2排成含7项的数列,则构成不同的数列的个数是()A、21B、25C、32D、426、设P1、P2…,P20是⽅程z20=1的20个复根在复平⾯上所对应的点,以这些点为顶点的直⾓三⾓形的个数为()A、360B、180C、90D、457、若,则k的取值范围是()A、[5,11]B、[4,11]C、[4,12]D、4,15]8、⼝袋⾥有4个不同的红球,6个不同的⽩球,每次取出4个球,取出⼀个线球记2分,取出⼀个⽩球记1分,则使总分不⼩于5分的取球⽅法种数是()A、 B、 C、 D、1、计算:(1)=_______(2)=_______2、把7个相同的⼩球放到10个不同的盒⼦中,每个盒⼦中放球不超1个,则有_______种不同放法。
排列组合练习题---(含答案)

p排列组合练习题1、三个同学必须从四种不同的选修课中选一种自己想学的课程,共有种不同的选法。
2、8名同学争夺3项冠军,获得冠军的可能性有种。
3、乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有___________ 种。
4、从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有o5、有8本不同的书,从中取出6本,奖给5位数学优胜者,规定第一名(仅一人)得2本,其它每人一本,则共有种不同的奖法。
6、有3位老师、4名学生排成一排照相,其中老师必须在一起的排法共有一种。
7、有8本不同的书,其中数学书3本,外文书2本,其他书3本,若将这些书排成一列放在书架上,则数学书恰好排在一起,外文书也恰好排在一起的排法共有种。
8、五种不同的收音机和四种不同的电视机陈列一排,任两台电视机不靠在一起,有种陈列方法。
9、有6名同学站成一排:甲、乙、丙不相邻有种不同的排法。
10、五个人排成一排,要求甲、乙不相邻,且甲、内也不相邻的不同排法的种数是11、6名男生6名女生排成一排,要求男女相间的排法有种。
12、4名男生和3名女生排成一排,要求男女相间的排法有种。
13、有4男4女排成一排,要求女的互不相邻有种排法;要求男女相问有种排法。
14、一排有8个座位,3人去坐,要求每人左右两边都有空位的坐法有种。
15、三个人坐在一排7个座位上,若3个人中间没有空位,有种坐法。
若4个空位中恰有3个空位连在一起,有种坐法。
16、由1、2、3、4、5组成一个无重复数字的5位数,其中2、3必须排在一起,4、5不能排在一起,则不同的5位数共有个。
17、有4名学生和3位老师排成一排照相,规定两端不排老师且老师顺序固定不变,那么不同的排法有种。
18、从6名短跑运动员中选4人参加4 100米的接力赛,如果其中甲不能跑第一棒,乙不能跑第四棒,共有种参赛方案。
排列组合训练题(含答案)

概率、排列组合、二项式定理专项训练1.5名志愿者随机进入3个不同的奥运场馆参加接待工作,则每个场馆至少有一名志愿者的概率为( )A.53B.151C.85D.81502.先后抛掷两枚均匀的骰子,骰子落地后朝上的点数分别为x ,y ,则2log 1x y =的概率为( ) A .16 B .536C .12D .112 3.记集合(){}22,|16A x y xy =+≤,集合()(){},|40,,B x y x y x y A =+-≤∈表示的平面区域分别为12,ΩΩ.若在区域1Ω内任取一点(),P x y ,则点P 落在区域2Ω中的概率为( ) A .24ππ- B .324ππ+ C .24ππ+ D .324ππ- 4.如图,矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在椭圆内的黄豆数为225颗,以此实验数据为依据可以估计出椭圆的面积约为( ). A .16 B .17 C .18 D .195.已知,m n 是某事件发生的概率取值,则关于x 的一元二次方程20x nx m -+= 有实根的概率是 ( )A.12B. 14C. 18D. 1166.某校高三年级举行的一次演讲比赛共有10位同学参加,其中一班有3位,二班有2位,其他班有5位,若采取抽签方式确定他们演讲顺序,则一班的3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为 ( ) A .110 B .120 C .140 D .11207.有10个人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有( )种排法。
A .510C B .105105A A ÷ C .10102A ÷ D .55105A A8.有6个人围成一圈站,不同的站法种数为( )A .720种B .420种C .120种D .60种 9.用0、1、2、3组成个位数字不是1且没有重复数字的四位数共有( ). A .10个 B .12个 C .14个 D .16个10.某校有六间不同的电脑室,每天晚上至少开放两间,欲求不同安排方案的种数,现有3位同学分别给出了下列三个结果:①26C ;②627-;③345666662C C C C+++,其中正确的结论是( )A .①B .①与②C .②与③D .①②③11.从1,3,5,7,9这5个奇数中选取3个数字,从2,4,6,8这4个偶数中选取2个数字,再将这5个数字组成没有重复数字的五位数,且奇数数字与偶数数字相间排列.这样的五位数的个数是( ) A.180 B.360 C.480 D.72012.设三位数n abc =,若以a ,b ,c 为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n 有 ( ) A. 45个B. 81个C. 165个D. 216个13.五名男同学,三名女同学外出春游,平均分成两组,每组4人,则女同学不都在同一组的不同分法有 A .30种 B .65种 C .35种 D .70种14.如图,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,则不同的染色方法总数为( ) A.60 B.480 C.420 D.7015.若在231(3)2nx x-的展开式中含有常数项,则正整数n 取得最小值时的常数项为( ) A .1352- B .135- C .1352D .13516.7(1)x -展开式中系数最大的项为 ( ) A.第4项 B.第5项 C.第7项 D.第8项17.若521()1x a x ⎛⎫+- ⎪⎝⎭的展开式中常数项为-1,则a 的值为( )A .1B .8C .-1或-9D .1或918.在154)212(+x 的展开式中,系数是有理数的项共有( ) A.4项 B.5项 C.6项 D.7项19.若3162323()n n C C n N ++*=∈且2012(3)n n n x a a x a x a x -=++++ ,则012(1)nna a a a -+-+-= ( )A.256B.-256C.81D.-81 20.如果n 是正偶数,则C n 0+C n 2+…+C n n -2+C n n=( ) A. 2nB. 2n -1C. 2n -2D. (n -1)2n -121.若对任意实数x ,有3322103)2()2()2(-+-+-+=x a x a x a a x 成立,则=++321a a a ( ) A .1 B .8 C .19 D .27 22.若(010,)4k k k Z πθ=≤≤∈,则sin cos 1θθ+≥的概率为( )A .15 B .25 C .211 D .61123.连续抛掷一枚质地均匀的骰子,记下每次面朝上的点数,若出现三个不同的数就停止,则抛掷五次后恰好停止抛掷的不同记录结果总数是( )A .720B .840C .1200D .168024.有两个人在一座10层大楼的底层进入电梯,设他们中的每一个人自第二层开始在每一层离开是等可能的,则这两个人在不同层离开的概率为 ( ) A.19 B. 29 C. 49 D. 8925.有5个不同的红球和2个不同的黑球排成一列,在两端都有红球的排列中,其中红 球甲和黑球乙相邻的排法有( )A .720B .768C .960D .144026. 4人各写一张贺卡,先集中起来,然后每人从中拿一张别人写的贺卡,则四张贺卡的分配方式有( )A. 6种B. 9种C. 11种D. 23种27.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( ) A.24对 B.30对 C.48对 D.60对28.已知9922109)31(x a x a x a a x ++++=- ,则||||||||9210a a a a ++++ 等于( ) A .29B .49C .39D .129.已知2015220150122015(2)x a a x a x a x -=+++⋅⋅⋅+,则20242014()a a a a ++⋅⋅⋅+-21352015()a a a a ++⋅⋅⋅+= ( )A.12--B. 12-C. 1D.1- 30.已知()4220121x a a x a x +=++++ 7878a x a x +,则从集合,i j a M x x x R a ⎧⎫⎪⎪==∈⎨⎬⎪⎪⎩⎭(0,1,2,,8;i = 0,1,2,,8j = )到集合{}1,0,1N =-的映射个数是( ) A .6561 B .316 C .2187 D .21031.设n a (2n ≥,*n N ∈)是(3)nx -的展开式中x 的一次项系数,则23182318333a a a +++= .32.为了庆祝六一儿童节,某食品厂制作了3种不同的精美卡片,每袋食品随机装入一张卡片,集齐3种卡片可获奖,现购买该种食品5袋,能获奖的概率为________.33.在区间[]0,1内随机的取两个数,a b ,则满足102a b ≤+≤的概率是 ;(用数字作答) 34.若二项式1nx x ⎛⎫+ ⎪⎝⎭展开式中只有第四项的系数最大,则这个展开式中任取一项为有理项的概率是____________.35.信号兵把红旗与白旗从上到下挂在旗杆上表示信号。
高中排列组合试题及答案

高中排列组合试题及答案一、选择题1. 从5个人中选出3个人参加比赛,不同的选法有()种。
A. 10B. 15C. 20D. 60答案:B2. 有3个不同的球和3个不同的盒子,每个盒子只能放一个球,不同的放法有()种。
A. 3B. 6C. 9D. 27答案:D3. 从6本不同的书中选3本送给3个不同的人,每人一本,不同的送法有()种。
A. 20B. 60C. 120D. 720答案:B二、填空题4. 一个班级有20名学生,需要选出5名学生组成一个小组,那么不同的选法有______种。
答案:15,5045. 从10个人中选出3个人担任班长、副班长和学习委员,不同的选法有______种。
答案:720三、解答题6. 某学校有5个不同学科的竞赛,每个学生可以选择参加1个或多个竞赛,求至少参加一个竞赛的学生的选法总数。
答案:首先,每个学生有6种选择:不参加任何竞赛,只参加一个竞赛,参加两个竞赛,参加三个竞赛,参加四个竞赛,参加所有五个竞赛。
对于每个学科,学生有两种选择:参加或不参加,所以总共有2^5=32种可能的组合。
但是,我们需要排除不参加任何竞赛的情况,所以选法总数为32-1=31种。
7. 一个班级有30名学生,需要选出一个5人的篮球队,其中必须包括1名队长和4名队员。
如果队长和队员可以是同一个人,那么不同的选法有多少种?答案:首先,选择队长有30种可能,然后从剩下的29人中选择4名队员,有C(29,4)种可能。
但是,由于队长和队员可以是同一个人,我们需要减去只选了4名队员的情况,即C(30,4)种。
所以,总的选法为30*C(29,4) - C(30,4) = 30*1911 - 27,405 = 57,330种。
四、计算题8. 一个数字密码由5个不同的数字组成,每位数字可以是0-9中的任意一个,求这个密码的所有可能组合。
答案:每位数字有10种可能,所以总的组合数为10^5 = 100,000种。
9. 一个班级有15名学生,需要选出一个7人的足球队,不同的选法有多少种?答案:从15名学生中选出7人,不同的选法有C(15,7) = 6,435种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列练习一、选择题1、将3个不同的小球放入4个盒子中,则不同放法种数有()A、81B、64C、12D、142、n∈N且n<55,则乘积(55-n)(56-n)……(69-n)等于()A、 B、 C、 D、3、用1,2,3,4四个数字可以组成数字不重复的自然数的个数()A、64B、60C、24D、2564、3张不同的电影票全部分给10个人,每人至多一张,则有不同分法的种数是()A、2160B、120C、240D、7205、要排一张有5个独唱和3个合唱的节目表,如果合唱节目不能排在第一个,并且合唱节目不能相邻,则不同排法的种数是()A、 B、 C、 D、6、5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有()A、 B、 C、 D、7、用数字1,2,3,4,5组成没有重复数字的五位数,其中小于50000的偶数有()A、24B、36C、46D、608、某班委会五人分工,分别担任正、副班长,学习委员,劳动委员,体育委员,其中甲不能担任正班长,乙不能担任学习委员,则不同的分工方案的种数是()A、B、C、D、二、填空题1、(1)(4P84+2P85)÷(P86-P95)×0!=___________(2)若P2n3=10Pn3,则n=___________2、从a、b、c、d这四个不同元素的排列中,取出三个不同元素的排列为__________________________________________________________________3、4名男生,4名女生排成一排,女生不排两端,则有_________种不同排法4、有一角的人民币3张,5角的人民币1张,1元的人民币4张,用这些人民币可以组成_________种不同币值。
三、解答题1、用0,1,2,3,4,5这六个数字,组成没有重复数字的五位数,(1)在下列情况,各有多少个?①奇数②能被5整除③能被15整除④比35142小⑤比50000小且不是5的倍数2、7个人排成一排,在下列情况下,各有多少种不同排法?(1)甲排头(2)甲不排头,也不排尾(3)甲、乙、丙三人必须在一起(4)甲、乙之间有且只有两人(5)甲、乙、丙三人两两不相邻(6)甲在乙的左边(不一定相邻)(7)甲、乙、丙三人按从高到矮,自左向右的顺序(8)甲不排头,乙不排当中3、从2,3,4,7,9这五个数字任取3个,组成没有重复数字的三位数(1)这样的三位数一共有多少个?(2)所有这些三位数的个位上的数字之和是多少?(3)所有这些三位数的和是多少?排列与组合练习(1)一、填空题1、若,则n的值为()A、6B、7C、8D、92、某班有30名男生,20名女生,现要从中选出5人组成一个宣传小组,其中男、女学生均不少于2人的选法为()A、 B、 C、 D、3、空间有10个点,其中5点在同一平面上,其余没有4点共面,则10个点可以确定不同平面的个数是()A、206B、205C、111D、1104、6本不同的书分给甲、乙、丙三人,每人两本,不同的分法种数是()A、 B、 C、 D、5、由5个1,2个2排成含7项的数列,则构成不同的数列的个数是()A、21B、25C、32D、426、设P1、P2…,P20是方程z20=1的20个复根在复平面上所对应的点,以这些点为顶点的直角三角形的个数为()A、360B、180C、90D、457、若,则k的取值范围是()A、[5,11]B、[4,11]C、[4,12]D、4,15]8、口袋里有4个不同的红球,6个不同的白球,每次取出4个球,取出一个线球记2分,取出一个白球记1分,则使总分不小于5分的取球方法种数是()A、 B、 C、 D、二、填空题1、计算:(1)=_______(2)=_______2、把7个相同的小球放到10个不同的盒子中,每个盒子中放球不超1个,则有_______种不同放法。
3、在∠AOB的边OA上有5个点,边OB上有6个点,加上O点共12个点,以这12个点为顶点的三角形有_______个。
4、以1,2,3,…,9这几个数中任取4个数,使它们的和为奇数,则共有_______种不同取法。
三、解答题1、已知2、(1)以正方体的顶点为顶点的三棱锥有多少个?(2)以正方体的顶点为顶点的四棱锥有多少个?(3)以正方体的顶点为顶点的棱锥有多少个?3、集合A中有7个元素,集合B中有10个元素,集合A∩B中有4个元素,集合C满足(1)C有3个元素;(2)C A∪B;(3)C∩B≠φ,C∩A≠φ,求这样的集合C的个数。
4、在1,2,3,……30个数中,每次取两两不等的三个数,使它们的和为3的倍数,共有多少种不同的取法?排列与组合练习题(2)一、选择题:1、将3个不同的小球放入4个盒子中,则不同放法种数有()A.81 B.64 C.12 D.142、n∈N且n<55,则乘积(55-n)(56-n)……(69-n)等于()A.B.C.D.3、用1,2,3,4四个数字可以组成数字不重复的自然数的个数()A.64 B.60 C.24 D.2564、3张不同的电影票全部分给10个人,每人至多一张,则有不同分法的种数是()A.2160 B.120 C.240 D.7205、要排一张有5个独唱和3个合唱的节目表,如果合唱节目不能排在第一个,并且合唱节目不能相邻,则不同排法的种数是()A.B.C.D.6、5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有()A.B.C.D.7、用数字1,2,3,4,5组成没有重复数字的五位数,其中小于50000的偶数有()A.24 B.36 C.46 D.608、某班委会五人分工,分别担任正、副班长,学习委员,劳动委员,体育委员,其中甲不能担任正班长,乙不能担任学习委员,则不同的分工方案的种数是()A.B.C.D.二、填空题9、(1)(4P84+2P85)÷(P86-P95)×0!=___________ (2)若P2n3=10P n3,则n=___________10、从A.B.C.D这四个不同元素的排列中,取出三个不同元素的排列为__________________11、4名男生,4名女生排成一排,女生不排两端,则有_________种不同排法。
12、有一角的人民币3张,5角的人民币1张,1元的人民币4张,用这些人民币可以组成_________种不同币值。
三、解答题13、用0,1,2,3,4,5这六个数字,组成没有重复数字的五位数,(1)在下列情况,各有多少个?①奇数,②能被5整除,③能被15整除,④比35142小,⑤比50000小且不是5的倍数(2)若把这些五位数按从小到大排列,第100个数是什么?14、7个人排成一排,在下列情况下,各有多少种不同排法?(1)甲排头;(2)甲不排头,也不排尾;(3)甲、乙、丙三人必须在一起;(4)甲、乙之间有且只有两人;(5)甲、乙、丙三人两两不相邻;(6)甲在乙的左边(不一定相邻);(7)甲、乙、丙三人按从高到矮,自左向右的顺序;(8)甲不排头,乙不排当中。
15、从2,3,4,7,9这五个数字任取3个,组成没有重复数字的三位数。
(1)这样的三位数一共有多少个?(2)所有这些三位数的个位上的数字之和是多少?(3)所有这些三位数的和是多少?排列练习答案一、选择题 1-8 BBADCCBA二、填空题1、(1)5(2)8 2、abc,abd,acd,bac,bad,bcd,cab,cad,cbd,dab,dac,dbc3、86404、39三、解答题1、①3×=288②③④⑤2、(1)=720(2)5=3600(3)=720(4)=960(5)=1440(6) =2520(7)=840(8)3、(1)(2)(3)300×(100+10+1)=33300排列与组合练习答案(1)一、选择题1、B 2、D 3、C 4、A 5、A 6、B7、B 8、C二、填空题1、490 2、31 3、165 4、60三、解答题1、解:2、解:(1)(2)(3)58+48=1063、解:A∪B中有元素 7+10-4=134、解:把这30个数按除以3后的余数分为三类:A={3,6,9, (30)B={1,4,7, (28)C={2,5,8, (29)(个)排列与组合练习题(2)一、选择题:1.B2.B3.A4.D5.C6.C7.B8.A二、填空题9.(1)5;(2)810.abc,abd,acd,bac,bad,bcd,cab,cad,cbd,dab,dac,dbc 11.8640 12.39三、解答题13.(1)①3×=288 ②③④⑤14.(1)=720(2)5=3600(3)=720(4)=960(5)=1440(6)=2520 (7)=840(8)15.(1)(2)(3)300×(100+10+1)=33300。