MATLAB中FFT的使用方法

合集下载

matlab中的傅里叶变换

matlab中的傅里叶变换

matlab中的傅里叶变换Matlab中的傅里叶变换是一种数学工具,用于将一个信号从时域转换到频域。

它是一种广泛应用于信号处理、图像处理、通信系统等领域的重要技术。

在Matlab中,傅里叶变换可以通过内置函数fft和ifft来实现。

fft函数用于计算离散傅里叶变换(DFT),而ifft函数用于计算离散傅里叶逆变换(IDFT)。

傅里叶变换在Matlab中的使用步骤如下:1. 准备信号数据,将待变换的信号存储在一个向量中,可以是时间域的信号序列。

2. 应用fft函数,使用fft函数对信号进行傅里叶变换,得到频域表示。

3. 可选操作,对频域表示进行幅度谱和相位谱的计算,以及其他的频谱分析操作。

4. 应用ifft函数,如果需要,可以使用ifft函数对频域表示进行逆变换,将信号恢复到时域。

需要注意的是,傅里叶变换得到的频域表示是对称的,通常只需要使用一半的频域数据进行分析。

此外,Matlab中还提供了其他相关的函数,如fftshift和ifftshift,用于对频域数据进行平移操作。

傅里叶变换在信号处理中有广泛的应用,例如:1. 频谱分析,可以通过傅里叶变换将信号从时域转换到频域,进而分析信号的频谱特性,如频率成分、频谱密度等。

2. 滤波器设计,可以在频域上设计滤波器,通过傅里叶变换将滤波器的频率响应转换到时域,实现对信号的滤波操作。

3. 图像处理,可以利用傅里叶变换对图像进行频域滤波、图像增强等操作,如去除噪声、边缘检测等。

总结起来,Matlab中的傅里叶变换是一种强大的信号处理工具,通过将信号从时域转换到频域,可以实现频谱分析、滤波器设计、图像处理等应用。

Matlab中的FFT使用说明

Matlab中的FFT使用说明

FFT是Fast Fourier Transform(快速傅里叶变换)的简称,FFT算法在MATLAB中实现的函数是Y=fft(x,n)。

刚接触频谱分析用到FFT时,几乎都会对MATLAB 的fft函数产生一些疑惑,下面以看一个例子(根据MATLAB帮助修改)。

Fs = 2000; % 设置采样频率T = 1/Fs; % 得到采用时间L = 1000; % 设置信号点数,长度1秒t = (0:L-1)*T; % 计算离散时间,% 两个正弦波叠加f1 = 80;A1 = 0.5; % 第一个正弦波100Hz,幅度0.5f2 = 150;A2 = 1.0 ; % 第2个正弦波150Hz,幅度1.0A3 = 0.5; % 白噪声幅度;x = A1*sin(2*pi*f1*t) + A2*sin(2*pi*f2*t); %产生离散时间信号;y = x + A3*randn(size(t)); % 叠加噪声;% 时域波形图subplot(2,1,1)plot(Fs*t(1:50),x(1:50))title('Sinusoids Signal')xlabel('time (milliseconds)')subplot(2,1,2)plot(Fs*t(1:50),y(1:50))title('Signal Corrupted with Zero-Mean Random Noise')xlabel('time (milliseconds)')NFFT = 2^nextpow2(L); % 设置FFT点数,一般为2的N次方,如1024,512等Y = fft(y,NFFT)/L; % 计算频域信号,f = Fs/2*linspace(0,1,NFFT/2+1);% 频率离散化,fft后对应的频率是-Fs/2到Fs/2,由NFFT个离散频点表示% 这里只画出正频率;% Plot single-sided amplitude spectrum.figure;plot(f,2*abs(Y(1:NFFT/2+1)));% fft后含幅度和相位,一般观察幅度谱,并把负频率加上去,title('Single-Sided Amplitude Spectrum of y(t)')xlabel('Frequency (Hz)')ylabel('|Y(f)|')运行结果时域波形图如图所示:幅度谱如下:由图可见,80Hz的信号幅度为0.4762,频率为80.08,150Hz的信号频率为150.4,幅度0.9348,存在误差。

matlab的fft函数用法

matlab的fft函数用法

matlab的fft函数用法MATLAB中的fft函数用于计算快速傅里叶变换(FFT)。

FFT是一种将信号从时域转换为频域的方法,常用于信号处理、图像处理等领域。

在本文中,我将一步一步回答有关MATLAB中fft函数的使用方法。

一、基本语法在MATLAB中,fft函数的基本语法如下:Y = fft(X)其中,X是要进行FFT的向量或矩阵,输出结果Y是X的离散傅里叶变换的向量或矩阵。

二、一维FFT首先我们来看一维FFT的使用方法。

假设有一个长度为N的一维向量x,我们将对其进行FFT变换并得到变换结果y。

1. 创建输入向量首先,我们需要创建一个长度为N的向量x,作为FFT的输入。

可以通过以下代码实现:N = 1024; % 向量长度x = randn(N, 1); % 创建长度为N的随机向量2. 进行FFT变换接下来,我们使用fft函数对向量x进行FFT变换,代码如下:y = fft(x);3. 可视化结果为了更好地理解和分析FFT结果,通常会对结果进行可视化。

我们可以使用MATLAB的绘图函数来绘制FFT结果的幅度和相位谱。

例如,可以使用如下代码绘制幅度谱:f = (0:N-1)./N; % 频率轴amp = abs(y); % 幅度谱figure;plot(f, amp);xlabel('Frequency (Hz)');ylabel('Amplitude');title('Amplitude Spectrum');同样,可以使用如下代码绘制相位谱:phase = angle(y); % 相位谱figure;plot(f, phase);xlabel('Frequency (Hz)');ylabel('Phase');title('Phase Spectrum');三、二维FFT除了一维FFT,MATLAB中的fft函数还支持二维FFT。

谱表示法随机场matlab快速傅里叶变换(fft)与逆变换(ifft)

谱表示法随机场matlab快速傅里叶变换(fft)与逆变换(ifft)

谱表示法随机场matlab快速傅里叶变换(fft)与逆变换(ifft)在MATLAB中,可以使用FFT(Fast Fourier Transform)和IFFT(Inverse Fast Fourier Transform)函数进行快速傅里叶变换和逆变换。

首先,让我们看一个简单的例子,它演示了如何使用FFT和IFFT函数。

matlab% 创建一个简单的信号t = 0:0.001:1-0.001; % 时间向量x = sin(2*pi*50*t) + sin(2*pi*120*t); % 信号% 对信号进行FFTX = fft(x);% 对FFT结果进行对数变换,以便更好地显示高频分量X_log = log(abs(X));% 绘制FFT结果figure;plot(t, x);title('Original Signal');xlabel('Time (s)');ylabel('Amplitude');figure;plot(t, X_log);title('Spectrum of the Signal');xlabel('Frequency (Hz)');ylabel('Magnitude');在上面的代码中,我们首先创建了一个简单的信号,它由两个正弦波组成。

然后,我们对信号进行了FFT,得到了频谱。

最后,我们对频谱进行了对数变换,并绘制了频谱图。

要执行逆FFT,可以使用IFFT函数。

以下是一个简单的例子:matlab% 对FFT结果进行逆变换y = ifft(X);% 绘制逆变换后的信号figure;plot(t, y);title('Reconstructed Signal');xlabel('Time (s)');ylabel('Amplitude');在上面的代码中,我们对FFT结果进行了逆变换,得到了原始信号。

matlab如何做傅里叶变换

matlab如何做傅里叶变换

matlab如何做傅里叶变换
MATLAB 提供了多种函数来完成傅里叶变换,其中 fft 函数是最
常用的一种。

fft 函数是通用快速傅里叶变换函数,它可以将任意时
域信号变换成频域信号,并得到该信号的功率谱和相位角信息。

fft 操作可以用下面六步完成:
(1)准备时域信号,得到 N 个样本数据;
(2)实施 N 点 DFT,得到 N 个复数的频域输出 X[k];
(3)将 X[k] 用数组形式表述出来,得到频域数组;
(4)计算频域功率信号,使用 P=|X[k]|^2 求出功率,形成功率.数组;
(5)计算频域信号的相位角,使用 C=arg(X[k]) 求出相位角,
形成相位角数组;
(6)根据产生的功率数组和相位角数组,绘制出功率谱和相位角图像。

如果想要改变深度,可以使用混合的方法,即使用 fft 将时域信号转换为频域信号,再用离散傅里叶变换(DFT)或者离散余弦变换(DCT)来改变深度。

使用 MATLAB 编写的 fft 程序可以发现,fft 函数是一种快速方法,可以大大减少处理时间。

因此,通过使用 MATLAB fft 函数,相
比传统的 DFT 和 DCT,利用 MATLAB 来完成傅里叶变换显得更为简便快捷。

MATLAB中FFT的使用方法

MATLAB中FFT的使用方法

MATLAB 中FFT的使用方法一.调用方法X=FFT(x);X=FFT(x , N);x=IFFT(X);x=IFFT(X,N)用MATLAB进行谱分析时注意:(1 )函数FFT返回值的数据结构具有对称性。

例:N=8;n=0:N-1;xn=[4 3 2 6 7 8 9 0];Xk=fft(xn)39.0000 -10.7782 + 6.2929i 0 - 5.0000i 4.7782 - 7.7071i 5.0000 4.7782 +7.7071i 0 + 5.0000i -10.7782 - 6.2929iXk与xn的维数相同,共有8个元素。

Xk的第一个数对应于直流分量,即频率值为(2)做FFT分析时,幅值大小与FFT选择的点数有关,但不影响分析结果。

在IFFT时已经做了处理。

要得到真实的振幅值的大小,只要将得到的变换后结果乘以2除以N即可。

二.FFT应用举例例 1 : x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t) 。

采样频率fs=100Hz,分别绘制N=128、1024点幅频图。

clf;fs=100;N=128; %采样频率和数据点数n=0:N-1;t=n/fs; % 时间序列x=0.5*sin(2* pi*15*t)+2*sin(2* pi*40*t); % 信号y=fft(x,N); %对信号进行快速Fourier变换mag=abs(y); %求得Fourier变换后的振幅f=n*fs/N; %频率序列sub plot(2,2,1), plot(f,mag); %绘出随频率变化的振幅xIabelC 频率/Hz');ylabelC 振幅');title('N=128');grid on;subplot(2,2,2),plot(f(1:N/2),mag(1:N/2)); % 绘出Nyquist 频率之前随频率变化的振幅xIabelC 频率/Hz');ylabel('振幅');title('N=128');grid on;%对信号采样数据为1024点的处理fs=100;N=1024;n=0:N-1;t=n/fs;x=0.5*sin(2* pi*15*t)+2*sin(2* pi*40*t); % 信号y=fft(x,N); %对信号进行快速Fourier变换mag=abs(y); %求取Fourier变换的振幅f=n*fs/N; sub plot(2,2,3), plot(f,mag); % 绘出随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=1024');grid on;sub plot(2,2,4)plot(f(1:N/2),mag(1:N/2)); % 绘出Nyquist频率之前随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=1024');grid on;运行结果:x=0.5*sin(2* pi*15*t)+2*sin(2* pi*40*t); %时间域信号分析,只需考察0〜Nyquist 频率范围内的福频特性。

matlab中fft滤波

matlab中fft滤波

matlab中fft滤波在MATLAB中,可以使用FFT(快速傅里叶变换)滤波器进行频域滤波。

FFT滤波器可以在频域上对信号进行处理,以去除不需要的噪声或干扰。

下面是一个简单的示例,演示如何使用FFT滤波器进行频域滤波:1、生成一个带有噪声的信号:matlabFs = 1000; % 采样频率t = 0:1/Fs:1-1/Fs; % 时间向量f = 50; % 信号频率x = sin(2*pi*f*t); % 纯净信号noise = 0.5*randn(size(t)); % 高斯噪声x_noisy = x + noise; % 带噪声的信号2、对带噪声的信号进行FFT变换:matlabX = fft(x_noisy); % FFT变换X_mag = abs(X); % 取幅度谱X_mag_normalized = X_mag/max(X_mag); % 归一化幅度谱3、定义滤波器参数:matlabf_cutoff = 100; % 截止频率alpha = 0.5; % 滤波器陡度参数4、应用FFT滤波器:matlabX_filtered = zeros(size(X));for k = 1:length(X)if X_mag[k] > f_cutoff/alphaX_filtered(k) = X(k);endendX_filtered = ifft(X_filtered); % IFFT变换,得到时域滤波后的信号5、可视化结果:matlabfigure;subplot(2,1,1); plot(t,x_noisy); title('带噪声的信号'); grid on;subplot(2,1,2); plot(t,real(X_filtered)); title('滤波后的信号'); grid on;在这个示例中,我们首先生成了一个带有高斯噪声的信号。

然后,我们对该信号进行FFT变换,并计算幅度谱。

[FFT] matlab中关于FFT的使用(理解频率分辨率、补零问题)

[FFT] matlab中关于FFT的使用(理解频率分辨率、补零问题)

[FFT] matlab中关于FFT的使用(理解频率分辨率、补零问题).txt我这人从不记仇,一般有仇当场我就报了。

没什么事不要找我,有事更不用找我!就算是believe中间也藏了一个lie!我那么喜欢你,你喜欢我一下会死啊?我又不是人民币,怎么能让人人都喜欢我?[FFT]matlab中关于FFT的使用(理解频率分辨率、补零问题)一.调用方法X=FFT(x);X=FFT(x,N);x=IFFT(X);x=IFFT(X,N)用MATLAB进行谱分析时注意:(1)函数FFT返回值的数据结构具有对称性。

例:N=8;n=0:N-1;xn=[4 3 2 6 7 8 9 0];Xk=fft(xn)→Xk =39.0000 -10.7782 + 6.2929i 0 - 5.0000i 4.7782 - 7.7071i 5.0000 4.7782 + 7.7071i 0 + 5.0000i -10.7782 - 6.2929iXk与xn的维数相同,共有8个元素。

Xk的第一个数对应于直流分量,即频率值为0。

(2)做FFT分析时,幅值大小与FFT选择的点数有关,但不影响分析结果。

在IFFT时已经做了处理。

要得到真实的振幅值的大小,只要将得到的变换后结果乘以2除以N即可。

二.FFT应用举例例1:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t)。

采样频率fs=100Hz,分别绘制N=128、1024点幅频图。

clf;fs=100;N=128; %采样频率和数据点数n=0:N-1;t=n/fs; %时间序列x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号y=fft(x,N); %对信号进行快速Fourier变换mag=abs(y); %求得Fourier变换后的振幅f=n*fs/N; %频率序列subplot(2,2,1),plot(f,mag); %绘出随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=128');grid on;subplot(2,2,2),plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=128');grid on;%对信号采样数据为1024点的处理fs=100;N=1024;n=0:N-1;t=n/fs;x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号y=fft(x,N); %对信号进行快速Fourier变换mag=abs(y); %求取Fourier变换的振幅f=n*fs/N;subplot(2,2,3),plot(f,mag); %绘出随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=1024');grid on;subplot(2,2,4)plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=1024');grid on;运行结果:fs=100Hz,Nyquist频率为fs/2=50Hz。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MATLAB中FFT的使用方法一.调用方法X=FFT(x);X=FFT(x,N);x=IFFT(X);x=IFFT(X,N)用MATLAB进行谱分析时注意:(1)函数FFT返回值的数据结构具有对称性。

例:N=8;n=0:N-1;xn=[4 3 2 6 7 8 9 0];Xk=fft(xn)→Xk =39.0000 -10.7782 + 6.2929i 0 - 5.0000i 4.7782 - 7.7071i 5.0000 4.7782 +7.7071i 0 + 5.0000i -10.7782 - 6.2929iXk与xn的维数相同,共有8个元素。

Xk的第一个数对应于直流分量,即频率值为0。

(2)做FFT分析时,幅值大小与FFT选择的点数有关,但不影响分析结果。

在IFFT时已经做了处理。

要得到真实的振幅值的大小,只要将得到的变换后结果乘以2除以N即可。

二.FFT应用举例例1:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t)。

采样频率fs=100Hz,分别绘制N=128、1024点幅频图。

clf;fs=100;N=128; %采样频率和数据点数n=0:N-1;t=n/fs; %时间序列x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号y=fft(x,N); %对信号进行快速Fourier变换mag=abs(y); %求得Fourier变换后的振幅f=n*fs/N; %频率序列subplot(2,2,1),plot(f,mag); %绘出随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=128');grid on;subplot(2,2,2),plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=128');grid on;%对信号采样数据为1024点的处理fs=100;N=1024;n=0:N-1;t=n/fs;x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号y=fft(x,N); %对信号进行快速Fourier变换mag=abs(y); %求取Fourier变换的振幅f=n*fs/N;subplot(2,2,3),plot(f,mag); %绘出随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=1024');grid on;subplot(2,2,4)plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅xlabel('频率/Hz');ylabel('振幅');title('N=1024');grid on;运行结果:fs=100Hz,Nyquist频率为fs/2=50Hz。

整个频谱图是以Nyquist频率为对称轴的。

并且可以明显识别出信号中含有两种频率成分:15Hz和40Hz。

由此可以知道FFT变换数据的对称性。

因此用FFT对信号做谱分析,只需考察0~Nyquist频率范围内的福频特性。

若没有给出采样频率和采样间隔,则分析通常对归一化频率0~1进行。

另外,振幅的大小与所用采样点数有关,采用128点和1024点的相同频率的振幅是有不同的表现值,但在同一幅图中,40Hz与15Hz振动幅值之比均为4:1,与真实振幅0.5:2是一致的。

为了与真实振幅对应,需要将变换后结果乘以2除以N。

例2:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t),fs=100Hz,绘制:(1)数据个数N=32,FFT所用的采样点数NFFT=32;(2)N=32,NFFT=128;(3)N=136,NFFT=128;(4)N=136,NFFT=512。

clf;fs=100; %采样频率Ndata=32; %数据长度N=32; %FFT的数据长度n=0:Ndata-1;t=n/fs; %数据对应的时间序列x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %时间域信号y=fft(x,N); %信号的Fourier变换mag=abs(y); %求取振幅f=(0:N-1)*fs/N; %真实频率subplot(2,2,1),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅xlabel('频率/Hz');ylabel('振幅');title('Ndata=32 Nfft=32');grid on;Ndata=32; %数据个数N=128; %FFT采用的数据长度n=0:Ndata-1;t=n/fs; %时间序列x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);y=fft(x,N);mag=abs(y);f=(0:N-1)*fs/N; %真实频率subplot(2,2,2),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅xlabel('频率/Hz');ylabel('振幅');title('Ndata=32 Nfft=128');grid on;Ndata=136; %数据个数N=128; %FFT采用的数据个数n=0:Ndata-1;t=n/fs; %时间序列x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);y=fft(x,N);mag=abs(y);f=(0:N-1)*fs/N; %真实频率subplot(2,2,3),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅xlabel('频率/Hz');ylabel('振幅');title('Ndata=136 Nfft=128');grid on;Ndata=136; %数据个数N=512; %FFT所用的数据个数n=0:Ndata-1;t=n/fs; %时间序列x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);y=fft(x,N);mag=abs(y);f=(0:N-1)*fs/N; %真实频率subplot(2,2,4),plot(f(1:N/2),mag(1:N/2)*2/N); %绘出Nyquist频率之前的振幅xlabel('频率/Hz');ylabel('振幅');title('Ndata=136 Nfft=512');grid on;结论:(1)当数据个数和FFT采用的数据个数均为32时,频率分辨率较低,但没有由于添零而导致的其他频率成分。

(2)由于在时间域内信号加零,致使振幅谱中出现很多其他成分,这是加零造成的。

其振幅由于加了多个零而明显减小。

(3)FFT程序将数据截断,这时分辨率较高。

(4)也是在数据的末尾补零,但由于含有信号的数据个数足够多,FFT振幅谱也基本不受影响。

对信号进行频谱分析时,数据样本应有足够的长度,一般FFT程序中所用数据点数与原含有信号数据点数相同,这样的频谱图具有较高的质量,可减小因补零或截断而产生的影响。

例3:x=cos(2*pi*0.24*n)+cos(2*pi*0.26*n)(1)数据点过少,几乎无法看出有关信号频谱的详细信息;(2)中间的图是将x(n)补90个零,幅度频谱的数据相当密,称为高密度频谱图。

但从图中很难看出信号的频谱成分。

(3)信号的有效数据很长,可以清楚地看出信号的频率成分,一个是0.24Hz,一个是0.26Hz,称为高分辨率频谱。

可见,采样数据过少,运用FFT变换不能分辨出其中的频率成分。

添加零后可增加频谱中的数据个数,谱的密度增高了,但仍不能分辨其中的频率成分,即谱的分辨率没有提高。

只有数据点数足够多时才能分辨其中的频率成分。

Fs = 100; % Sampling frequencyT = 1/Fs; % Sample timeL = 50; % Length of signalt = (0:L-1)*T; % Time vectorx = sin(2*pi*10*t);NFFT = 2^nextpow2(L);Y = fft(x,NFFT)/L;f = Fs/2*linspace(0,1,NFFT/2+1);% Plot single-sided amplitude spectrum.plot(f,2*abs(Y(1:NFFT/2+1)))title('Single-Sided Amplitude Spectrum of y(t)')xlabel('Frequency (Hz)')ylabel('|Y(f)|')1。

为什么用2^nextpow2(L)而不直接是L?2。

Y = fft(x,NFFT)/L为什么除以L。

3。

f = Fs/2*linspace(0,1,NFFT/2+1);为什么用0,1,NFFT/2+1。

最后2*abs(Y(1:NFFT/2+1))是什么意思?答案:1 、一般频域的采样点要大于时域的采样点,最好是2的幂数,便于计算。

可以看看数字信号处理这类的书2、假设采样频率为Fs,信号频率F,采样点数为N。

那么FFT之后结果就是一个为N点的复数。

每一个点就对应着一个频率点。

这个点的模值,就是该频率值下的幅度特性。

具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A 的N/2倍所以这里应该是3 linspace(x0,x1,n) 其中n代表的是点的数目,即分成n-1等分。

其实Fs/2*linspace(0,1,NFFT/2+1);就是在0到1之间分成NFFT/2份,也就是FS/NFFT,也就是设置间隔点的频率。

最后2*abs(Y(1:NFFT/2+1))因为前面Y = fft(x,NFFT)/ NFFT是原来信号的二分之一所以要乘以2假设FFT之后某点n用复数a+bi表示,那么这个复数的模就是An=根号a*a+b*b,相位就是Pn=atan2(b,a)。

相关文档
最新文档