利用MATLAB实现信号DFT的计算
matlab求N点DFT,利用MATLAB實现信号DFT的计算.doc

matlab求N点DFT,利⽤MATLAB實现信号DFT的计算.doc 利⽤MATLAB實现信号DFT的计算07级电信(2)班 刘坤洋 24实验⼀ 利⽤MATLAB实现信号DFT的计算⼀、实验⽬的:1、熟悉利⽤MATLAB计算信号DFT的⽅法2、掌握利⽤MATLAB实现由DFT计算线性卷积的⽅法⼆、实验设备:电脑、matlab软件三、实验内容:练习⽤matlab中提供的内部函数⽤于计算DFTfft(x),fft(x,N),ifft(x),ifft(x,N)的含义及⽤法在进⾏DFT时选取合适的时域样本点数N请举例,并编程实现题⽬:源程序: >> N=30; %数据的长度>>L=512; %DFT的点数>>f1=100; f2=120;>>fs=600; %抽样频率>>T=1/fs; %抽样间隔>>ws=2*pi*fs;>>t=(0:N-1)*T;>>f=cos(4*pi*f1*t)+cos(4*pi*f2*t);>>F=fftshift(fft(f,L));>>w=(-ws/2+(0:L-1)*ws/L)/(2*pi);>>hd=plot(w,abs(F));>>ylabel('幅度谱')>> xlabel('频率/Hz')>> title('my picture')结果图:在对信号进⾏DFT时选择hamming窗增加频率分辨率请举例,并编程实现题⽬:源程序:>> N=50; %数据的长度>>L=512; %DFT的点数>>f1=100;f2=150;>>fs=600; %抽样频率>>T=1/fs; %抽样间隔>>ws=2*pi*fs;>>t=(0:N-1)*T;>>f=cos(4*pi*f1*t)+0.15*cos(4*pi*f2*t);>>wh=(hamming(N))';>>f=f.*wh;>>F=fftshift(fft(f,L));>>w=(-ws/2+(0:L-1)*ws/L)/(2*pi);>>plot(w,abs(F));>>ylabel('幅度谱')>> xlabel('频率/Hz')>> title('my picture')>> legend('N=50')结果图:2、增加DFT点数M以显⽰更多频谱细节请举例,并编程实现题⽬:利⽤MATLAB计算16点序列x[k]的512点DFT。
基于Matlab的DFT及FFT频谱分析

基于Matlab的DFT及FFT频谱分析基于Matlab的DFT及FFT频谱分析一、引言频谱分析是信号处理中的重要任务之一,它可以揭示信号的频率特性和能量分布。
离散傅里叶变换(DFT)及快速傅里叶变换(FFT)是常用的频谱分析工具,广泛应用于许多领域。
本文将介绍通过Matlab进行DFT及FFT频谱分析的方法和步骤,并以实例详细说明。
二、DFT及FFT原理DFT是一种将时域信号转换为频域信号的离散变换方法。
它将信号分解成若干个正弦和余弦函数的叠加,得到频率和幅度信息。
FFT是一种高效的计算DFT的算法,它利用信号的对称性和周期性,将计算复杂度从O(N^2)降低到O(NlogN)。
FFT通过将信号分解成不同长度的子序列,递归地进行计算,最终得到频谱信息。
三、Matlab中的DFT及FFT函数在Matlab中,DFT及FFT可以通过内置函数进行计算。
其中,DFT使用函数fft,FFT使用函数fftshift。
fft函数可直接计算信号的频谱,fftshift函数对频谱进行频移操作,将低频移到频谱中心。
四、Matlab中DFT及FFT频谱分析步骤1. 读取信号数据首先,将待分析的信号数据读入到Matlab中。
可以使用内置函数load读取文本文件中的数据,或通过自定义函数生成模拟信号数据。
2. 时域分析通过plot函数将信号数据在时域进行绘制,以观察信号的波形。
可以设置合适的坐标轴范围和标签,使图像更加清晰。
3. 信号预处理针对不同的信号特点,可以进行预处理操作,例如去除直流分量、滤波等。
这些操作可提高信号的频谱分析效果。
4. 计算DFT/FFT使用fft函数计算信号数据的DFT/FFT,并得到频谱。
将信号数据作为输入参数,设置采样频率和点数,计算得到频谱数据。
5. 频域分析通过plot函数将频谱数据在频域进行绘制,观察信号的频率特性。
可以设置合适的坐标轴范围和标签,使图像更加清晰。
6. 结果解读根据频谱图像,分析信号的频率成分、幅度分布和峰值位置。
matlab实现DFT

DFT 基于Matlab 的实现一、实验目的1.掌握DFT 函数的用法。
2. 利用DFT 进行信号检测及谱分析。
3.了解信号截取长度对谱分析的影响。
二、实验内容1.利用DFT 计算信号功率谱。
实验程序:t=0:0.001:0.6;x=sin(2*pi*50*t)+sin(2*pi*120*t)+randn(1,length(t));Y=dft(x,512);P=Y.*conj(Y)/512;f=1000*(0:255)/512;plot(f,P(1:256))2. 进行信号检测。
分析信号频谱所对应频率轴的数字频率和频率之间的关系。
模拟信号)8cos(5)4sin(*2)(t t t x ππ+=,以n t 01.0= 10-≤≤N n 进行取样,求N 点DFT 的幅值谱。
实验程序:subplot(2,2,1)N=45;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t);y=dft(x,N);plot(q,abs(y));title('DFT N=45')subplot(2,2,2)N=50;n=0:N-1;t=0.01*n; q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t);y=dft(x,N);plot(q,abs(y));title('DFT N=50')subplot(2,2,3)N=55;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t);y=dft(x,N);plot(q,abs(y));title('DFT N=55')subplot(2,2,4)N=60;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t);y=dft(x,N);plot(q,abs(y));title('DFT N=60')3. 对2,进一步增加截取长度和DFT点数,如N加大到256,观察信号频谱的变化,分析产生这一变化的原因。
基于MATLAB的FFT算法的设计

基于MATLAB的FFT算法的设计FFT算法是一种用于快速计算离散傅里叶变换(DFT)的算法。
它通过将N点DFT分解为多个长度为N/2的DFT并递归地计算这些子问题来实现快速计算。
FFT算法是一种高效的算法,广泛应用于信号处理、图像处理和通信系统等领域。
MATLAB作为一种流行的科学计算软件,在信号处理中广泛使用。
MATLAB提供了快速计算DFT的函数fft,可以方便地进行信号频谱分析和滤波等操作。
下面将从FFT的理论原理、算法优化以及MATLAB的使用等方面展开讨论,详细介绍基于MATLAB的FFT算法的设计。
1.FFT算法的理论原理FFT算法基于蝶形运算的思想,将N点DFT分解为多级运算,每级运算中都会进行蝶形运算。
蝶形运算是一种两两计算的运算方式,可以将两个复数进行加减运算,并乘以一个旋转因子进行旋转。
FFT算法的主要思想是将N个点的DFT分解为两个N/2个点的DFT,然后再将这两个N/2个点的DFT两两合并为一个N个点的DFT。
这种分解递归进行下去,直到最后只有一个点,即得到DFT结果。
2.FFT算法的算法优化在实施FFT算法时,可以进行一些算法优化,以提高计算速度和效率。
首先是位逆序运算。
在FFT算法中,需要将输入的N个点按照位逆序重新排列,这在MATLAB中可以使用bitrevorder函数实现。
其次是预计算旋转因子。
FFT算法中需要进行的旋转因子的计算比较耗时,可以将旋转因子预先计算好并存储起来,以便使用时直接调用。
最后是避免重复计算。
由于FFT算法的递归特性,可能会重复计算一些结果。
可以使用分治法,将计算结果缓存起来,避免重复计算。
3.MATLAB中的FFT算法使用在MATLAB中,可以使用fft函数进行FFT计算。
这个函数可以接受输入信号和采样频率等参数,同时还可以设定计算结果的长度。
如果不指定计算结果的长度,默认将输入信号进行补零操作,使其长度为2的幂。
MATLAB的fft函数返回的结果是频率域的复数谱,可以使用abs函数取结果的绝对值,得到频谱的幅度谱。
Matlab中的离散傅里叶变换方法介绍

Matlab中的离散傅里叶变换方法介绍Matlab中的离散傅里叶变换(Discrete Fourier Transform,DFT)方法是数字信号处理中常用的工具。
通过将时域信号转换为频域信号,可以提取信号的频谱信息,帮助我们分析信号的频率成分以及进行滤波、压缩等处理。
本文将介绍Matlab中常用的几种离散傅里叶变换方法。
首先,我们来了解一下DFT的概念。
DFT是将时域中N个数据点的离散信号转换为频域中N个数据点的过程,其中N为一个正整数。
在Matlab中,可以使用fft函数来实现DFT。
fft函数的输入是一个长度为N的向量,输出是一个长度为N的复数向量,表示信号在频域中的幅度谱和相位谱。
在离散傅里叶变换中,有两种常用的方法,分别是直接计算和快速傅里叶变换(Fast Fourier Transform,FFT)。
首先我们来介绍直接计算方法。
直接计算方法是通过DFT的定义来计算每个频率点的幅度和相位,然后将它们组成一个复数向量。
在Matlab中,可以使用for循环来逐个计算每个频率点的值。
具体的代码如下所示:```N = length(signal); % 信号长度X = zeros(1, N); % 存储频域结果的向量for k = 0:N-1for n = 0:N-1X(k+1) = X(k+1) + signal(n+1) * exp(-1i * 2 * pi * k * n / N);endend```上述代码中的signal为输入的时域信号,X为计算得到的频域结果。
通过两层循环,我们可以计算出每个频率点的幅度和相位。
然而,直接计算方法的复杂度为O(N^2),计算效率较低,不适用于大规模的信号处理。
接下来,我们介绍更高效的FFT方法。
FFT是将DFT分解为多个较小规模的DFT的过程,从而提高计算效率。
在Matlab中,可以直接使用fft函数来进行FFT计算。
fft函数的输入和输出与DFT的定义相同,但是计算速度更快。
(完整word版)用matlab实现DFTFFT

用matlab实现DFT FFT目录实验目的 (2)实验内容 (2)1.用MATLAB实现DFT (2)2.用MATLAB实现FFT,分析有限离散序列的FFT (3)3.通过分别计算时间,得出DFT与FFT的算法差异 (7)实验原理 (8)1. 离散傅里叶变换的快速算法FFT (8)2. FFT提高运算速度的原理 (9)3. 理论分析DFT与FFT算法差异 (11)实验步骤 (12)实验结果 (13)实验分析 (27)实验结论 (33)实验体会 (33)实验目的1.通过研究DFT,FFT性质,用语言实现DFT, FFT。
不使用MATLAB现有的FFT函数,自己编写具体算法。
2.掌握FFT基2时间抽选法,理解其提高减少乘法运算次数提高运算速度的原理。
3.设计实验,得出DFT和FFT算法差异的证明,如复杂度等(精度、不同长度的序列等)。
实验内容1. 用MATLAB实现DFTN点序列x(n) 的DFT为:DFT的矩阵为:根据DFT公式与矩阵展开,通过MATLAB实现DFT:2.用Matlab实现FFT编程思想及程序框图:●原位计算因为DIT-FFT与DIF-FFT的算法类似,这里我们以DIT-FFT为例。
N=2M点的FFT共进行M级运算,且每一级都由N/2个蝶形运算组成,后一级的节点数据由前一级同处一条水平线位置的节点数据产生,所以我们同样可以将后一级的节点数据储存到前一级的节点中,这样的方法叫做原位计算,它大大节省了内存资源,降低了成本,简化了运算。
●序列的倒序无论是进行DIT-FFT还是DIF-FFT都需要进行倒序,包括输入倒序与输出倒序,以一定的方式将数组进行重新排列。
倒序的方法:首先由于N=2M,我们就可以用M位二进制数来表示节点的顺序,并且按照奇偶时域抽取。
然后,如图1所示,第一次按最低位n0的0、1值分解为奇偶组,第二次按次低位n1的0、1值分解为奇偶组,以此类推。
最后,所得二进制数所对应的十进制数即为序列倒序后产生的序列。
matlab的fft算法

matlab的fft算法MATLAB是一款广泛使用的数学软件,它提供了许多强大的工具和函数,可以帮助我们进行各种数学计算和分析。
其中,FFT(Fast Fourier Transform)算法是MATLAB中一个非常常用的函数,它用于对时间域信号进行快速傅里叶变换,从而在频域对信号进行分析。
一、FFT算法简介FFT算法是一种基于离散傅里叶变换(DFT)的快速算法,可以将一个信号从时域转换到频域,也可以将信号从频域转换到时域。
通过FFT算法,我们可以快速、准确地分析信号的频率成分和时延特性,从而更好地理解和处理信号。
在MATLAB中,可以使用fft函数来进行FFT运算。
该函数接受一个一维时间序列作为输入,并返回一个频域序列。
可以通过使用该函数来分析连续信号的频谱特性。
三、使用FFT函数的步骤1. 导入数据:首先,需要将需要分析的时间序列数据导入MATLAB中。
可以使用向量、数组或矩阵等形式导入数据。
2. 调用fft函数:在MATLAB命令窗口中,使用fft函数来对数据进行FFT运算。
输入参数包括时间序列数据和N值(采样点数),输出参数为频域序列。
3. 观察结果:通过绘图或打印输出等方式,观察FFT结果。
可以查看每个频率分量的幅值和相位信息,以及整个频谱的形状和位置。
4. 分析应用:根据FFT结果,可以对信号进行进一步的分析和处理,如噪声抑制、调制解调、通信系统设计等。
四、应用示例假设有一个简单的正弦波信号,可以使用MATLAB中的FFT函数来分析其频谱特性。
具体步骤如下:1. 导入数据:使用向量生成一个频率为5Hz、持续时间为1秒的正弦波信号。
2. 调用fft函数:在MATLAB命令窗口中,使用fft函数对该信号进行FFT运算,并指定采样点数为256。
3. 观察结果:使用plot函数绘制FFT结果的频谱图,并使用MATLAB中的frequency domain函数分析FFT结果。
4. 分析应用:根据FFT结果,可以得出该信号的频率成分和幅值信息,从而更好地理解该信号的性质和特点。
用matlab实现fft算法

A1=str2double(get(handles.edit8,'String'));A2=str2double(get(handles.edit9,'String'));F1=str2double(get(handles.edit10,'String'));F2=str2double(get(handles.edit11,'String'));Fs=str2double(get(handles.edit12,'String'));N=str2double(get(handles.edit13,'String'));t=[0:1/Fs:(N-1)/Fs];x=A1*sin(2*pi*F1*t)+A2*sin(2*pi*F2*t); %信号x的离散值axes(handles.axes1) %在axes1中作原始信号图plot(x);grid onm=nextpow2(x);N=2^m; % 求x的长度对应的2的最低幂次mif length(x)<Nx=[x,zeros(1,N-length(x))];% 若x的长度不是2的幂,补零到2的整数幂endnxd=bin2dec(fliplr(dec2bin([1:N]-1,m)))+1;% 求1:2^m数列序号的倒序y=x(nxd); %将x倒序排列作为y的初始值for L=1:m; %将DFT作m次基2分解,从左到右,对每次分解作DFT运算,共做m级蝶形运算,每一级都有2^(L-1)个蝶形结B=2^(L-1);%两个输入数据相距2^(L-1)for j=0:B-1 ;%J代表了不同的旋转因子p=2^(m-L)*j;for k=(j+1):2^L:N ;%本次蝶形运算的跨越间隔为2^LWN=exp(-i*2*pi*p/N);%计算本次运算的旋转因子T=y(k)+y(k+B)*WN ;%计算K地址上蝶形项y(k+B)=y(k)-y(k+B)*WN ;%计算(K+B)地址上的蝶形项并仍然放回(K+B)y(k)=T ;%将原来计算的K地址蝶形项放回K地址,注意必须先进行复数加法运算endendendaxes(handles.axes2) %在axes2中作自编fft运算后的幅频特性图Ayy = (abs(y)); %取模Ayy=Ayy/(N/2); %换算成实际的幅度F=([1:N]-1)*Fs/N; %换算成实际的频率值stem(F(1:N/2),Ayy(1:N/2)); %显示换算后的FFT模值结果axes(handles.axes3) %在axes3中作系统fft运算后的幅频特性图G=fft(x,N); %利用系统作N点FFT变换,作对比Ayy1= (abs(G)); %取模Ayy1=Ayy1/(N/2); %换算成实际的幅度F=([1:N]-1)*Fs/N; %换算成实际的频率值stem(F(1:N/2),Ayy1(1:N/2)); %显示换算后的FFT模值结果GUI界面所得频谱图:图1由图1可知,我所编写的fft算法与系统自带的fft算法结果一致,是正确的倘若我未知信号频率f1,f2,仍然设f1=50Hz,f2=80Hz,在保证Fs大于两倍信号频率的前提下(Fs仍然为256Hz)改变采样点数,取N=64图2由图2可知,50Hz频率点处产生误差取N=40图3由图3可知,50Hz频率点和80Hz频率点处均产生误差再取N=8图4误差更大了!取N=1000图5由图五可知,当N=1000时,所得图形接近理想值再取N=1024图6与理想值符合,但与图1比,分辨率更高结论:当我们已知一个周期信号的周期时,我们对其进行频谱分析的时候,(由图1和图6可知)对其进行fft运算所取的点数N必须满足分辨率(Fs/N)能够被信号频率整除才能保证没有误差,但是在实际的情况中,我们往往不知道信号的周期是多少,所以我们在对这类未知信号进行频谱分析的时候,在保证时域采样频率满足乃奎斯特条件的情况下,对其作FFT运算的时候采样点数N尽量地取大一点,这样才能保证减小误差,由图3与图5对比可知,当N的值较大时,所得到的频谱图误差较小,反之误差很大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
07级电信(2)班 刘坤洋 24
实验一 利用MATLAB 实现信号DFT 的计算
一、实验目的:
1、熟悉利用MATLAB 计算信号DFT 的方法
2、掌握利用MATLAB 实现由DFT 计算线性卷积的方法
二、实验设备:电脑、matlab 软件
三、实验内容:
1、练习用matlab 中提供的内部函数用于计算DFT
(1) fft (x ),fft (x ,N ),ifft (x ),ifft (x ,N )的含义及用法
(2) 在进行DFT 时选取合适的时域样本点数N
请举例,并编程实现
题目:
源程序: >> N=30; %数据的长度
>>L=512; %DFT 的点数
>>f1=100; f2=120;
>>fs=600; %抽样频率
>>T=1/fs; %抽样间隔
>>ws=2*pi*fs;
>>t=(0:N-1)*T;
>>f=cos(4*pi*f1*t)+cos(4*pi*f2*t);
>>F=fftshift(fft(f,L));
>>w=(-ws/2+(0:L-1)*ws/L)/(2*pi);
>>hd=plot(w,abs(F));
>>ylabel('幅度谱')
>> xlabel('频率/Hz')
的频谱
分析利用)π4cos()π4cos()(DFT 21t f t f t x +=Hz
600,Hz 120,Hz 10021===s f f f
>> title('my picture')
结果图:
(3) 在对信号进行DFT 时选择hamming 窗增加频率分辨率
请举例,并编程实现
题目:
源程序:>> N=50; %数据的长度
>>L=512; %DFT 的点数
>>f1=100;f2=150;
>>fs=600; %抽样频率
>>T=1/fs; %抽样间隔
>>ws=2*pi*fs;
>>t=(0:N-1)*T;
>>f=cos(4*pi*f1*t)+0.15*cos(4*pi*f2*t);
的频谱
分析利用)π4cos(15.0)π4cos()(DFT 21t f t f t x +=Hz 600,Hz 150,Hz 10021===s f f f
>>wh=(hamming(N))';
>>f=f.*wh;
>>F=fftshift(fft(f,L));
>>w=(-ws/2+(0:L-1)*ws/L)/(2*pi);
>>plot(w,abs(F));
>>ylabel('幅度谱')
>> xlabel('频率/Hz')
>> title('my picture')
>> legend('N=50')
结果图:
2、增加DFT 点数M 以显示更多频谱细节
请举例,并编程实现
题目: 利用MATLAB 计算16点序列x [k ]的512点DFT 。
源程序:>> N = 32;
>> k = 0:N-1;
4
,32 ),/ π4cos(][===r N N rk k x
>> L = 0:511;
>> x = cos(4*pi*k*4./N);
>> X = fft(x);plot(k/N,abs(X),'o');
>> hold on
>> XE = fft(x,512);plot(L/512,abs(XE)) ;
>> legend('N=32')
结果图:
3、利用MATLAB实现由DFT计算线性卷积
请举例,并编程实现
题目:利用MATLAB由DFT计算x[k]* h[k]。
x[k]={1, 2, 1, 1}, h[k]={2, 2, 1, 1}源程序:% 利用DFT计算线性卷积
>> x = [1 2 1 1];
>>h = [2 2 1 1];
>> % 确定卷积结果的长度
>>L = length(x)+length(h)-1;
% 计算序列的L点DFT
>>XE = fft(x,L);
>.HE = fft(h,L);
>> % 由IDFT计算卷积结果
>>y1 = ifft(XE.*HE);
>> %绘制卷积结果及误差图
>> k=0:L-1;
>> subplot(1,2,1);
>> stem(k,real(y1));axis([0 6 0 7]);
>> title('Result of linear Convolution');
>> xlabel('Time index k');ylabel('Amplitude');
>> y2=conv(x,h);error=y1-y2;
>> subplot(1,2,2);stem(k,abs(error));
>> xlabel('Time index k');ylabel('Amplitude');
>> title('Error Magnitude');
结果图:
(注:可编辑下载,若有不当之处,请指正,谢谢!)。