数据建模常规方法的Matlab实现(实例)

合集下载

数学建模常用方法MATLAB求解

数学建模常用方法MATLAB求解

数学建模常用方法MATLAB求解数学建模是通过数学方法对实际问题进行数学描述、分析和求解的过程。

MATLAB是一款功能强大的数学软件,广泛用于数学建模中的问题求解。

在数学建模中,常用的方法有数值求解、优化求解和符号计算。

下面将介绍MATLAB在数学建模中常用的方法和求解示例。

1.数值求解方法:数值求解是利用数值计算方法来近似求解实际问题的数学模型。

MATLAB提供了许多数值求解函数,如方程求根、解线性方程组、曲线拟合、积分和微分等。

以方程求根为例,可以使用fsolve函数来求解非线性方程。

示例:求解非线性方程sin(x)=0.5```matlabx0=0;%初始点x = fsolve(fun,x0);```2.优化求解方法:优化求解是在给定约束条件下,寻找使目标函数取得最优值的变量值。

MATLAB提供了许多优化求解函数,如线性规划、二次规划、非线性规划、整数规划等。

以线性规划为例,可以使用linprog函数来求解线性规划问题。

示例:求解线性规划问题,目标函数为max(3*x1+4*x2),约束条件为x1>=0、x2>=0和2*x1+3*x2<=6```matlabf=[-3,-4];%目标函数系数A=[2,3];%不等式约束的系数矩阵b=6;%不等式约束的右端向量lb = zeros(2,1); % 变量下界ub = []; % 变量上界x = linprog(f,A,b,[],[],lb,ub);```3.符号计算方法:符号计算是研究数学符号的计算方法,以推导或计算数学表达式为主要任务。

MATLAB提供了符号计算工具箱,可以进行符号计算、微积分、代数运算、求解方程等。

以符号计算为例,可以使用syms函数来定义符号变量,并使用solve函数求解方程。

示例:求解二次方程ax^2+bx+c=0的根。

```matlabsyms x a b c;eqn = a*x^2 + b*x + c == 0;sol = solve(eqn, x);```以上是MATLAB在数学建模中常用的方法和求解示例,通过数值求解、优化求解和符号计算等方法,MATLAB可以高效地解决各种数学建模问题。

Matlab中的数学建模方法

Matlab中的数学建模方法

Matlab中的数学建模方法引言在科学研究和工程领域,数学建模是一种重要的方法,它可以通过数学模型来描述和解释真实世界中的现象和问题。

Matlab是一款强大的数值计算和数据可视化工具,因其灵活性和易用性而成为数学建模的首选工具之一。

本文将介绍一些在Matlab中常用的数学建模方法,并以实例来展示其应用。

一、线性回归模型线性回归是最常见的数学建模方法之一,用于解决变量之间呈现线性关系的问题。

在Matlab中,可以使用regress函数来拟合线性回归模型。

例如,假设我们想要分析学生的身高和体重之间的关系,并建立一个线性回归模型来预测学生的体重。

首先,我们需要收集一组已知的身高和体重数据作为训练集。

然后,可以使用regress函数来计算回归模型的参数,并进行预测。

最后,通过绘制散点图和回归直线,可以直观地观察到身高和体重之间的线性关系。

二、非线性回归模型除了线性回归外,有时数据之间的关系可能是非线性的。

在这种情况下,可以使用非线性回归模型来建立更准确的数学模型。

在Matlab中,可以使用curvefit工具箱来拟合非线性回归模型。

例如,假设我们想要分析一组实验数据,并建立一个非线性模型来描述数据之间的关系。

首先,可以使用curvefit工具箱中的工具来选择最适合数据的非线性模型类型。

然后,通过调整模型的参数,可以用最小二乘法来优化模型的拟合效果。

最后,可以使用拟合后的模型来进行预测和分析。

三、最优化问题最优化是数学建模的关键技术之一,用于在给定的限制条件下找到使目标函数取得最大或最小值的变量取值。

在Matlab中,可以使用fmincon函数来求解最优化问题。

例如,假设我们要最小化一个复杂的目标函数,并且有一些约束条件需要满足。

可以使用fmincon函数来设定目标函数和约束条件,并找到最优解。

通过调整目标函数和约束条件,以及设置合适的初始解,可以得到问题的最优解。

四、概率统计模型概率统计模型用于解决随机性和不确定性问题,在许多领域都得到广泛应用。

matlab数学建模100例

matlab数学建模100例

matlab数学建模100例Matlab是一种强大的数学建模工具,广泛应用于科学研究、工程设计和数据分析等领域。

在这篇文章中,我们将介绍100个使用Matlab进行数学建模的例子,帮助读者更好地理解和应用这个工具。

1. 线性回归模型:使用Matlab拟合一组数据点,得到最佳拟合直线。

2. 多项式拟合:使用Matlab拟合一组数据点,得到最佳拟合多项式。

3. 非线性回归模型:使用Matlab拟合一组数据点,得到最佳拟合曲线。

4. 插值模型:使用Matlab根据已知数据点,估计未知数据点的值。

5. 数值积分:使用Matlab计算函数的定积分。

6. 微分方程求解:使用Matlab求解常微分方程。

7. 矩阵运算:使用Matlab进行矩阵的加减乘除运算。

8. 线性规划:使用Matlab求解线性规划问题。

9. 非线性规划:使用Matlab求解非线性规划问题。

10. 整数规划:使用Matlab求解整数规划问题。

11. 图论问题:使用Matlab解决图论问题,如最短路径、最小生成树等。

12. 网络流问题:使用Matlab解决网络流问题,如最大流、最小费用流等。

13. 动态规划:使用Matlab解决动态规划问题。

14. 遗传算法:使用Matlab实现遗传算法,求解优化问题。

15. 神经网络:使用Matlab实现神经网络,进行模式识别和预测等任务。

16. 支持向量机:使用Matlab实现支持向量机,进行分类和回归等任务。

17. 聚类分析:使用Matlab进行聚类分析,将数据点分成不同的类别。

18. 主成分分析:使用Matlab进行主成分分析,降低数据的维度。

19. 时间序列分析:使用Matlab进行时间序列分析,预测未来的趋势。

20. 图像处理:使用Matlab对图像进行处理,如滤波、边缘检测等。

21. 信号处理:使用Matlab对信号进行处理,如滤波、频谱分析等。

22. 控制系统设计:使用Matlab设计控制系统,如PID控制器等。

Matlab技术数学建模实战教程

Matlab技术数学建模实战教程

Matlab技术数学建模实战教程近年来,随着计算机技术的飞速发展,数学建模在科学研究和工程实践中发挥着越来越重要的作用。

而Matlab作为一款功能强大、易于使用的数学建模工具,备受科研工作者和工程师的喜爱。

本文将为大家呈现一篇关于Matlab技术数学建模实战教程,帮助读者更好地掌握这一工具并在实践中取得更好的效果。

一、Matlab的基本操作和编程语言首先,我们来了解一下Matlab的基本操作。

作为一款交互式软件,Matlab的命令行界面(Command Window)是最常用的工作环境。

在这个界面上,用户可以直接输入命令并查看结果。

比如,我们可以输入"2+2"并执行命令,Matlab便会给出结果"4"。

除了命令行界面,Matlab还提供了图形用户界面(Graphical User Interface,GUI)来方便用户进行操作。

通过GUI,用户可以通过按钮、菜单等进行图形化操作,进一步简化了使用过程。

另外,在Matlab中,用户也可以编写脚本(Script)和函数(Function)来实现更复杂的计算任务。

脚本是一系列的命令集合,可以按照特定顺序自动执行。

而函数则是一个封装了一系列操作的模块,可以通过输入参数获取输出结果。

对于Matlab的编程语言,它采用了矩阵和数组为基本数据结构,并提供了丰富的数值计算函数和工具箱。

用户可以通过这些函数和工具箱实现各种数学和工程计算任务,比如线性代数运算、数值积分、优化算法等。

二、数学建模实战案例:鱼群行为模拟为了更好地理解Matlab在数学建模中的应用,我们以鱼群行为模拟为例进行实战演示。

鱼群模型是一种经典的生物群体运动模型,通过模拟鱼群中每只鱼的运动规律,可以研究鱼群的集群行为和群体动力学特性。

首先,我们需要确定鱼群模型的基本参数,比如鱼的个数、鱼的初始位置和速度等。

这些参数可以通过随机生成函数在Matlab中快速生成。

matlab数学建模程序代码

matlab数学建模程序代码

matlab数学建模程序代码
当进行数学建模时,MATLAB是一个强大的工具,用于实现和测试模型。

下面是一个简单的MATLAB代码示例,演示如何使用MATLAB进行一维线性回归建模:
```matlab
%生成示例数据
x=[1,2,3,4,5];
y=[2.8,3.9,4.8,5.5,6.3];
%进行一维线性回归
coefficients=polyfit(x,y,1);
slope=coefficients(1);
intercept=coefficients(2);
%绘制原始数据和回归线
scatter(x,y,'o','DisplayName','原始数据');
hold on;
plot(x,polyval(coefficients,x),'r-','DisplayName','回归线');
hold off;
%添加标签和图例
xlabel('X轴');
ylabel('Y轴');
title('一维线性回归建模示例');
legend('show');
%输出回归方程的系数
fprintf('回归方程:y=%.2fx+%.2f\n',slope,intercept);
```
此代码生成了一些示例数据,然后使用一维线性回归对数据进行建模。

回归方程的系数将被计算,并且原始数据与回归线将在图上显示。

请注意,这只是一个简单的示例,实际上,你可能需要根据你的具体问题修改代码。

数学建模 第3讲 MATLAB的具体实例

数学建模 第3讲 MATLAB的具体实例
返 回
解答
用MATLAB优化工具箱解线性规划
1、模型: min z=cX s.t. AX b 命令:x=linprog(c,A,b)
2、模型:min z=cX s.t. AX b Aeq X beq 命令:x=linprog(c,A,b,Aeq,beq)
AX b 存在,则令A=[ ],b=[ ]. 注意:若没有不等式:
三、模型的建立与分析
1.总体风险用所投资的Si中最大的一个风险来衡量,即max{ qixi|i=1,2,…n}
2.购买 Si 所付交易费是一个分段函数,即 pixi xi>ui 交易费 = piui xi≤ui 而题目所给定的定值 ui(单位:元)相对总投资 M 很小, piui 更小, 可以忽略不计,这样购买 Si 的净收益为(r i-pi)xi
五、 结果分析 1.风险大,收益也大。
2.当投资越分散时,投资者承担的风险越小,这与题意一致。即: 冒险的投资者会出现集中投资的情况,保守的投资者则尽量分散投资。
3.曲线上的任一点都表示该风险水平的最大可能收益和该收益要求的最 小风险。对于不同风险的承受能力,选择该风险水平下的最优投资组合。 4.在a=0.006附近有一个转折点,在这一点左边,风险增加很少时,利润增长 很快。在这一点右边,风险增加很大时,利润增长很缓慢,所以对于风险和 收益没有特殊偏好的投资者来说,应该选择曲线的拐点作为最优投资组合, 大约是a*=0.6%,Q*=20% ,所对应投资方案为: 风险度 收益 x0 x1 x2 x3 x4 0.0060 0.2019 0 0.2400 0.4000 0.1091 0.2212
8 4 x1 8 3 x2 32 x1 24 x2
因检验员错检而造成的损失为:

如何用MATLAB进行数学建模

如何用MATLAB进行数学建模

如何用MATLAB进行数学建模下面是一个关于如何用MATLAB进行数学建模的文章范例:MATLAB是一种强大的数学软件工具,广泛应用于各种数学建模问题的解决。

通过合理利用MATLAB的功能和特性,可以更加高效地进行数学建模,并得到准确的结果。

本文将介绍如何使用MATLAB进行数学建模,并给出一些实际例子。

一、数学建模的基本步骤数学建模是指将实际问题转化为数学模型,并利用数学方法对其进行求解和分析的过程。

在使用MATLAB进行数学建模之前,我们需要明确问题的具体要求,然后按照以下基本步骤进行操作:1. 理解问题:深入了解问题背景、影响因素以及目标要求,确保对问题有一个清晰的认识。

2. 建立模型:根据问题的特性,选择合适的数学模型,并将问题转化为相应的数学表达式。

3. 编写MATLAB代码:利用MATLAB的计算功能和算法库,编写用于求解数学模型的代码。

4. 数据处理和结果分析:在获得计算结果后,根据需要进行数据处理和结果分析,评估模型的准确性和可行性。

二、MATLAB的数学建模工具MATLAB提供了一系列用于数学建模的工具箱和函数,这些工具可以帮助我们快速构建数学模型,并进行求解。

下面是一些常用的数学建模工具:1. 符号计算工具箱:MATLAB的符号计算工具箱可以实现符号运算,用于建立和求解复杂的数学表达式。

2. 优化工具箱:优化工具箱可以用于求解多种优化问题,如线性规划、非线性规划、整数规划等。

3. 数值解工具箱:数值解工具箱提供了各种数值方法和算法,用于求解微分方程、积分方程、差分方程等数学问题。

4. 统计工具箱:统计工具箱可以进行统计建模和分析,包括假设检验、回归分析、时间序列分析等。

5. 控制系统工具箱:控制系统工具箱用于建立和分析控制系统模型,包括经典控制和现代控制方法。

三、数学建模实例为了更好地展示使用MATLAB进行数学建模的过程,我们给出一个实际的数学建模例子:求解物体的自由落体运动。

数据建模常规方法的Matlab实现(实例)

数据建模常规方法的Matlab实现(实例)
美国人口数据百万1860187018801960197019801990200031438650217932040226525142814数据tx数据xy用最小二乘法估计rs模型检验用模型计算2000年美国人口误差不到3阻滞增长模型logistic模型r025573921用美国18601990年数据去掉个别异常数据与实际数据2000年为2814比较101520501001502002503001790年为零点2745logistic模型的应用模型应用加入2000年人口数据后重新估计模型参数r024904340x20103060预报美国2010年的人口种群数量模型鱼塘中的鱼群森林中的树木
MATLAB(liti21)
3)运算结果为: f =0.0043 0.0051 0.0056 0.0059
0.0062 0.0062 0.0063 0.0063 x = 0.0063 -0.0034 0.2542
0.0061 0.0063
4)结论:a=0.0063, b=-0.0034, k=0.2542
的。
1. lsqcurvefit
已知数据点: xdata=(xdata1,xdata2,…,xdatan),
ydata=(ydata1,ydata2,…,ydatan) lsqcurvefit用以求含参量x(向量)的向量值函数
F(x,xdata)=(F(x,xdata1),…,F(x,xdatan))T 中的参变量x(向量),使得
6 0.28 15
-0.02
解:(1)画出散点图: x=[0;0.4;1.2;2;2.8;3.6;4.4;5.2;6;7.2;8;9.2;10.4;11.6;12.4;13.6; 14.4;15]; y=[1;0.85;0.29;-0.27;-0.53;-0.4;-0.12;0.17;0.28;0.15;-0.03;0.15;-0.071;0.059;0.08;0.032;-0.015;-0.02]; plot(x,y,'r*')
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

读取的格式 读取2行数据
%将Matlab数据写入记事本 fid= fopen('tp.txt','wt'); %文件扩展名可以为:*.dat或*.xls fprintf(fid,'This is the database of class 1.\n'); name='Sally';types=1;x=3.1;y=45;answer='Yes'; fprintf(fid,'% s Type %u %f %u %s \n',name,types,x,y,answer); name='Tom';types=2;x=2.5;y=20;answer='No'; fprintf(fid,'% s Type %u %f %u %s \n',name,types,x,y,answer); fclose(fid);
1)编写M文件 curvefun1.m function f=curvefun1(x,tdata) f=x(1)+x(2)*exp(-0.02*x(3)*tdata); %其中 x(1)=a; x(2)=b;x(3)=k;
2)输入命令 tdata=100:100:1000; cdata=1e-03*[4.54,4.99,5.35,5.65,5.90,6.10, 6.26,6.39,6.50,6.59]; x0=[0.2,0.05,0.05]; x=lsqcurvefit ('curvefun1',x0,tdata,cdata) f= curvefun1(x,tdata) plot(tdata,cdata,'o',tdata,f,'r-')
的。
1. lsqcurvefit
已知数据点: xdata=(xdata1,xdata2,…,xdatan),
ydata=(ydata1,ydata2,…,ydatan) lsqcurvefit用以求含参量x(向量)的向量值函数
F(x,xdata)=(F(x,xdata1),…,F(x,xdatan))T 中的参变量x(向量),使得
(2)对应函数形式为 f t acosktewt ,进行拟合.
程序如下: syms t
x=[0;0.4;1.2;2;2.8;3.6;4.4;5.2;6;7.2;8;9.2;10.4;11.6;12.4;13.6; 14.4;15];
y=[1;0.85;0.29;-0.27;-0.53;-0.4;-0.12;0.17;0.28;0.15;-0.03;0.15;-0.071;0.059;0.08;0.032;-0.015;-0.02];
运行结果:P = 0.1481 -1.4030 1.8537 8.2698(降幂排)
2.图形窗口的多项式拟合
画出数据点: >> x=[1 2 3 4 5 6 7 8 9];y=[9 7 6 3 -1 2 5 7
20];plot(x,y,'r*'); 在图形窗口中单击Tools-Basic Fitting,打
2)输入命令: x0=[0.2,0.05,0.05]; x=lsqnonlin('curvefun2',x0) f= curvefun2(x)
MATLAB(liti22)
3)运算结果为 f =1.0e-003 *(0.2322 -0.1243 -0.2495 -0.2413 -0.1668
-0.0724 0.0241 0.1159 0.2030 0.2792 x =0.0063 -0.0034 0.2542
开对话框。
1.2.2 指定函数拟合
例2:在某次阻尼振荡实验中测得18组数据点。
x 0 0.4 1.2 y 1 0.85 0.29 x 7.2 8 9.2
2 -0.27 10.4
2.8 -0.53 11.6
3.6 -0.4 12.4
4.4 -0.12 13.6
5.2 0.17 14.4
y 0.15 -0.03 -0.15 -0.071 0.059 0.08 0.032 -0.015
合函数f来拟合数据x,y.此处数据必须是列向量的形式.
1.2.3 曲线拟合工具箱
MATLAB主窗口左下角: start→toolboxes→CurveFitting→Curve Fitting Tool (cftool)
练习:
1、有一只对温度敏感的电阻,已经测得一组温度t 和电阻R数据: R() 20.5 32.7 51.0 73.0 95.7 t( o C) 765 826 873 942 1032
t 0 0.5
1.0
1.5
2.0
2.5
3.0
v 0 0.4794 0.8415 0.9975 0.9093 0.5985 0.1411
s 1 1.5
2
2.5
3
3.5
4
1、解答:
R与t大致呈 直线关系, 即
R at b
2、Matlab运行程序:
从图形上看,次数越高拟合程度越好。
3、Matlab运行程序:
1.1.1 Excel与MATLAB的数据交互
首先要安装Excel和MATLAB。 第一,打开Excel的工具→宏→安全性→安全级(中) 第二,打开Excel的工具→加载宏→浏览→
安装MATLAB的目录→toolbox →exlink →excllink.xla →确定,得到如下的工具条(即可使用):
function f=curvefun2(x) 应将cdata tdata的值写在
tdata=100:100:1000;
curvefun2.m中
cdata=1e-03*[4.54,4.99,5.35,5.65,5.90,
6.10,6.26,6.39,6.50,6.59];
f=x(1)+x(2)*exp(-0.02*x(3)*tdata)- cdata;
解法2 : 用命令lsqnonlin
f(x)=F(x,tdata,ctada)=(a be0.02kt1 c1,L , a be0.02kt10 c1)T
x=(a,b,k)
函数curvefun2的自变量是x,
1)编写M文件 curvefun2.m
cdata和tdata是已知参数,故
f=fittype('a*cos(k*t)*exp(w*t)','independent','t','coefficients',{'a' ,'k','w'});
cfun=fit(x,y,f) %显示拟合函数
xi=0:.1:20;
yi=cfun(xi);
plot(x,y,'r*',xi,yi,'b-') 说明:fittype是自定义拟合函数,cfun=fit(x,y,f)是根据自定义的拟
=F(x,xdatai)-ydatai
输入格式为: 1) x=lsqnonlin(‘fun’,x0); 2)x=lsqnonlin(‘fun’,x0,options); 3)x= lsqnonlin(‘fun’,x0,options‘grad’); 4)[x,options]=lsqnonlin (‘fun’,x0,…); 5)[x,options,funval]=lsqnonlin(‘fun’x0,…);
1.1.2 记事本与MATLAB的数据交互
%从记事本t.txt中读取数据 load(‘filename.***’) %记事本中记录的全是数据 [name,type, x,y,answer]=textread(‘t.txt’,‘%s Type %n %f %n
%s’,2)
每一列要保存的变量名
保存的文件名
ydata=(ydata1,ydata2,…,ydatan) lsqnonlin用以求含参量x(向量)的向量值函数 f(x)=(f1(x),f2(x),…,fn(x))T 中的参量x,使得
f T (x) f (x) f1(x)2 f2 (x)2 fn (x)2
最小. 其中 fi(x)=f(x,xdatai,ydatai)
说明:x= lsqnonlin (‘fun’,x0,options);
fun是一个事先建立的 定义函数f(x)的M文件, 自变量为x
迭代初值
所有优 化函数
解法1. 用命令lsqcurvefit
F(x,tdata)= (a be0.02kt1 ,L , a be0.02kt10 )T ,x=(a,b,k)
1.3.2 薄膜渗透率的测定
下面用Matlab软件进行计算。
补充:用MATLAB作非线性最小二乘拟合
MATLAB提供了两个求非线性最小二乘拟合的函数: lsqcurvefit和lsqnonlin.两个命令都要先建立M文件 fun.m,在其中定义函数f(x),但两者定义f(x)的方式是不同
拟合引例中电阻R与温度t之间的关系R=at+b。
2、x为0到1之间的数,间隔0.1,y为-0.447,1.978, 3.28,6.16,7.08,7.34,7.66,9.56,9.48, 9.30,11.2,分别用二次、五次和十次拟合曲线 来拟合这组数据,并进行比较。
3、已知在某实验中测的某质点的位移和速度随时 间的变化如下,求质点的速度与位移随时间的 变化曲线以及位移随速度的变化曲线。
n
2
(F(x, xdatai ) ydatai ) 最小
i 1
说明:x=lsqcurvefit(‘fun’,x0,xdata,ydata,options);
fun是一个事先建立的 定义函数F(x,xdata) 的 M文件, 自变量为x和 xdata
相关文档
最新文档