中考数学第一轮复习平移与旋转专题训练

合集下载

备考2022年中考数学一轮复习-图形的变换_平移、旋转变换_平移的性质-单选题专训及答案

备考2022年中考数学一轮复习-图形的变换_平移、旋转变换_平移的性质-单选题专训及答案

备考2022年中考数学一轮复习-图形的变换_平移、旋转变换_平移的性质-单选题专训及答案平移的性质单选题专训1、(2017南山.中考模拟) 如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A . 2B . 3C . 4D . 52、(2017河西.中考模拟) 如图,菱形ABCD的对角线AC=3cm,把它沿对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形ENCM的面积之比为()A . 9:4B . 12:5C . 3:1D . 5:23、(2019山西.中考模拟) 若将抛物线先向左平移1个单位长度,再向下平移2个单位长度,则所得抛物线的解析式为()A .B .C .D .4、(2017巴彦淖尔.中考模拟) 如图,将△ABE向右平移2cm得到△DCF,如果△ABE 的周长是16cm,那么四边形ABFD的周长是()A . 16cmB . 18cmC . 20cmD . 21cm5、(2019瑞安.中考模拟) 如图,在平面直角坐标系中,点A、B的坐标分别为(0,4)和(1,3),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A在直线y=x﹣1上,则点B与点O′之间的距离为()A . 3B . 4C . 3D .6、(2019鄞州.中考模拟) 如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A . 4,30°B . 2,60°C . 1,30°D . 3,60°7、(2017嘉兴.中考真卷) 如图,在平面直角坐标系中,已知点,.若平移点到点,使以点,,,为顶点的四边形是菱形,则正确的平移方法是()A . 向左平移1个单位,再向下平移1个单位B . 向左平移个单位,再向上平移1个单位 C . 向右平移个单位,再向上平移1个单位 D . 向右平移1个单位,再向上平移1个单位8、(2017安徽.中考模拟) 把抛物线y=﹣经()平移得到y=﹣﹣1.A . 向右平移2个单位,向上平移1个单位B . 向右平移2个单位,向下平移1个单位C . 向左平移2个单位,向上平移1个单位D . 向左平移2个单位,向下平移1个单位9、(2015宁德.中考真卷) 如图,将直线沿着AB的方向平移得到直线,若∠1=50°,则∠2的度数是()A . 40°B .50°C . 90°D . 130°10、(2019惠民.中考模拟) 如图,一条抛物线与x轴相交于M、N两点(点M在点N 的左侧),其顶点P在线段AB上移动.若点A、B的坐标分别为(一2,3)、(1,3),点N的横坐标的最大值为4,则点M的横坐标的最小值为()A . -1B . -3C . -5D . -711、(2017莱西.中考模拟) 如图,面积为6cm2的△ABC纸片沿BC方向平移至△DEF 的位置,平移的距离是BC长的2倍,则△ABC纸片扫过的面积为()A . 18cm2B . 21cm2C . 27cm2D . 30cm212、(2017青岛.中考模拟) 已知△ABC的面积为36,将△ABC沿BC的方向平移到△A′B′C的位置,使B′和C重合,连接AC′交A′C于D,则△C′DC的面积为()A . 6B . 9C . 12D . 1813、(2017冠.中考模拟) 已知点A(﹣1,0)和点B(1,2),将线段AB平移至A′B′,点A′与点A对应,若点A′的坐标为(1,﹣3),则点B′的坐标为()A . (3,0)B . (3,﹣3)C . (3,﹣1)D . (﹣1,3)14、(2017天桥.中考模拟) 如图,△DEF是由△ABC通过平移得到,且点B,E,C,F 在同一条直线上.若BF=14,EC=6.则BE的长度是()A . 2B . 4C . 5D . 315、(2016济南.中考真卷) 如图,在6×6方格中有两个涂有阴影的图形M、N,①中的图形M平移后位置如②所示,以下对图形M的平移方法叙述正确的是()A . 向右平移2个单位,向下平移3个单位B . 向右平移1个单位,向下平移3个单位C . 向右平移1个单位,向下平移4个单位D . 向右平移2个单位,向下平移4个单位16、(2018濮阳.中考模拟) 如图,在平面直角坐标系中,Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后向下平移2个单位,则A点的对应点的坐标为( )A .B .C .D .17、(2017洛宁.中考模拟) 已知线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A . (1,2)B . (2,9)C . (5,3)D . (﹣9,﹣4)18、(2017城.中考模拟) 如图,将面积为5的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的两倍,则图中的四边形ACED的面积为()A . 5B . 10C . 15D . 2019、(2011茂名.中考真卷) 如图,⊙O1、⊙O2相内切于点A,其半径分别是8和4,将⊙O2沿直线O1O2平移至两圆相外切时,则点O2移动的长度是()A . 4B . 8C . 16D . 8或1620、(2018柳北.中考模拟) 如图,是由沿BD所在的直线平移得到的,AE,BF的延长线交于点C,若,则的度数是A .B .C .D .21、(2013海南.中考真卷) 如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A . AB=BCB . AC=BC C . ∠B=60°D . ∠ACB=60°22、(2019乐山.中考真卷) 下列四个图形中,可以由下图通过平移得到的是()A .B .C .D .23、(2018宜宾.中考真卷) 如图,将沿边上的中线平移到的位置,已知的面积为9,阴影部分三角形的面积为4.若,则等于()A . 2B . 3C .D .24、(2020湖州.中考模拟) 如图,正六边形ABCDEF的边长为2,现将它沿AB方向平移1个单位,得到正六边形A′B′C′D′E′F′,则阴影部分A′BCDE′F′的面积是()A . 3B . 4C .D . 225、(2020津南.中考模拟) 如图,将沿方向平移得到,使点B 的对应点E恰好落在边的中点上,点C的对应点F在的延长线上,连接.下列结论一定正确的是()A .B .C .D . 平分26、(2020菏泽.中考真卷) 在平面直角坐标系中,将点向右平移3个单位得到点,则点关于x轴的对称点的坐标为()A .B .C .D .27、(2020龙华.中考模拟) 下列命题中,是真命题的是()A . 三角形的外心到三角形三边的距离相等B . 顺次连接对角线相等的四边形各边中点所得的四边形是菱形C . 方程x²+2x+3=0有两个不相等的实数根D . 将抛物线y=2x²-2向右平移1个单位后得到的抛物线是y=2x²-328、(2020温州.中考模拟) 在矩形ABCD中(AB<BC),四边形ABFE为正方形,G,H分别是DE,CF的中点,将矩形DGHC移至FB右侧得到矩形FBKL,延长GH与KL 交于点M,以K为圆心,KM为半径作圆弧与BH交于点P,古代印度利用这个方法,可以得到与矩形ABCD面积相等的正方形的边长。

2021中考数学一轮知识点系统复习之图形的平移、旋转与轴对称能力达标测试题(附答案详解)

2021中考数学一轮知识点系统复习之图形的平移、旋转与轴对称能力达标测试题(附答案详解)

2021中考数学一轮知识点系统复习之图形的平移、旋转与轴对称能力达标测试题(附答案详解)1.在平行四边形ABCD 中,AB=6,AD=8,∠B 是锐角,将△ACD 沿对角线AC 折叠,点D 落在△ABC 所在平面内的点E 处.如果AE 过BC 的中点,则平行四边形ABCD 的面积等于( )A .48 B .106 C .127 D .242 2.如图,在直角坐标系中,△OBC 的顶点O (0,0),B (﹣6,0),且∠OCB=90°,OC=BC ,则点C 关于y 轴对称的点的坐标是( )A .(3,3)B .(﹣3,3)C .(﹣3,﹣3)D .(32,32) 3.下列各组图形,可以经过平移变换由一个图形得到另一个图形的是( ).A .B .C .D . 4.如图,COD 是AOB 绕点O 顺时针方向旋转38后所得的图形,点C 恰好在AB 上,AOD 90∠=,那么BOC ∠的度数为( )A .12°B .14°C .24°D .30°5.点P (﹣4,﹣3)关于原点对称的点的坐标是( )A .(4,3)B .(﹣4,3)C .(﹣4,﹣3)D .(4,﹣3)6.如图,将∠BAC 沿DE 向∠BAC 内折叠,使AD 与A′D 重合,A′E 与AE 重合,若∠A=30°,则∠1+∠2=( )A .50°B .60°C .45°D .以上都不对 7.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )8.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.9.下列分子结构模型平面图中,只有一条对称轴的是()A.B.C.D.10.如图,ABCD和DCGH是两块全等的正方形铁皮,要使它们重合,则存在的旋转中心有()A.1个B.2个C.3个D.4个11.如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为________.12.如图,正方形ABCD的边长为4,E是边BC上的一点且BE=1,P为对角线AC上的一动点,连接PB,PE,当点P在AC上运动时,△PBE周长的最小值是____.13.如图,把△ABC经过一定的变换得到△A′B′C′,如果图中△ABC上的点P的坐标为(a,b),那么它的对应点P′的坐标为________.14.如图,将△ABE向右平移3cm得到△DCF,如果△ABE的周长是12cm,那么四边形ABFD的周长是_____cm.15.将点P(﹣1,3)绕原点顺时针旋转180°后坐标变为_____.16.已知平面直角坐标系内点P的坐标为(-1,3),如果将平面直角坐标系.......向左平移3个单位,再向下平移2个单位,那么平移后点P的坐标为___________17.在平面直角坐标系中,已知点P0的坐标为(1,0),将P0绕原点O按逆时针方向旋转30°得点P1,延长OP1到P2,使OP2=2OP1,再将点P2绕原点O按逆时针方向转动30°得到点P3,延长OP3到P4,使OP4=2OP3,…,如果继续下去,点P2016的坐标为_________.18.如图,△ABC中,AC=10,AB=12,△ABC的面积为48,AD平分∠BAC,F,E分别为AC,AD上两动点,连接CE,EF,则CE+EF的最小值为______.19.在等腰三角形ABC中,∠C=90°,BC=2cm.如果以AC的中点O为旋转中心,将这个三角形旋转180°,点B落在点B′处,那么点B′与点B的原来位置相距_____cm.20.如图①,在平面直角坐标系中,等边△ABC的顶点A,B的坐标分别为(5,0),(9,0),点D是x轴正半轴上一个动点,连接CD,将△ACD绕点C逆时针旋转60°得到△BCE,连接DE.(1)直接写出点C的坐标,并判断△CDE的形状,说明理由;(2)如图②,当点D在线段AB上运动时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长及此时点D的坐标;若不存在,说明理由;(3)当△BDE是直角三角形时,求点D的坐标.(直接写出结果即可)21.三角形右边的是由左边的怎样平移得到的?22.如图,已知在△ABC中,AB=AC,AD⊥BC于D,且AD=BC=4,若将三角形沿AD剪开成为两个三角形,在平面上把这两个三角形拼成一个四边形,你能拼出所有的不同形状的四边形吗?画出所拼四边形的示意图(标出图中的直角),并分别写出所拼四边形的对角线的长.(只需写出结果即可)23.如图,正方形ABCD和正方形A1B1C1D1的对角线(正方形相对顶点之间所连的线段)BD,B1D1都在x轴上,O,O1分别为正方形ABCD和正方形A1B1C1D1的中心(正方形对角线的交点称为正方形的中心),O为平面直角坐标系的原点.OD=3,O1D1=2.(1)如果O1在x轴上平移时,正方形A1B1C1D1也随之平移,其形状、大小没有改变,当中心O1在x轴上平移到两个正方形只有一个公共点时,求此时正方形A1B1C1D1各顶点的坐标;(2)如果O在x轴上平移时,正方形ABCD也随之平移,其形状、大小没有改变,当中心O在x轴上平移到两个正方形公共部分的面积为2个平方单位时,求此时正方形ABCD 各顶点的坐标.24.如图,正方形网格中的△ABC,若小方格边长为1,格点三角形(顶点是网格线交点的三角形)ABC的顶点A,C的坐标分别为(﹣1,1),(0,﹣2),请你根据所学的知识.(1)在如图所示的网格平面内作出平面直角坐标系;(2)作出三角形ABC关于y轴对称的三角形A1B1C1;(3)判断△ABC的形状,并求出△ABC的面积.25.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣1),B(3,﹣3),C(0,﹣4)(1)画出△ABC关于原点O成中心对称的△A1B1C1;(2)画出△A1B1C1关于y轴对称的△A2B2C2.26.如图,在正方形网格中,每个小正方形的边长为1,格点△ABC(顶点在网格线的交点上)的顶点A、C的坐标分别为A(﹣3,4)C(0,2)(1)请在网格所在的平面内建立平面直角坐标系,并写出点B的坐标;(2)画出△ABC关于原点对称的图形△A1B1C1;(3)求△ABC的面积;(4)在x轴上存在一点P,使PA+PB的值最小,请直接写出点P的坐标.27.已知:如图,在△ABC中,∠BAC=120°,以BC为边向形外作等边三角形BCD,把△ABD绕着点D按顺时针方向旋转60°后得到△ECD,若AB=5,AC=3,求∠BAD 的度数与AD的长.28.将△ABC的∠C折起,翻折后角的顶点位置记作C′,当C′落在AC上时(如图1),易证:∠1=2∠2.当C′点落在CA和CB之间(如图2)时,或当C′落在CB、CA的同旁(如图3)时,∠1、∠2、∠3关系又如何,请写出你的猜想,并就其中一种情况给出证明.图1 图2 图329.已知,△AOB中,AB=BC=2,∠ABC=90°,点O是线段AC的中点,连接OB,将△AOB 绕点A逆时针旋转α度得到△ANM,连接CM,点P是线段CM的中点,连接PN、PB.(1)如图1,当α=180°时,直接写出线段PN和PB之间的位置关系和数量关系;(2)如图2,当α=90°时,探究线段PN和PB之间的位置关系和数量关系,并给出完整的证明过程;(3)如图3,直接写出当△AOB在绕点A逆时针旋转的过程中,线段PN的最大值和最小值.参考答案1.C【解析】设AE 与BC 交于O 点,O 点是BC 的中点.∵四边形ABCD 是平行四边形,∴∠B =∠D .AB ∥CD ,又由折叠的性质推知∠D =∠E ,CE =CD∴∠B =∠E .CE =AB∴△ABO 和△ECO 中 ,所以△ABO ≌△CEO (AAS ),所以AO =CO =4,OE =OB =4.∴AE =AD =8.∴△AED 为等腰三角形,又C 为底边中点,故三线合一可知∠ACE =90°,从而由勾股定理求得AC =. 平行四边形ABCD 的面积=AC ×CD =12.故选:C .2.A【解析】试题解析:已知90,OCB OC BC ∠=︒=,∴OBC 为等腰直角三角形,又因为顶点()()00,60,O B -,, 过点C 作CD OB ⊥于点D ,则 3.OD DC ==所以C 点坐标为()33-,,点C 关于y 轴对称的点的坐标是()33., 故选A .点睛:关于y轴对称的点的坐标特征:纵坐标不变,横坐标互为相反数. 3.A【解析】试题分析:根据平移的性质,结合图形对选项进行一一分析,选出正确答案.解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;B、图形的大小发生变化,不符合平移的性质,不属于平移得到;C、图形的方向发生变化,不符合平移的性质,不属于平移得到;D、图形由轴对称得到,不属于平移得到.故选A.考点:生活中的平移现象.4.B【解析】【分析】直接利用旋转的性质得出∠AOC=∠BOD=38°,进而得出∠BOC的度数.【详解】∵△COD是△AOB绕点O顺时针方向旋转38°后所得的图形,∴∠AOC=∠BOD=38°,∵∠AOD=90°,∴∠BOC=90°-38°-38°=14°.故选:B.【点睛】此题主要考查了旋转的性质,正确得出∠AOC=∠BOD是解题关键.5.A【解析】解:点P(-4,-3)关于原点对称的点的坐标是(4,3).故选A.6.B【解析】试题解析:∵∠1=180﹣2∠ADE;∠2=180﹣2∠AED.∴∠1+∠2=360°﹣2(∠ADE+∠AED)=360°﹣2(180°﹣30°)=60°.故选B.7.C【解析】【分析】根据轴对称图形的定义进行判断即可得到对称轴.【详解】解:观察可知沿l1折叠时,直线两旁的部分不能够完全重合,故l1不是对称轴;沿l2折叠时,直线两旁的部分不能够完全重合,故l2不是对称轴;沿l3折叠时,直线两旁的部分能够完全重合,故l3是对称轴,所以该图形的对称轴是直线l3,故选C.【点睛】本题主要考查了轴对称图形,关键是掌握轴对称图形的定义.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.8.B【解析】分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.详解:A.该图形是是轴对称图形不是中心对称图形,故本选项错误;B.该图形既是轴对称图形,又是中心对称图形,故本选项正确;C.该图形不是轴对称图形,是中心对称图形,故本选项错误;D.该图形是是轴对称图形,不是中心对称图形,故本选项错误.故选B.点睛:本题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.9.A【解析】根据图形可得:选项A有1条对称轴,选项B、C各有2条对称轴,选项D有6条对称轴,故选A.【点睛】本题主要考查了轴对称图形的定义,关键是正确找出每个图形的对称轴.10.C【解析】分析:旋转中心即是对应点连线的垂直平分线的交点.详解:根据旋转中心即是对应点连线的垂直平分线的交点,可得要使正方形ABCD和DCGH重合,有3种方法,可以分别绕D,C或CD的中点旋转,即旋转中心有3个.故选C.点睛:本题考查了旋转的性质旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等,旋转中心即是对应点连线的垂直平分线的交点.11.35.【解析】解:连接PP′.如图,∵线段PC绕点C顺时针旋转60°得到P'C,∴CP=CP′=6,∠PCP′=60°,∴△CPP′为等边三角形,∴PP′=PC=6.∵△ABC为等边三角形,∴CB=CA,∠ACB=60°,∴∠PCB=∠P′CA.在△PCB和△P′CA中,∵PC=P′C,∠PCB=∠P′CA,CB=CA,∴△PCB≌△P′CA,∴PB=P′A=10.∵62+82=102,∴PP′2+AP2=P′A2,∴△APP′为直角三角形,∠APP′=90°,∴sin∠P AP′='6'10PPP A=35.故答案为35.12.6【解析】连接DE于AC交于点P′,连接BP′,则此时△BP′E的周长就是△PBE周长的最小值,∵BE=1,BC=CD=4,∴CE=3,DE=5,∴BP′+P′E=DE=5,∴△PBE周长的最小值是5+1=6,故答案为6.13.(﹣a﹣2,﹣b)【解析】由图可知,△ABC关于点(﹣1,0)对称变换得到△A′B′C′,∵△ABC上的点P的坐标为(a,b),∴它的对应点P′的坐标为(﹣a﹣2,﹣b),故答案为:(﹣a﹣2,﹣b).14.18.【解析】【分析】根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.【详解】∵△ABE向右平移3cm得到△DCF,∴DF=AE,∴四边形ABFD的周长=AB+BE+DF+AD+EF,=AB+BE+AE+AD+EF,=△ABE的周长+AD+EF,∵平移距离为3cm,∴AD=EF=3cm,∵△ABE的周长是12cm,∴四边形ABFD的周长=12+3+3=18cm.故答案为18cm.【点睛】本题考查了平移的性质,解题的关键是熟练的掌握平移的性质.15.(1,﹣3)【解析】【分析】画出平面直角坐标系,然后作出点P绕原点O顺时针旋转180°的点P′的位置,再根据平面直角坐标系写出坐标即可.【详解】如图所示:点P(-1,3)绕原点O顺时针旋转180°后的对应点P′的坐标为(1,-3).故答案是:(1,-3).【点睛】考查了坐标与图形变化-旋转,作出图形,利用数形结合的思想求解更简便,形象直观.16.(2,5)【解析】【分析】平面直角坐标系.......向左平移3个单位,再向下平移2个单位,相当于将点(-1,3)向右平移3个单位,再向上平移2个单位.应用点的平移与坐标关系便可得出答案.【详解】因为将平面直角坐标系.......向左平移3个单位,再向下平移2个单位,相当于将点(-1,3)向右平移3个单位,再向上平移2个单位,此时得到对应点的坐标是(-1+3,3+2),即(2,5).故正确答案为: (2,5).【点睛】此题考核知识点:点的平移和坐标.关键要弄清点移动的方向和距离,特别要注意此题是移动平面直角坐标系........17.(21008,0)【解析】∵点P0的坐标为(1,0),∴OP0=1,∴OP2=2OP1=2,OP3=OP2=2,OP4=2OP3=2×2=22,…,OP2016=21008,∵2016÷24=84,∴点P2016是第84循环组的最后一个点,在x轴正半轴,∴点P2016的坐标为(21008,0).故答案为:(21008,0).点睛:本田考查了坐标与图形的变化-旋转,点的坐标变化规律,读懂题目信息,理解点的规律变化是解题的关键.18.8【解析】【分析】根据题意画出符合条件的图形,作F关于AD的对称点为M,作AB边上的高CP,求出EM+EC=MC,根据垂线段最短得出EM+EC=MC≥PC,求出PC即可得出CE+EF的最小值.【详解】试题分析:作F关于AD的对称点为M,作AB边上的高CP,∵AD平分∠CAB,△ABC为锐角三角形,∴M必在AC上,∵F关于AD的对称点为M,∴ME=EF,∴EF+EC=EM+EC,即EM+EC=MC≥PC(垂线段最短),∵△ABC的面积是48,AB=12,∴12×12×PC=48,∴PC=8,即CE+EF的最小值为8.故答案为8.点睛:本题考查了最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.19..【解析】分析:由中心对称的性质得OA=OC,OB=OB′,用勾股定理求出OB即可.详解:根据中心对称的性质得,OB=OB′,OC=1,又BC=2,由勾股定理得BO BB′=2OB=故答案为点睛:中心对称的性质有:①关于中心对称的两个图形是全等形;②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分;③关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等.20.(Ⅰ)C(7,△CDE是等边三角形;(Ⅱ)存在;4 ;D(7,0);(Ⅲ)D(1,0)或(13,0).【解析】分析:(1)如图1,过点C作CH⊥x轴于点H,由△ABC是等边三角形易得AH=12AB=2,结合AC=AB=4、OA=5,可得CH=OH=7,由此即可得到点C的坐标;由旋转的性质可知CE=CD,结合旋转角∠DCE=60°可知△CDE是等边三角形;(2)如图2,由(1)可知△CDE是等边三角形,由此可得DE=CD,由△CDE是由△CAD绕点C旋转得到的,由此可得BE=AD,从而可得△BDE的周长=BD+BE+DE=BD+AD+CD=AB+CD=4+CD,由此可知,当CD⊥AB时,CD最小,此时△BDE 的周长最小,由(1)可知,此时CD=23,OD=7,即当点D的坐标为(7,0)时,△BDE 的周长最小,最小值为423+;(3)如图3,由∠CBE=∠CAD=120°可得∠ABC=60°,由此可得∠DBE=60°≠90°,结合△BDE是直角三角形,可知:存在①∠BED=90°;②∠BDE=90°(如图3,∠BD'E'=90°)两种情况,分两种情况画出符合要求的图形,并结合已知条件进行分析计算即可.详解:(Ⅰ)如图1,过点C作CH⊥AB于H,∵△ABC是等边三角形,CH⊥AB于点H,∴∠AHC=90°,AH=12AB=12(9﹣5)=2,∴OH=OA+AH=7,∵AC=AB=4,∴在Rt△ACH中,224223-=∴ C(723),;∵△CBE是由△CAD绕点C逆时针旋转60°得到的,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(Ⅱ)存在,理由如下:如图2,由(Ⅰ)知,△CDE是等边三角形,∴DE=CD,由旋转知,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE=4+CD,由垂线段最短可知,CD⊥AB于D时,△BDE的周长最小,此时,由(1)可知CD=23,OD=7,∴△BDE的周长最小值为4+23,点D(7,0);(Ⅲ)如图3,∵由旋转知,∠CBE=∠CAD=120°,∵∠ABC=60°,∴∠DBE=60°≠90°,∵△BDE是直角三角形,∴存在∠BED=90°或∠BDE=90°(如图3,∠BD'E'=90°)两种情况,①当∠BED=90°时,∵△CDE是等边三角形,∴∠CED=60°,∴∠BEC=30°,∵∠CBE=∠CAD=120°,∴∠BCE=30°,∴BE=BC=AB=4,在Rt△BDE中,∠DBE=∠CBE﹣∠ABC=60°,∴BD=2BE=8,∵OB=9,∴OD=OB﹣BD=1,∴D(1,0),②当∠BD'E'=90°时,∵△CD'E'是等边三角形,∴∠CD'E'=60°,∴∠BD'C=30°,∵∠ABC=60°,∴∠BCD'=30°=∠BD'E,∴BD'=BC=6,∵OB=9,∴OD'=OB+BD'=13,∴D'(13,0),即:存在点D使△BDE是直角三角形,此时点D的坐标分别为:(1,0)或(13,0).点睛:(1)解第1小题的关键是:作出如图1所示的辅助线,利用等边三角形的性质和直角三角形的性质求得AH和CH的长;(2)解第2小题的关键是:利用旋转的性质得到BE=AD,从而把△BDE的周长转化为为:(4+CD)来表达,这样当CD⊥x轴时,CD最短,则△BDE 的周长就最小,由此即可使问题得到解决;(3)解第3小题的要点是:根据已知条件分析存在∠BED=90°或∠BDE=90°两种情况,然后画出符合题意的图形,再进行分析计算即可得到所求结果.21.向右平移7个单位.【解析】试题分析:观察图形中对应点的变化,即可得出图形的变化规律.试题解析:找出对应点来后会发现右边的图形是由左边的向右平移7个单位长度得到的.22.略【解析】可让两斜边重合,得到一个矩形和一个一般的四边形,根据勾股定理和三角形的面积公式可求得对角线长;让两长直角边重合或两短直角边重合,可得到一个平行四边形,利用勾股定理求得一对角线的长.图1是矩形,两条对角线长相等,均为2;图2是平行四边形,两条对角线长4和4;图3是平行四边形,两条对角线长2和2;图4是一般的四边形,两条对角线长2和.23.(1)A1(5,2),B1(3,0),C1(5,-2),D1(7,0);(2)A(11,3),B(8,0),C(11,-3),D(14,0).【解析】【分析】(1)两个正方形只有一个公共点时,分D和B1为公共点,B和D1为公共点两种情况,结合平移的性质写出各点的坐标;(2)根据两个正方形的位置可知公共部分肯定是个正方形,面积是2,可以算出它的对角线长为2,所以有两种情况:点D和O1重合,点B和O1重合,据此解答.【详解】解:(1)当点B1与点D重合时,两个正方形只有一个公共点,此时A1(5,2),B1(3,0),C1(5,-2),D1(7,0);当点B与D1重合时,两个正方形只有一个公共点,此时A1(-5,2),B1(-7,0),C1(-5,-2),D1(-3,0).(2)当点D与O1重合时,两个正方形公共部分的面积为2个平方单位,此时A(5,3),B(2,0),C (5,-3),D (8,0);当点B 与O 1重合时,两个正方形公共部分的面积为2个平方单位,此时A (11,3),B (8,0),C (11,-3),D (14,0).【点睛】本题考查了坐标与图形变化-平移,解题的关键是熟练的掌握平移的相关知识点. 24.(1)见解析;(2)见解析;(3)直角三角形,2.【解析】【分析】(1)根据点A 和点C 的坐标即可作出坐标系;(2)分别作出三角形的三顶点关于y 轴的对称点,顺次连接可得;(3)根据勾股定理的逆定理可得.【详解】解:(1)如图所示:(2)如图所示,△A 1B 1C 1即为所求;(3)∵正方形小方格边长为1,∴AB 2211+2,BC 2222+2,AC 2213+10,∴AB 2+BC 2=AC 2,∴网格中的△ABC 是直角三角形.△ABC 的面积为122×2=2. 【点睛】本题考查的是作图﹣轴对称变换,熟知关于y 轴对称的点的坐标特点是解答此题的关键. 25.(1)答案见解析;(2)答案见解析.【解析】试题分析:(1)根据网格结构找出点A 、B 、C 关于原点对称的点A 1、B 1、C 1的位置,然后顺次连接即可;(2)根据网格结构找出点A1、B1、C1关于y轴对称的点A2、B2、C2的位置,然后顺次连接即可.试题解析:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示.考点:(1)作图-旋转变换;(2)作图-轴对称变换26.(1)坐标系详见解析,点B的坐标(﹣2,0);(2)详见解析;(3)5;(4)点P 的坐标(﹣2,0).【解析】【分析】(1)根据A、C点坐标,作出的平面直角坐标系即可,根据作出的平面直角坐标系写出B 点的坐标即可;(2)根据原点对称的特点画出图形即可;(3)利用矩形面积减去周围三角形面积得出即可;(4)根据轴对称的性质解答即可.【详解】解:(1)如图所示:点B的坐标(-2,0);(2)如图所示,△A1B1C1即为所求;(3)△ABC的面积111 34222314222=⨯-⨯⨯-⨯⨯-⨯⨯=5;(4)点P的坐标(-2,0).【点睛】本题考查的知识点是平移变换以及三角形面积求法和坐标轴确定方法,解题关键是正确平移顶点.27.∠BAD=60°,AD=8.【解析】【分析】根据旋转的性质先证明△ADE是等边三角形,由相似三角形的性质可得∠EAD=60°,AD=AE,即可得到∠BAD=∠BAC﹣∠CAD=60°,AD=AE=AC+CE=AC+AB=3+5=8.【详解】∵△ABD≌△ECD,∴AD=DE,∠BDA=∠DCE,∴∠BDC=∠ADE=60°,∠ABD=∠ECD,∵∠BAC=120°,∠BDC=60°,∴∠BAC+∠BDC=180°,∴∠ABD+∠ACD=180°,∴∠ACD+∠ECD=180°,∴A、C、E共线,∴△ADE是等边三角形,∴∠EAD=60°,AD=AE,∴∠BAD=∠BAC﹣∠CAD=60°,∴AD=AE=AC+CE=AC+AB=3+5=8.【点睛】本题考查了旋转的性质、等边三角形的判定与性质,证明△AED是等边三角形是解决问题的关键.28.∠1-∠3=2∠2,证明见解析.【解析】【分析】利用轴对称的知识找出等解即可进行推理判断.【详解】解:当C′点落在CA和CB之间(如图2)时,∠1+∠3=2∠2;当C′落在CB、CA的同旁(如图3)时,∠1-∠3=2∠2;对于图2证明如下:连结CC’,如图4所示,∵⊿EC’D是由⊿ECD翻折得到的,∴⊿EC’D≌⊿ECD,由此得EC=EC’,DC=DC’,∠EC’D=∠ECD,∴∠EC’C=∠ECC;∠DC’C=∠DCC,∵∠1=∠DC’C+∠DCC’ ,∠3=∠EC’C+∠ECC’ ,∴∠1+∠3=∠DC’C+∠DCC’ +∠EC’C+∠ECC’=2∠D C’C+2∠ EC’C =2(∠DC’C+∠EC’C)= 2∠2;∴∠1+∠3=2∠2;对于图3证明如下:设AC与DC’在⊿ABC内部所夹角为∠4,如图5所示,则有∠1=∠C +∠4,∠4=∠3+∠2,又由翻折得:∠2=∠C ,∴∠1=∠2+∠3+∠2=∠3+2∠2,∴∠1-∠3=2∠2.【点睛】本题主要考查了轴对称的性质.找准对称轴是解题的关键.29.(1)PN=PB ,PN⊥PB;(2)略;221-【解析】(1)由旋转的性质可得△ABC ≌△ANM ,再由直角三角形斜边的中线等于斜边的一半,得到PN 和PB 之间的位置关系和数量关系;(2)结论一样,证明的方法与(1)一样;(3)连接OP ,利用勾股定理可得出线段PN 的最大值和最小值.解:(1)PN PB ⊥,PN PB =.(2)连接PO ,∵90α=︒,∴90MAB ∠=︒.∵90ABC ∠=︒,∴//AM BC . ∵AMN ≌ABO ,∴AB AM =,OB MN =,∴//AM BC ,=AM BC ,又∵90ABC ∠=︒,∴四边形ABCM 为正方形.∵P 为CM 中点,O 为AC 中点,∴12OP AM , ∴OP PM =,45POC MAC ∠=∠=︒, ∴135BOP BOC POC ∠=∠+∠=︒. ∵9045135PMN ∠=︒+︒=︒, ∴PMN POB ∠=∠. PMN ≌POB , ∴PN PB =,MPN OPB ∠=∠. ∵90MPO ∠=︒, ∴90NPB ∠=︒, ∴PN PB ⊥.(3)连接OP . ∵P ,O 为AC ,MC 中点, ∴11122OP AM AB ===. 在Rt AOB 中, ∵OA OB =,2AB =,∴OB =PO OP PB BO PO -≤≤+. ∵PB PN =,11PN ≤≤.PN ∴11.。

2023年九年级中考数学一轮专题练习 图形的平移、折叠和旋转(含解析)

2023年九年级中考数学一轮专题练习 图形的平移、折叠和旋转(含解析)

2023年中考数学一轮专题练习 ——图形的平移、折叠和旋转5一、单选题(本大题共12小题)1. (重庆市2022年)下列北京冬奥会运动标识图案是轴对称图形的是( ) A . B .C .D .2. (浙江省台州市2022年)如图是战机在空中展示的轴对称队形.以飞机B ,C 所在直线为x 轴、队形的对称轴为y 轴,建立平面直角坐标系.若飞机E 的坐标为(40,a ),则飞机D 的坐标为( )A .(40,)a -B .(40,)a -C .(40,)a --D .(,40)a - 3. (浙江省嘉兴市2022年)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm 的正方形ABCD 沿对角线BD 方向平移1cm 得到正方形A B C D '''',形成一个“方胜”图案,则点D ,B ′之间的距离为( )A .1cmB .2cmC .-1)cmD .(2-1)cm4. (浙江省杭州市2022年)如图,在平面直角坐标系中,已知点P(0,2),点A(4,2).以点P为旋转中心,把点A按逆时针方向旋转60°,得点B.在1M⎛⎫⎪⎪⎝⎭,()21M-,()31,4M,4112,2M⎛⎫⎪⎝⎭四个点中,直线PB经过的点是()A.1M B.2M C.3M D.4M5. (四川省德阳市2022年)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.6. (四川省广安市2022年)如图,菱形ABCD的边长为2,点P是对角线AC上的一个动点,点E、F分别为边AD、DC的中点,则PE + PF的最小值是()A.2 B.C.1.5 D7. (黑龙江省省龙东地区2022年)下列图形是汽车的标识,其中是中心对称图形但不是轴对称图形的是()A .B .C .D .8. (北京市2022年)图中的图形为轴对称图形,该图形的对称轴的条数为( )A .1B .2C .3D .59. (福建省2022年)如图,现有一把直尺和一块三角尺,其中90ABC ∠=︒,60CAB ∠=︒,AB =8,点A 对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得△ABC 移动到A B C ''',点A '对应直尺的刻度为0,则四边形ACC A ''的面积是( )A .96B .C .192D . 10. (广东省2022年)在平面直角坐标系中,将点()1,1向右平移2个单位后,得到的点的坐标是( )A .()3,1B .()1,1-C .()1,3D .()1,1- 11. (广西百色市2022年)如图,在△ABC 中,点A (3,1),B (1,2),将△ABC 向左平移2个单位,再向上平移1个单位,则点B 的对应点B ′的坐标为( )A .(3,-3)B .(3,3)C .(-1,1)D .(-1,3) 12. (浙江省金华市2022年)如图是一张矩形纸片ABCD ,点E 为AD 中点,点F 在BC 上,把该纸片沿EF 折叠,点A ,B 的对应点分别为A B A E ''',,与BC 相交于点G ,B A ''的延长线过点C .若23BF GC =,则AD AB的值为( )A .B .C .207D .83二、填空题(本大题共6小题)13. (浙江省丽水市2022年)三个能够重合的正六边形的位置如图.已知B 点的坐标是(,则A 点的坐标是 .14. (浙江省台州市2022年)如图,△ABC的边BC长为4cm.将△ABC平移2cm得到△A′B′C′,且BB′⊥BC,则阴影部分的面积为2cm.15. (山东省潍坊市2022年)如图,在直角坐标系中,边长为2个单位长度的正方形ABCO绕原点O逆时针旋转75︒,再沿y轴方向向上平移1个单位长度,则点B''的坐标为.16. (浙江省台州市2022年)如图,在菱形ABCD中,∠A=60°,AB=6.折叠该菱形,使点A落在边BC上的点M处,折痕分别与边AB,AD交于点E,F.当点M与点B 重合时,EF的长为;当点M的位置变化时,DF长的最大值为.17. (浙江省丽水市2022年)一副三角板按图1放置,O 是边()BC DF 的中点,12cm BC =.如图2,将ABC 绕点O 顺时针旋转60︒,AC 与EF 相交于点G ,则FG 的长是 cm .18. (山东省潍坊市2022年)小莹按照如图所示的步骤折叠A 4纸,折完后,发现折痕AB ′与A 4纸的长边AB 恰好重合,那么A 4纸的长AB 与宽AD 的比值为 .三、解答题(本大题共9小题)19. (浙江省丽水市2022年)如图,将矩形纸片折叠,使点B 与点D 重合,点A 落在点P 处,折痕为.(1)求证:PDE CDF △≌△;(2)若4cm,5cm CD EF ==,求BC 的长.20. (浙江省丽水市2022年)如图,在66⨯的方格纸中,点A ,B ,C 均在格点上,试按要求画出相应格点图形.ABCDEF(1)如图1,作一条线段,使它是AB 向右平移一格后的图形;(2)如图2,作一个轴对称图形,使AB 和AC 是它的两条边;(3)如图3,作一个与ABC 相似的三角形,相似比不等于1.21. (黑龙江省省龙东地区2022年)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,1A -,()2,5B -,()5,4C -.(1)将ABC 先向左平移6个单位,再向上平移4个单位,得到111A B C △,画出两次平移后的111A B C △,并写出点1A 的坐标;(2)画出111A B C △绕点1C 顺时针旋转90°后得到221A B C △,并写出点2A 的坐标;(3)在(2)的条件下,求点1A 旋转到点2A 的过程中所经过的路径长(结果保留π). 22. (四川省广安市2022年)数学活动课上,张老师组织同学们设计多姿多彩的几何图形, 下图都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影,请同学们在余下的空白小等边三角形中选取一个涂上阴影,使得4个阴影小等边三角形组成一个轴对称图形或中心对称图形,请画出4种不同的设计图形.规定:凡通过旋转能重合的图形视为同一种图形)23. (黑龙江省2022年)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC与△DEF关于点O成中心对称,△ABC与△DEF的顶点均在格点上,请按要求完成下列各题.(1)在图中画出点O的位置;(2)将△ABC先向右平移4个单位长度,再向下平移2个单位长度,得到△A1B1C1,请画出△A1B1C1;(3)在网格中画出格点M,使A1M平分∠B1A1C124. (黑龙江省齐齐哈尔市2022年)综合与实践数学是以数量关系和空间形式为主要研究对象的科学.数学实践活动有利于我们在图形运动变化的过程中去发现其中的位置关系和数量关系,让我们在学习与探索中发现数学的美,体会数学实践活动带给我们的乐趣.如图①,在矩形ABCD中,点E、F、G分别为边BC、AB、AD的中点,连接EF、DF,H为DF的中点,连接GH.将△BEF绕点B旋转,线段DF、GH和CE的位置和长度也随之变化.当△BEF绕点B顺时针旋转90°时,请解决下列问题:(1)图②中,AB=BC,此时点E落在AB的延长线上,点F落在线段BC上,连接AF,猜想GH与CE之间的数量关系,并证明你的猜想;(2)图③中,AB=2,BC=3,则GHCE=;(3)当AB=m , BC=n时.GHCE=.(4)在(2)的条件下,连接图③中矩形的对角线AC,并沿对角线AC剪开,得△ABC (如图④).点M、N分别在AC、BC上,连接MN,将△CMN沿MN翻折,使点C的对应点P落在AB的延长线上,若PM平分∠APN,则CM长为.25. (黑龙江省省龙东地区2022年)ABC和ADE都是等边三角形.(1)将ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有PA PB PC+=(或PA PC PB+=)成立;请证明.(2)将ADE绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?并加以证明;(3)将ADE 绕点A 旋转到图③的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?直接写出结论,不需要证明.26. (北京市2022年)在平面直角坐标系xOy 中,已知点(,),.M a b N 对于点P 给出如下定义:将点P 向右(0)a ≥或向左(0)a <平移a 个单位长度,再向上(0)b ≥或向下(0)b <平移b 个单位长度,得到点P',点P'关于点N 的对称点为Q ,称点Q 为点P 的“对应点”.(1)如图,点(1,1),M 点N 在线段OM 的延长线上,若点(2,0),P -点Q 为点P 的“对应点”.①在图中画出点Q ;②连接,PQ 交线段ON 于点.T 求证:1;2NT OM = (2)O 的半径为1,M 是O 上一点,点N 在线段OM 上,且1(1)2ON t t =<<,若P 为O 外一点,点Q 为点P 的“对应点”,连接.PQ 当点M 在O 上运动时直接写出PQ 长的最大值与最小值的差(用含t 的式子表示)27. (河南省2022年)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平; 操作二:在AD 上选一点P ,沿BP 折叠,使点A 落在矩形内部点M 处,把纸片展平,连接PM ,BM .根据以上操作,当点M 在EF 上时,写出图1中一个30°的角: .(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,∠MBQ= °,∠CBQ= °;②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP的长.参考答案1. 【答案】C【分析】根据轴对称图形的定义进行逐一判断即可.【详解】A.不是轴对称图形,故A错误;B.不是轴对称图形,故B错误;C.是轴对称图形,故C正确;D.不是轴对称图形,故D错误.故选:C.2. 【答案】B【分析】直接利用关于y轴对称,纵坐标相同,横坐标互为相反数,进而得出答案.【详解】解:根据题意,点E与点D关于y轴对称,∵飞机E的坐标为(40,a),∴飞机D的坐标为(-40,a),故选:B.3. 【答案】D【分析】-′求解即可.先求出BD,再根据平移性质求得BB'=1cm,然后由BD BB【详解】解:由题意,BD=,由平移性质得BB'=1cm,∴点D,B′之间的距离为DB'=BD BB-′=(1)cm,故选:D.4. 【答案】B【分析】根据含30°角的直角三角形的性质可得B(2,PB的解析式,依次将M1,M2,M3,M4四个点的一个坐标代入y+2中可解答.【详解】解:∵点A(4,2),点P(0,2),∴PA ⊥y 轴,PA =4,由旋转得:∠APB =60°,AP =PB =4,如图,过点B 作BC ⊥y 轴于C ,∴∠BPC =30°,∴BC =2,PC∴B (2,2+2设直线PB 的解析式为:y =kx +b ,则222k b b ⎧+=+⎪⎨=⎪⎩∴2k b ⎧=⎪⎨=⎪⎩∴直线PB 的解析式为:y =x +2,当y =0+2=0,x∴点M 1(-0)不在直线PB 上,当x y =-3+2=1,∴M 2(-1)在直线PB 上,当x =1时,y =+2,∴M 3(1,4)不在直线PB 上,当x =2时,y ,∴M 4(2,112)不在直线PB 上. 故选:B .5. 【答案】A【分析】根据轴对称和中心对称的定义逐项判断即可.轴对称图形是把一个图形沿一条直线折叠,直线两旁的部分能够互相重合;中心对称图形是把一个图形绕某一点旋转180°,旋转后的图形能够与原来的图形重合.【详解】A 、既是中心对称图形,又是轴对称图形,符合题意;B 、是轴对称图形,但不是中心对称图形,不符合题意;C 、是轴对称图形,但不是中心对称图形,不符合题意;D 、是中心对称图形,但不是轴对称图形,不符合题意;故选:A .6. 【答案】A【分析】取AB 中点G 点,根据菱形的性质可知E 点、G 点关于对角线AC 对称,即有PE =PG ,则当G 、P 、F 三点共线时,PE +PF =PG +PF 最小,再证明四边形AGFD 是平行四边形,即可求得FG =AD .【详解】解:取AB 中点G 点,连接PG ,如图,∵四边形ABCD 是菱形,且边长为2,∴AD =DC =AB =BC =2,∵E 点、G 点分别为AD 、AB 的中点,∴根据菱形的性质可知点E 、点G 关于对角线AC 轴对称,∴PE =PG ,∴PE +PF =PG +PF ,即可知当G 、P 、F 三点共线时,PE +PF =PG +PF 最小,且为线段FG ,如下图,G 、P 、F 三点共线,连接FG ,∵F 点是DC 中点,G 点为AB 中点,∴, 1122DF DC AB AG ===∵在菱形ABCD 中,,∴,∴四边形AGFD 是平行四边形,∴FG =AD =2,故PE +PF 的最小值为2,故选:A .7. 【答案】C【分析】根据中心对称图形的定义判断即可.【详解】解:∵是轴对称图形,也是中心对称图形, ∴不符合题意;∵是轴对称图形,不是中心对称图形∴不符合题意;∵不是轴对称图形,是中心对称图形∴符合题意;∵是轴对称图形,不是中心对称图形∴不符合题意;故选C .8. 【答案】D【分析】根据题意,画出该图形的对称轴,即可求解.【详解】解∶如图,DC AB ∥DF AG ∥一共有5条对称轴.故选:D9. 【答案】B【分析】根据直尺与三角尺的夹角为60°,根据四边形ACC A ''的面积为sin602sin60AA AC AB AA ⋅'︒︒⋅'=,即可求解.【详解】解:依题意ACC A ''为平行四边形,∵90ABC ∠=︒,60CAB ∠=︒,AB =8,12AA '=.2AC AB ∴=∴平行四边形ACC A ''的面积=sin602sin60AA AC AB AA ''⋅︒=︒⋅2812=⨯⨯=故选B10. 【答案】A【分析】把点()1,1的横坐标加2,纵坐标不变,得到()3,1,就是平移后的对应点的坐标.【详解】解:点()1,1向右平移2个单位长度后得到的点的坐标为()3,1.故选A .11. 【答案】D【分析】根据图形的平移性质求解.【详解】解:根据图形平移的性质,B ′(1-2,2+1),即B ′(-1,3);故选:D .12. 【答案】A【分析】令BF =2x ,CG =3x ,FG =y ,易证CGA CFB ''△∽△,得出CG A G CF B F'=',进而得出y =3x ,则AE =4x ,AD =8x ,过点E 作EH ⊥BC 于点H ,根据勾股定理得出EH =,最后求出AD AB的值. 【详解】解:过点E 作EH ⊥BC 于点H ,又四边形ABCD 为矩形,∴∠A =∠B =∠D =∠BCD =90°,AD =BC ,∴四边形ABHE 和四边形CDEH 为矩形,∴AB =EH ,ED =CH , ∵23BF GC =, ∴令BF =2x ,CG =3x ,FG =y ,则CF =3x +y ,2B F x '=,, 由题意,得==90CA G CB F ''︒∠∠,又GCA '∠为公共角,∴CGA CFB ''△∽△, ∴CG A GCF B F '=', 则53232x yx x y x-=+,整理,得()()30x y x y +-=,解得x =-y (舍去),y =3x ,∴AD =BC =5x +y =8x ,EG =3x ,HG =x ,在Rt △EGH 中EH 2+HG 2=EG 2,则EH 2+x 2=(3x )2,解得EH=, EH=-(舍),∴AB=,∴ADAB ==.故选:A .13.【答案】3A【分析】 52x y A G -'=如图,延长正六边形的边BM 与x 轴交于点E ,过A 作AN x ⊥轴于N ,连接AO ,BO ,证明,BOE AON 可得,,A O B 三点共线,可得,A B 关于O 对称,从而可得答案.【详解】解:如图,延长正六边形的边BM 与x 轴交于点E ,过A 作AN x ⊥轴于N ,连接AO ,BO ,∴ 三个正六边形,O 为原点,,120,BM MO OH AH BMO OHA,BMO OHA ≌,OB OA 11209030,18012030,2MOE BMO MOB60,90,BOE BEO同理:120303060,906030,AON OAN,BOE AON,,A O B ∴三点共线,,A B ∴关于O 对称,3,3.A故答案为:3.A14. 【答案】8【分析】根据平移的性质即可求解.【详解】解:由平移的性质S △A ′B ′C ′=S △ABC ,BC =B ′C ′,BC ∥B ′C ′,∴四边形B ′C ′CB 为平行四边形,∵BB ′⊥BC ,∴四边形B ′C ′CB 为矩形,∵阴影部分的面积=S △A ′B ′C ′+S 矩形B ′C ′CB -S △ABC=S 矩形B ′C ′CB=4×2=8(cm 2).故答案为:8.15.【答案】(1)【分析】连接OB ,OB '由题意可得∠BOB '=75°,可得出∠COB '=30°,可求出B '的坐标,即可得出点B ''的坐标.【详解】解:如图:连接OB ,OB ',作B M '⊥y 轴∵ABCO 是正方形,OA =2∴∠COB =45°,OB=∵绕原点O 逆时针旋转75︒∴∠BOB '=75°∴∠COB '=30°∵=OB =∴,∴∵沿y 轴方向向上平移1个单位长度∴故答案为:16. 【答案】6-【分析】当点M 与点B 重合时,EF垂直平分AB ,利用三角函数即可求得EF的长;【详解】解:当点M 与点B 重合时,由折叠的性质知EF 垂直平分AB ,∴AE =EB =12AB =3, OB 'MB 'MO =B '(B ''(1)(1)在Rt △AEF 中,∠A =60°,AE =3,tan60°=EF AB, ∴EF =3当AF 长取得最小值时,DF 长取得最大值,由折叠的性质知EF 垂直平分AM ,则AF =FM ,∴FM ⊥BC 时,FM 长取得最小值,此时DF 长取得最大值,过点D 作DG ⊥BC 于点C ,则四边形DGMF 为矩形,∴FM =DG ,在Rt △DGC 中,∠C =∠A =60°,DC =AB =6,∴DG =DC sin60°∴DF 长的最大值为AD -AF =AD -FM =AD -DG =6-3故答案为:36-317. 【答案】3【分析】BC 交EF 于点N ,由题意得,=90EDF BAC ∠=∠︒,60DEF ∠=︒,30DFE ∠=︒,=45ABC ACB ∠=∠︒,BC =DF =12,根据锐角三角函数即可得DE ,FE ,根据旋转的性质得ONF △是直角三角形,根据直角三角形的性质得3ON =,即3NC =,根据角之间的关系得CNG △是等腰直角三角形,即3NG NC ==cm ,根据90FNO FED ∠=∠=︒,30NFO DFE ∠=∠=︒得FON FED △∽△,即ON FN DE DF=,解得FN = 【详解】解:如图所示,BC 交EF 于点N ,由题意得,=90EDF BAC ∠=∠︒,60DEF ∠=︒,30DFE ∠=︒,=45ABC ACB ∠=∠︒,BC =DF =12,在Rt EDF 中,12tan tan 60DF DE EDF ===∠︒12sin sin 60DF EF EDF ===∠︒∵△ABC 绕点O 顺时针旋转60°,∴60BOD NOF ∠=∠=︒,∴90NOF F ∠+∠=︒,∴18090FNO NOF F ∠=︒-∠-∠=︒,∴ONF △是直角三角形, ∴132ON OF ==(cm ), ∴3NC OC ON =-=(cm ),∵90FNO ∠=︒,∴18090GNC FNO ∠=︒-∠=︒,∴NGC 是直角三角形,∴18045NGC GNC ACB ∠=-∠-∠=︒,∴CNG △是等腰直角三角形,∴3NG NC ==cm ,∵90FNO FED ∠=∠=︒,30NFO DFE ∠=∠=︒,∴FON FED △∽△, 即ON FN DE DF=,12FN =,FN =∴3FG FN NG =-=(cm ),故答案为:3.18. 1【分析】判定△AB ′D ′是等腰直角三角形,即可得出AB ′=AD ,再根据AB ′= AB ,再计算即可得到结论.【详解】解:∵四边形ABCD 是矩形,∴∠D =∠B =∠DAB =90°,由操作一可知:∠DAB ′=∠D ′AB ′=45°,∠AD ′B ′=∠D =90°,AD =AD ′,∴△AB ′D ′是等腰直角三角形,∴AD =AD ′= B ′D ′,由勾股定理得AB ′=,又由操作二可知:AB ′=AB ,∴=AB ,∴AB AD=, ∴A 4纸的长AB 与宽AD:1.故答案为::1.19. 【答案】(1)证明见解析 (2)163cm 【分析】(1)利用ASA 证明即可;(2)过点E 作EG ⊥BC 交于点G ,求出FG 的长,设AE =x ,用x 表示出DE 的长,在Rt △PED 中,由勾股定理求得答案.(1)∵四边形ABCD 是矩形,∴AB =CD ,∠A =∠B =∠ADC =∠C =90°,由折叠知,AB =PD ,∠A =∠P ,∠B =∠PDF =90°,∴PD =CD ,∠P =∠C ,∠PDF =∠ADC ,∴∠PDF -∠EDF =∠ADC -∠EDF ,∴∠PDE =∠CDF ,在△PDE 和△CDF 中,P C PD CDPDE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴PDE CDF △≌△(ASA );(2)如图,过点E 作EG ⊥BC 交于点G ,∵四边形ABCD 是矩形,∴AB =CD =EG =4cm ,又∵EF =5cm ,∴3GF =,设AE =x ,∴EP =x ,由PDE CDF △≌△知,EP =CF =x ,∴DE =GC =GF +FC =3+x ,在Rt △PED 中,222PE PD DE +=,即()22243x x +=+, 解得,76x =, ∴BC =BG +GC = 77163663++=cm . 20. 【答案】(1)画图见解析(2)画图见解析(3)画图见解析【分析】(1)分别确定A ,B 平移后的对应点C ,D ,从而可得答案;(2)确定线段AB ,AC 关于直线BC 对称的线段即可;(3)分别计算ABC 的三边长度,再利用相似三角形的对应边成比例确定DEF 的三边长度,再画出DEF 即可.(1)解:如图,线段CD 即为所求作的线段,(2)如图,四边形ABDC 是所求作的轴对称图形,(3)如图,如图,DEF 即为所求作的三角形,由勾股定理可得:221310,2,ABAC 而2,BC = 同理:2226210,22,DF DE 而4,EF 1,2AB AC BC DF DE EF .ABC DFE ∽21. 【答案】(1)见解析;()15,3A -(2)见解析;()22,4A(3)点1A 旋转到点2A 所经过的路径长为5π2【分析】(1)根据题目中的平移方式进行平移,然后读出点的坐标即可;(2)先找出旋转后的对应点,然后顺次连接即可;(3)根据旋转可得点1A 旋转到点2A 为弧长,利用勾股定理确定圆弧半径,然后根据弧长公式求解即可.(1)解:如图所示△A 1B 1C 1即为所求,()15,3A -;(2)如图所示△A 2B 2C 2即为所求,;(3)∵ ∴点旋转到点所经过的路径长为. 22. 【答案】见解析【分析】根据轴对称图形的定义、中心对称图形的定义画出图形即可 ()22,4A 115AC 1A 2A 90π55π1802⨯=【详解】解:如下图所示:23. 【答案】(1)作图见解析;(2)作图见解析;(3)作图见解析;【分析】(1)连接对应点B 、F ,对应点C 、E ,其交点即为旋转中心的位置;(2)利用网格结构找出平移后的点的位置,然后顺次连接即可;(3)根据网格结构的特点作出即可.【详解】解:(1)如图所示,连接BF ,CE 交于点O ,点O 即为所求.(2)如图所示,△A 1B 1C 1为所求;(3)如图所示,点M 即为所求.理由:连接11,B M C M ,根据题意得:111111A B AC B M C M ====∴四边形111A B MC 菱形,∴A 1M 平分∠B 1A 1C 1.24. 【答案】(1)12GH CE =,证明见解析 (2)13GH CE = (3)2GH m CE n =(4)【分析】(1)先证明△ABF ≌△CBE ,得AF =CE ,再根据中位线性质得GH =12AF ,等量代换即可; (2)连接AF ,先证明△ABF ∽△CBE ,得到AF :CE 的比值,再根据中位线性质得GH =12AF ,等量代换即可; (3)连接AF ,先证明△ABF ∽△CBE ,用含m 、n 的代数式表达出AF :CE 的比值,再根据中位线性质得GH =12AF ,等量代换即可; (4)过M 作MH ⊥AB 于H ,根据折叠性质得∠C =∠MPN ,根据角平分线证明出∠C =∠PMH ,设CM =PM =x ,HM =y ,根据三角函数定义找到x 、y 之间的关系,再利用△AHM ∽△ABC ,得到CM BC H AM A =,代入解方程即可. (1) 解:12GH CE =,理由如下: ∵AB =BC ,四边形ABCD 为矩形,∴四边形ABCD 为正方形,∴∠ABC =∠CBE =90°,∵E 、F 为BC ,AB 中点,∴BE =BF ,∴△ABF ≌△CBE ,∴AF =CE ,∵H 为DF 中点,G 为AD 中点,∴GH =12AF , ∴12GH CE =. (2) 解:13GH CE =, 连接AF ,如图所示,由题意知,BF =12AB =1,BE =12BC =32, ∴, 由矩形ABCD 性质及旋转知,∠ABC =∠CBE =90°,∴△ABF ∽△CBE ,∴AF :CE =2:3,∵G 为AD 中点,H 为DF 中点,∴GH =, ∴. 故答案为:. (3)解:, 连接AF ,如图所示,23AB BF BC BE ==12AF 13GH CE =132GH m CE n=由题意知,BF ==,BE ==, ∴, 由矩形ABCD 性质及旋转知,∠ABC =∠CBE =90°,∴△ABF ∽△CBE ,∴AF :CE =m :n ,∵G 为AD 中点,H 为DF 中点,∴GH =, ∴. 故答案为:. (4)解:过M 作MH ⊥AB 于H ,如图所示,由折叠知,CM =PM ,∠C =∠MPN ,12AB 2m 12BC 2n AB BF m BC BE n==12AF 2GH m CE n =2mn∵PM 平分∠APN ,∴∠APM =∠MPN ,∴∠C =∠APM ,∵AB =2,BC =3,∴AC设CM =PM =x ,HM =y ,由知,, 即,∵HM ∥BC ,∴△AHM ∽△ABC ,∴, 即,, ∴,解得:x, 故答案为:. 25. 【答案】(1)证明见解析(2)图②结论:PB PA PC =+,证明见解析(3)图③结论:PA PB PC +=【分析】(1)由△ABC 是等边三角形,得AB =AC ,再因为点P 与点A 重合,所以PB =AB ,PC =AC ,PA =0,即可得出结论;(2)在BP 上截取BF CP =,连接AF ,证明BAD CAE ≌(SAS ),得ABD ACE ∠=∠,再证明CAP BAF ≌△△(SAS ),得CAP BAF ∠=∠,AF AP =,然后证明AFP 是等边三角形,得PF AP =,即可得出结论;(3)在CP 上截取CF BP =,连接AF ,证明BAD CAE ≌(SAS ),得ABD ACE ∠=∠,再证明BAP CAF ≌△△(SAS ),得出CAF BAP ∠=∠,AP AF =,然后证明AFP 是等边三角形,得PF AP =,即可得出结论:PA PB PF CF PC +=+=.(1)证明:∵△ABC 是等边三角形,∴AB =AC ,∵点P 与点A 重合,∴PB =AB ,PC =AC ,PA =0,sin sin C APM ∠=∠AB HM AC PM =y x =y =C M BC H AM A =3y =3y =3=∴PA PB PC +=或PA PC PB +=;(2)解:图②结论:PB PA PC =+证明:在BP 上截取BF CP =,连接AF ,∵ABC 和ADE 都是等边三角形, ∴AB AC =,AD AE =,60BAC DAE ∠=∠=︒ ∴BAC CAD DAE CAD ∠+∠=∠+∠, ∴BAD CAE ∠=∠,∴BAD CAE ≌(SAS ),∴ABD ACE ∠=∠,∵AC =AB ,CP =BF ,∴CAP BAF ≌△△(SAS ),∴CAP BAF ∠=∠,AF AP =, ∴CAP CAF BAF CAF ∠+∠=∠+∠, ∴60FAP BAC ∠=∠=︒,∴AFP 是等边三角形,∴PF AP =,∴PA PC PF BF PB +=+=;(3)解:图③结论:PA PB PC +=,理由:在CP 上截取CF BP =,连接AF ,∵ABC 和ADE 都是等边三角形,∴AB AC =,AD AE =,60BAC DAE ∠=∠=︒∴BAC BAE DAE BAE ∠+∠=∠+∠,∴BAD CAE ∠=∠,∴BAD CAE ≌(SAS ),∴ABD ACE ∠=∠,∵AB =AC ,BP =CF ,∴BAP CAF ≌△△(SAS ),∴CAF BAP ∠=∠,AP AF =,∴BAF BAP BAF CAF ∠+∠=∠+∠,∴60FAP BAC ∠=∠=︒,∴AFP 是等边三角形,∴PF AP =,∴PA PB PF CF PC +=+=,即PA PB PC +=.26. 【答案】(1)见解析(2)42t -【分析】(1)①先根据定义和(1,1)M 求出点P'的坐标,再根据点P'关于点N 的对称点为Q 求出点Q 的坐标;②延长ON 至点()3,3A ,连接AQ ,利用AAS 证明ΔΔAQT OPT ≅,得到12TA TO OA ==,再计算出OA ,OM ,ON ,即可求出12NT ON OT OM =-==; (2)连接PO 并延长至S ,使OP OS =,延长SQ 至T ,使ST OM =,结合对称的性质得出NM 为Δ'P QT 的中位线,推出1=2NM QT ,得出()12221SQ ST TQ t t =-=--=-,则()()max min 2PQ PQ PS QS PS QS QS -=+--=.(1)解:①点Q 如下图所示.∵点(1,1)M ,∴点(2,0)P -向右平移1个单位长度,再向上平移1个单位长度,得到点P', ∴()'1,1P -,∵点P'关于点N 的对称点为Q ,()2,2N ,∴点Q 的横坐标为:()2215⨯--=,纵坐标为:2213⨯-=,∴点()5,3Q ,在坐标系内找出该点即可;②证明:如图延长ON 至点()3,3A ,连接AQ ,∵ //AQ OP ,∴AQT OPT ∠=∠,在ΔAQT 与ΔOPT ∠中,AQT OPT ATQ OTP AQ OP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ΔΔAQT OPT AAS ≅, ∴12TA TO OA ==, ∵ ()3,3A ,(1,1)M ,(2,2)N ,∴OA ==OMON =∴12TO OA ==∴NT ON OT =-= ∴12NT OM =; (2)解:如图所示,连接PO 并延长至S ,使OP OS =,延长SQ 至T ,使ST OM =,∵(,)M a b ,点P 向右(0)a ≥或向左(0)a <平移a 个单位长度,再向上(0)b ≥或向下(0)b <平移b 个单位长度,得到点P',∴'1PP OM ==,∵点P'关于点N 的对称点为Q ,∴'NP NQ =,又∵OP OS =,∴OM ∥ST ,∴NM 为Δ'P QT 的中位线,∴//NM QT ,1=2NM QT , ∵1NM OM ON t =-=-,∴222TQ NM t ==-,∴()12221SQ ST TQ t t =-=--=-,在ΔPQS 中,PS QS PQ PS QS -<<+,结合题意,max PQ PS QS =+,min PQ PS QS =-,∴()()max min 242PQ PQ PS QS PS QS QS t -=+--==-,即PQ 长的最大值与最小值的差为42t -.27. 【答案】(1)BME ∠或ABP ∠或PBM ∠或MBC ∠(2)①15,15;②MBQ CBQ ∠=∠,理由见解析 (3)4011AP =cm 或24cm 13【分析】(1)根据折叠的性质,得12BE BM =,结合矩形的性质得30BME ∠=︒,进而可得30ABP PBM MBC ∠=∠=∠=︒; (2)根据折叠的性质,可证()Rt Rt HL BQM BQC ∆≅∆,即可求解;(3)由(2)可得QM QC =,分两种情况:当点Q 在点F 的下方时,当点Q 在点F 的上方时,设AP PM x ==,分别表示出PD ,DQ ,PQ ,由勾股定理即可求解.(1) 解:12AE BE AB AB BM ===, 12BE BM =∴ 90BEM ∠=︒∵30BME ∠=︒∴60MBE ∠=︒∴ABP PBM ∠=∠∵30ABP PBM MBC ∠=∠=∠=︒∴(2)∵四边形ABCD 是正方形∴AB =BC ,∠A =∠ABC =∠C =90°由折叠性质得:AB =BM ,∠PMB =∠BMQ =∠A =90°∴BM =BC①BM BC BQ BQ ==∵,∴()Rt Rt HL BQM BQC ∆≅∆MBQ CBQ ∠=∠∴30MBC15MBQ CBQ ∠=∠=︒∴②BM BC BQ BQ ==∵,()Rt Rt HL BQM BQC ∆≅∆∴MBQ CBQ ∠=∠∴(3)当点Q 在点F 的下方时,如图,1cm 4cm 8cm FQ DF FC AB ====∵,,8413(cm)QC CD DF FQ =--=--=∴,DQ =DF +FQ =4+1=5(cm) 由(2)可知,QM QC =设8AP PM x PD x ===-,,222PD DQ PQ +=∴,即()()222853x x -+=+ 解得:4011x =∴40cm 11AP =; 当当点Q 在点F 的上方时,如图,1cm 4cm 8cm FQ DF FC AB ====∵,, 5QC =∴cm ,DQ =3cm , 由(2)可知,QM QC =设8AP PM x PD x ===-,,222PD DQ PQ +=∴,即()()222835x x -+=+ 解得:2413x =∴24cm 13AP =.。

备考2023年中考数学一轮复习-图形的变换_平移、旋转变换_坐标与图形变化﹣平移-填空题专训及答案

备考2023年中考数学一轮复习-图形的变换_平移、旋转变换_坐标与图形变化﹣平移-填空题专训及答案

备考2023年中考数学一轮复习-图形的变换_平移、旋转变换_坐标与图形变化﹣平移-填空题专训及答案坐标与图形变化﹣平移填空题专训1、(2016黑龙江.中考真卷) 如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C的坐标为________.2、(2011宿迁.中考真卷) 在平面直角坐标系中,已知点A(﹣4,0)、B(0,2),现将线段AB向右平移,使A与坐标原点O重合,则B平移后的坐标是________.3、(2019海门.中考模拟) 在平面直角坐标系中,将点A(﹣2,3)向右平移2个单位长度得到点B,则点B关于x轴的对称点C的坐标是________.4、(2018江苏.中考模拟) 若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为________.5、(2018金华.中考模拟) 如图,已知直线与反比例函数()图像交于点A,将直线向右平移4个单位,交反比例函数()图像于点B,交y轴于点C,连结AB、AC,则△ABC的面积为________6、(2022北.中考模拟) 如图,正比例函数y=kx 与反比例函数y= 的图象有一个交点A(2,m),AB⊥x 轴于点B ,平移直线y=kx 使其经过点B ,得到直线l ,则直线l 对应的函数表达式是________ .7、(2019泰安.中考模拟) 如图,单位网格中,将线段AB 先向右平移2个单位,再向上平移2个单位,然后再绕P 点按顺时针方向旋转90°得到A'B',则A 的坐标是________8、(2017东营.中考模拟) 将抛物线y=﹣x 2向左平移2个单位,再向下平移3个单位,所得抛物线的表达式为________.9、(2017常德.中考真卷) 如图,有一条折线A 1B 1A 2B 2A 3B 3A 4B 4…,它是由过A 1(0,0),B 1(2,2),A 2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y=kx+2与此折线恰有2n (n≥1,且为整数)个交点,则k 的值为________.10、(2020湖州.中考模拟) 如图,在平面直角坐标系中,反比例y=(k>0)的图象和△ABC都在第一象限内,AB=AC=,BC∥x轴,且BC=4,点A的坐标为(3,5).若将△ABC向下平移m个单位长度,A,C两点同时落在反比例函数图象上,则m的值为________.11、(2014钦州.中考真卷) 如图,△A′B′C′是△ABC经过某种变换后得到的图形,如果△ABC中有一点P的坐标为(a,2),那么变换后它的对应点Q的坐标为________.12、(2017广元.中考真卷) 在平面直角坐标系中,将P(﹣3,2)向右平移2个单位,再向下平移2个单位得点P′,则P′的坐标为________.13、(2013绵阳.中考真卷) 如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B的坐标是________.14、(2011遵义.中考真卷) 将点P(﹣2,1)先向左平移1个单位长度,再向上平移2个单位长度得到点P′,则点P′的坐标为________.15、(2019青海.中考模拟) 如图,等边三角形的顶点A(1,1),B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次变换,则一次变换后顶点C的坐标为________,如果这样连续经过2017次变换后,等边△ABC的顶点C 的坐标为________.16、(2019朝阳.中考模拟) 如图,在平面直角坐标系中,点A的坐标为(0,6),将△OAB沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线y=﹣x上,则点B与其对应点B′间的距离为________.17、(2020中宁.中考模拟) 若线段CD是由线段AB平移得到的,点A(﹣2,3)的对应点为C(3,6),则点B(﹣5,﹣2)的对应点D的坐标是________18、(2020通榆.中考模拟) 如图,在平面直角坐标系中,已知点A(2,1),点B(3,-1),平移线段AB,使点A落在点A1(-2,2)处,则点B的对应点B1的坐标为________ 。

2020初中数学中考一轮复习能力达标训练题:平移、旋转、对称2(附答案)

2020初中数学中考一轮复习能力达标训练题:平移、旋转、对称2(附答案)

2020初中数学中考一轮复习能力达标训练题:平移、旋转、对称2(附答案)1.点A (-3,2)关于x 轴的对称点A ′的坐标为( )A .(-3,-2)B .(3,2)C .(3,-2)D .(2,-3)2.如图,在Rt △ABC 中,AC=6,BC=4,将△ABC 绕直角顶点C 顺时针旋转90°得到△DEC ,若点F 是DE 的中点,连接AF ,则AF 的长为( )A .3B .4C .5D .3.在探究“尺规三等分角”这个数学名题中,利用了如图,该图中,四边形ABCD 是矩形,线段AC 绕点A 逆时针旋转得到线段AF ,CF 、BA 的延长线交于点E ,若∠E =∠F AE ,∠ACB =21°,则∠ECD 的度数是( )A .7°B .21°C .23°D .34°4.通过平移得到的新图形中的每一点与原图形中的对应点的连线( )A .平行B .相等C .共线D .平行(或共线)且相等5.平移前后两个图形是图形,对应点连线( )A .平行但不相等B .不平行也不相等C .平行且相等D .不相等6.如图,在菱形纸片ABCD 中,AB=2,∠A=60°,将菱形纸片翻折,使点A 落在CD 的中点E 处,折痕为FG ,点F ,G 分别在边AB ,AD 上,则EF 的长为A .74B .95C .1910 D是( )A .将原图形向x 轴的正方向平移了1个单位;B .将原图形向x 轴的负方向平移了1个单位C .将原图形向y 轴的正方向平移了1个单位D .将原图形向y 轴的负方向平移了1个单位8.如图,把一个长方形的纸片按图示对折两次,然后剪下一部分,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为 ( )A .30°或50°B .30°或60°C .40°或50°D .40°或60° 9.下列各图中,是中心对称图案的是( )A .B .C .D .10.将一个等边三角形绕着它的中心旋转一个角度后与原来的图形完全重合,那么这个角度至少应为( )度.A .60B .90C .120D .15011.如图所示,把△ABC 沿直线DE 翻折后得到△'A DE ,如果∠A =45°,∠'A EC =25°,那么∠'A DB 的度数为_______.12.线段CD 是由线段AB 平移得到的,其中点A (﹣1,4)平移到点C (3,﹣2),点B (5,﹣8)平移到点D ,则点D 的坐标是_____.13.已知一个点的坐标是()3,2-,则这个点关于坐标原点对称的点的坐标是________. 14.如图,将一张等腰直角三角形沿中位线剪成一个三角形与一个梯形后,则这两个图形可能拼成的平面四边形是_____.(不许重合、折叠)A向左平移一个单位得到点A',则点A'的坐标为15.在平面直角坐标系中,把点(2,3)__________.16.(2017四川省广元市)在平面直角坐标系中,将P(﹣3,2)向右平移2个单位,再向下平移2个单位得点P′,则P′的坐标为______.17.如图的组合图案可以看作是由一个正方形和正方形内通过一个“基本图案”半圆进行图形的“运动”变换而组成的,这个半圆的变换方式是________.18.如图,在△ABC中,∠BAC=120°,AB=AC,点M、N在边BC上,且∠MAN=60°.若BM=2,CN=4,则MN的长为_____.19.在26个大写英文字母中,有许多字母是轴对称图形,请你把其中是轴对称图形的字母写出来________________(不少于5个).20.如图,正方形ABCD的边长为4,E为BC上的点,BE=1,F为AB的中点,P为AC上一个动点,则PF+PE的最小值为_____.21.如图,△ABC,∠C=90°,将△ABC绕点B逆时针旋转90°,点A、C旋转后的对应点为A′、C′.(1)画出旋转后的△A′BC′;(2)若AC=3,BC=4,求C′C的长;(3)求出在△ABC旋转的过程中,点A经过的路径长.(结果保留π)22.如图,E与F分别在正方形ABCD边BC与CD上,∠EAF=45°.(1)以A为旋转中心,将△ABE按顺时针方向旋转90°,画出旋转后得到的图形. (2)已知BE=2cm,DF=3cm,求EF的长.23.如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度,已知△ABC,(1)△ABC与△A1B1C1关于原点O对称,写出△A1B1C1各顶点的坐标,画出△A1B1C1;(2)以O为旋转中心将△ABC顺时针旋转90°得△A2B2C2,画出△A2B2C2并写出△A2B2C2各顶点的坐标.24.玩过“俄罗斯方块”游戏吗?(出现的图案可进行顺时针、逆时针旋转;向左、向右平移).已拼好的图案如图所示.(1)若落下①—④中的一枚方块能将原图形拼成轴对称图形,请在图中画出可能摆放位置(一种即可).(2)若先后落下①—④中的两枚方块(不重复出现)能将原图形拼成矩形,求形成矩形的概率(要求树状图或者列表).25.综合与实践问题情境在综合实践课上,老师让同学们“以三角形的旋转”为主题进行数学活动,如图(1),在三角形纸片ABC中,AB=AC,∠B=∠C=α.操作发现(1)创新小组将图(1)中的△ABC以点B为旋转中心,逆时针旋转角度α,得到△DBE,再将△ABC以点A为旋转中心,顺时针旋转角度α,得到△AFG,连接DF,得到图(2),则四边形AFDE的形状是.(2)实践小组将图(1)中的△ABC以点B为旋转中心,逆时针逆转90°,得到△DBE,再将△ABC以点A为旋转中心,顺时针旋转90°,得到△AFG,连接DF、DG、AE,得到图(3),发现四边形AFDB为正方形,请你证明这个结论.拓展探索(3)请你在实践小组操作的基础上,再写出图(3)中的一个特殊四边形,并证明你的结论.26.在如图所示的直角坐标系中,解答下列问题:(1)分别写出A,B两点的坐标;(2)将△ABC绕点A顺时针旋转90°,画出旋转后的△AB1C1.27.现有如图1所示的两种瓷砖.请从这两种瓷砖中各选2块,拼成一个新的正方形地板图案,使拼铺的图案成轴对称图形或中心对称图形(如示例图2).(要求:分别在图3、图4中各设计一种与示例图不同的拼法,这两种拼法各不相同,且其中至少有一个既是轴对称图形,又是中心对称图形),它28.如图,在方格纸中,每个小正方形的边长均为1个单位长度,有一个ABC的三个顶点均与小正方形的顶点重合.(1)将△ABC向左平移4个单位长度,得到△DEF(A与D,B与E,C与F对应),请在方格纸中画出△DEF;(2)在(1)的条件下,连接AE和AF,请计算△AEF的面积S.参考答案1.A【解析】【分析】根据关于x轴对称点的性质“横坐标不变,纵坐标互为相反数”,即可得出答案.【详解】解:∵点A(﹣3,2)关于x轴的对称点为A′,∴A′点的坐标为:(﹣3,﹣2).故选:A.【点睛】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.2.C【解析】试题解析:如图所示:过点F作FG⊥AC.∵由旋转的性质可知:CE=BC=4,CD=AC=6,∠ECD=∠BCA=90°.∴AE=AC-CE=2.∵FG⊥AC,CD⊥AC,∴FG∥CD.又∵F是ED的中点,∴G是CE的中点,∴EG=2,FG=12CD=3.∴AG=AE+EG=4.∴.故选C.3.C【解析】【分析】由矩形的性质得出∠BCD=90°,AB∥CD,AD∥BC,证出∠FEA=∠ECD,∠DAC=∠ACB=21°,由三角形的外角性质得出∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∠ACD=3x,由互余两角关系得出方程,解方程即可.【详解】解:∵四边形ABCD是矩形,∴∠BCD=90°,AB∥CD,AD∥BC,∴∠FEA=∠ECD,∠DAC=∠ACB=21°,∵∠ACF=∠AFC,∠FAE=∠FEA,∴∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∴∠ACD=3x,∴3x+21°=90°,解得:x=23°;故选C.【点睛】本题考查了矩形的性质、平行线的性质、直角三角形的性质、三角形的外角性质;熟练掌握矩形,三角形的角的相关知识是解决问题的关键.4.D【解析】试题解析:平移,是指在平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移.平移不改变图形的形状和大小. 平移后的图形与原图形上对应点连接的线段平行(或在同一条直线上)且相等.故选D.5.C【解析】试题解析:平移前后两个图形是全等图形,对应点连线平行且相等.故选C.6.A【解析】分析: 连接BE ,BD ,如图,利用菱形的性质得△BDC 为等边三角形,在Rt △BCE 中计算出BE 接着证明BE ⊥AB , 利用折叠的性质得到EF =AF .,设EF =AF =x , FG 垂直平分AE ,所以在Rt △BEF 中利用勾股定理列方程求解即可.详解: 连接BE ,BD ,如图,∵四边形ABCD 为菱形,∠A =60°,∴△BDC 为等边三角形, ∠C =∠A =60°,∴∠CBE =90°-60°=30°.∵E 点为CD 的中点,∴CE =DE =1,BE ⊥CD .在Rt △BCE 中,BC =2CE =2,BE =.∵AB ∥CD ,∴BE ⊥AB .∵菱形纸片翻折,使点A 落在CD 的中点E 处,∴EF =AF .设EF =AF =x ,则BF =2-x ,在Rt △BEF 中, ()2222x x -+=, 解得7x x=. 故选A.点睛:本题考查了菱形的性质,等边三角形的判定与性质,含30°的直角三角形的性质,折叠的性质,勾股定理,求出BE 的长并能利用Rt △BEF 的三条边列方程是解答本题的关键. 7.B【解析】∵将△ABC的三个顶点的横坐标都加上−1,纵坐标不变,∴所得图形与原图形的位置关系是△ABC向x轴的负方向平移1个单位。

备考2023年中考数学一轮复习-图形的变换_平移、旋转变换_旋转的性质-单选题专训及答案

备考2023年中考数学一轮复习-图形的变换_平移、旋转变换_旋转的性质-单选题专训及答案

备考2023年中考数学一轮复习-图形的变换_平移、旋转变换_旋转的性质-单选题专训及答案旋转的性质单选题专训1、(2018牡丹江.中考真卷) 如图,△ABC三个顶点的坐标分别是A(1,﹣1),B(2,﹣2),C(4,﹣1),将△ABC绕着原点O旋转75°,得到△A1B1C1,则点B1的坐标为()A . (,)或(﹣,﹣)B . (,)或(﹣,﹣)C . (﹣,﹣)或(,)D . (﹣,﹣)或(,)2、(2019南通.中考真卷) 如图,△ABC中,AB=AC=2,∠B=30°,△ABC绕点A逆时针旋转α(0<α<120°)得到,与BC,AC分别交于点D,E.设,的面积为,则与的函数图象大致为( )A .B .C .D .3、(2019新华.中考模拟) 如图,将正五边形ABCDE沿逆时针方向绕其顶点A旋转,若使点B落在AE边所在的直线上,则旋转的角度可以是()A . 72°B . 54°C . 45°D . 36°4、(2019哈尔滨.中考模拟) 将△ABC绕点A逆时针旋转100°,得到△ADE.若点D 在线段BC的延长线上,如图,则∠EDP的大小为()A . 80°B . 100°C . 120°D . 不能确定5、(2017哈尔滨.中考模拟) 如图,在△ABC中,∠CAB=70°,将△ABC绕点A按逆时针方向旋转一个锐角α到△AB′C′的位置,连接CC′,若CC′∥AB,则旋转角α的度数为()A . 40°B . 50°C . 30°D . 35°6、(2018南京.中考模拟) 如图,⊙O1与⊙O2的半径均为5,⊙O1的两条弦长分别为6和8,⊙O2的两条弦长均为7,则图中阴影部分面积的大小关系为()A . S1>S2B . S1<S2C . S1=S2D . 无法确定7、(2017苏州.中考模拟) 如图,在R t△ABC 中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE 交AC边于点F,则n的大小和图中阴影部分的面积分别为()A . 30,2B . 60,2C . 60,D . 60,8、(2017仪征.中考模拟) 如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是()A . 70°B . 35°C . 40°D . 50°9、(2019台州.中考模拟) 如图,在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=10,BD=9,则△ADE 的周长为()A . 19B . 20C . 27D . 3010、(2019.中考模拟) 如图,边长为2的正方形ABCD绕点A逆时针旋转45°后得到正方形AB′C′D′,边B′C′与DC交于点O,则四边形AB′OD的面积等于()A . 6B . 4 ﹣4C . 2 ﹣2D . 4 +411、(2019温州.中考模拟) 如图,在△ABC中,∠ACB=90°,∠A=20°.将△ABC 绕点C按逆时针方向旋转得△A′B′C,且点B在A′B′上,CA′交AB于点D,则∠BDC的度数为()A . 40°B . 50°C . 60°D . 70°12、(2018嘉兴.中考模拟) 如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC 绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A . 30°B . 35°C . 40°D . 50°13、(2017株洲.中考真卷) 如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A . 5B . 4C .D .14、(2017台州.中考模拟) 如图,Rt△AOB∽△DOC,∠AOB=∠COD=90°,M为OA的中点,OA=6,OB=8,将△COD绕O点旋转,连接AD,CB交于P点,连接MP,则MP的最大值()A . 7B . 8C . 9D . 1015、(2011湖州.中考真卷) 如图,已知△AOB是正三角形,OC⊥OB,OC=OB,将△OAB 绕点O按逆时针方向旋转,使得OA与OC重合,得到△OCD,则旋转的角度是()A . 150°B . 120°C . 90°D . 60°16、(2018三明.中考模拟) 如图,将△ABC绕点A顺时针旋转60°得到△AED,若AB=4,AC=3,BC=2,则BE的长为()A . 5B . 4C . 3D . 217、(2017诸城.中考模拟) 如图,将△ABC绕点B按逆时针方向旋转90°后得到△A′BC′,若AB=3,BC=2,则CC′的长为()A . 2B . ﹣2C . 2D . 318、(2017枣庄.中考模拟) 如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C 按逆时针方向旋转48°得到Rt△A′B′C′,点A在边B′C上,则∠B′的大小为()A . 42°B . 48°C . 52°D . 58°19、(2017唐河.中考模拟) 如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°则第30秒时,菱形的对角线交点D的坐标为()A . (1,﹣1)B . (﹣1,﹣1)C . (,0)D . (0,﹣)20、(2020金华.中考模拟) 如图,在平面直角坐标系中,将线段绕点按逆时针方向旋转后,得到线,则点的坐标为( )A .B .C .D .21、(2019武昌.中考模拟) 如图,AB为半圆O的直径,,点C为半圆上动点,以BC为边向形外作正方形BCDE,连接OD,则OD的最大值为A . 2B .C .D .22、(2016深圳.中考模拟) 如图,边长为1的正方形ABCD绕点A顺时针旋转30°到AB′C′D′的位置,则图中阴影部分的面积为()A .B .C . 1﹣D . 1﹣23、(2019广西壮族自治区.中考模拟) 如图,直径AB为12的半圆,绕A点逆时针旋转60°,此时点B旋转到点B′,则图中阴影部分的面积是()A . 12πB . 24πC . 6πD . 36π24、(2017桂平.中考模拟) 如图,在△ABC中,∠CAB=70°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A . 35° B. 40° C . 50° D . 70°25、(2017贵港.中考真卷) 如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是()A . 4B . 3C . 2D . 126、(2017兰州.中考真卷) 如图,在正方形ABCD和正方形DEFG中,点G在CD上,DE=2,将正方形DEFG绕点D顺时针旋转60°,得到正方形DE′F′G′,此时点G′在AC上,连接CE′,则CE′+CG′=()A .B .C .D .27、(2020阳新.中考模拟) 如图所示,边长为2的正三角形ABO的边OB在x轴上,将△ABO绕原点O逆时针旋转30°得到三角形OA1B1,则点A1的坐标为()A . (,1)B . (,﹣1)C . (1,﹣)D . (2,﹣1)28、(2020南山.中考模拟) 如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC 绕点A逆时针旋转到△AB′C′的位置,使得C′C∥AB,则∠B′AB为()A . 25°B . 30°C . 50°D . 55°29、(2021禹州.中考模拟) 如图,在△ABC中,∠BAC=138°,将△ABC绕点A按逆时针方向旋转得到△AB'C'.若点B刚好落在BC边上,且AB'=CB',则∠C的度数为()A . 16°B . 15°C . 14°D . 13°30、如图,在△ABC中,∠BAC=90°,∠B=70°,将△ABC绕着点A逆时针旋转,得到△ADE,使得点D落在BC边上,过点E的直线l∥BC,则∠1=()A .B .C .D .旋转的性质单选题答案1.答案:C2.答案:B3.答案:A4.答案:B5.答案:A6.答案:B7.答案:C8.答案:C9.答案:A10.答案:B11.答案:C12.答案:A13.答案:D14.答案:C15.答案:A16.答案:B17.答案:A18.答案:A19.答案:A20.答案:A21.答案:C22.答案:C23.答案:B24.答案:B25.答案:B26.答案:A27.答案:28.答案:29.答案:30.答案:。

中考数学专题复习平移和旋转同步练习附答案

中考数学专题复习平移和旋转同步练习附答案

适用精选文件资料分享2017 年中考数学专题复习平移和旋转同步练习(附答案)《平移和旋转》一、选择题 1 .(2016 菏泽)如图, A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则的值为()A .2 B.3 C.4 D.5 【答案】 A 2 .(2016 济宁)将△ ABE向右平移2cm获得△ DCF,假如△ ABE的周长是 16cm,那么四边形 ABFD的周长是()A.16cm B.18cm C.20cm D.21cm 【答案】 C 3.(2016 宜宾)如图,在△ ABC中,,,,将△ ABC绕点 A 逆时针旋转,使点 C 落在线段 AB上的点 E 处,点 B 落在点 D处,则 B、D两点间的距离为( A . B . C. D.【答案】 A 4.(2016 河南)如图,已知菱形 OABC 的极点 O(,),B(,),若菱形绕点 O逆时针旋转,每秒旋转 45°,则第 60 秒时,菱形的对角线交点 D的坐标为()A .(,)B .(,)C.(,0) D.( 0,)【答案】 B 二、填空题 5 .(2016 广安)将点 A(1,)沿轴向左平移 3 个单位长度,再沿轴向上平移 5 个单位长度后获得点的坐标为.【答案】(,) 6 .(201 6 重庆南开)如图,在△ ABC中,,,将△ ABC绕点 C顺时针旋转获得△EDC.当点 B 的对应点 D恰好落在 AC上时,.【答案】 50°7 .(2016 枣庄)如图,在△ ABC中,,,将△ ABC绕点 A 顺时针方向旋转 60 °到△ 的地点,连接,则.【答案】三、解答题8 .(2015 巴中)如图,在边长为 1 个单位长度的小正方形构成的网格中,给出了格点三角形 ABC(极点是网格线的交点).(1)先将△ ABC竖直向上平移6 个单位,再水平向右平移 3 个单位获得△ A1B1C1,请画出△ A1B1C1;(2)将△ A1B1C1绕 B1 点顺时针旋转 90°,获得△ A2B1C2,请画出△A2B1C2;(3)求线段 B1C1变换到 B1C2的过程中扫过地域的面积.解:(1)(2)如图:(3)∵ BC=3,∴线段 B1C1变换到 B1C2的过程中扫过地域的面积为:. 9 .如图,在△ ABC和△ A DE中,AB=AC,AD=AE,,△ ABC不动,△ ADE绕点 A 旋转,连接 BE、CD,F为BE的中点,连接AF (1)如图①,当时,求证:CD=2AF;(2)当时,(1)的结论能否成立?请联合图②说明原由.解:(1)证明:如图①,∵ ,,∴.在△ ABE与△ ACD中,,∴△ ABE≌△ ACD(SAS),∴ CD=BE.∵在 Rt△ABE中, F 为 BE的中点,∴ BE=2AF,∴CD=2AF.(2)成立.证明:如图②,延长 EA交 BC于 G ,在 AG适用精选文件资料分享上截取 AH=AD,连接 BH.∵,∴.∵,∴.在△ ABH与△ ACD 中,,∴△ ABH≌△ ACD( SAS),∴ BH=DC.∵AD=AE,AH=AD,∴AE=AH.∵ EF=FB,∴ BH=2AF,∴ CD=2AF.10.(2016 无锡)如图,在 Rt△ABC中,,,,将△ ABC绕点 C顺时针旋转得△ A1B1C,当 A1 落在 AB边上时,连接 B1B,取 B1B的中点D,连接 A1D,则 A1D的长度是() A . B . C . D.【答案】 A(提示:第一证明△ ACA1、△ BCB1是等边三角形,推出△ A1BD是直角三角形即可解决问题) 11 .(2015 潜江)已知,正方形 ABCD绕点A 旋转.(1)当正方形 ABCD旋转到的外面(极点 A 除外)时,AM,AN分别与正方形 ABCD的边 CB,CD的延长线交于点 M,N,如图1,若 BM=DN,则线段 MN与之间的数目关系是;(2)如图 2,若,请判断( 1)中的数目关系能否仍成立?若成立,请恩赐证明;若不成立,请说明原由.证明:(1)如图 1,若 BM=DN,则线段 MN与之间的数目关系是.原由以下:在△ ADN与△ ABM中,,∴△ ADN≌△ ABM( SAS),∴ AN=AM,.∵,,∴.作 AE⊥MN于E,则 MN=2NE,∠ NAE= ∠MAN=67.5°. 在△ ADN与△ AEN中,∴△ ADN~△AEN(AAS),∴DN=EN.∵BM=DN,MN=2EN,∴MN=BM+DN.(2) 如图 2,若 BM≠DN,①中的数目关系仍成立.原由以下:延长NC到点 P,使 DP=BM,连接 AP. ∵四边形 ABCD是正方形,∴AB=AD,∠ABM=∠ADC=90°. 在△ ABM与△ ADP中.∴△ A BM≌△ ADP(SAS),∴AM=AP,∠1=∠2=∠3,∵∠ 1+∠4=90°,∴∠ 3+∠4=90°,∵∠ MAN=135°,∴∠ PAN= 360°- ∠MAN-( ∠3 + ∠4)=360°- 135°- 90 °= 135°.在△ ANM与△ ANP中.∴△ ANM≌△ ANP( SA S),∴MN=PN.∵PN=DP+DN=BM+DN,∴MN= BM+DN.。

备考2023年中考数学一轮复习-图形的变换_平移、旋转变换_坐标与图形变化﹣平移-单选题专训及答案

备考2023年中考数学一轮复习-图形的变换_平移、旋转变换_坐标与图形变化﹣平移-单选题专训及答案

备考2023年中考数学一轮复习-图形的变换_平移、旋转变换_坐标与图形变化﹣平移-单选题专训及答案坐标与图形变化﹣平移单选题专训1、(2015大连.中考真卷) 在平面直角坐标系中,将点P(3,2)向右平移2个单位,所得的点的坐标是()A . (1,2)B . (3,0)C . (3,4)D . (5,2)2、(2017东光.中考模拟) 如图,在平面直角坐标系中,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上,则这四个点组成的四边形ABB′A′的面积是()A . 4B . 6C . 9D . 133、(2019大同.中考模拟) 将抛物线y=x2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为()A . y=x2+3x+6B . y=x2+3xC . y=x2﹣5x+10D . y=x2﹣5x+44、(2018灌南.中考模拟) 如图,在平面直角坐标系xoy中,函数y=x的图象为直线l,作点A1(1,0)关于直线l的对称点A2,将A2向右平移2个单位得到点A 3;再作A3关于直线l的对称点A4,将A4向右平移2个单位得到点A5;….则按此规律,所作出的点A2015的坐标为()A . (1007,1008)B . (1008,1007)C . (1006,1007)D . (1007,1006)5、(2019陕西.中考模拟) 将直线y=﹣x+a的图象向右平移2个单位后经过点A(3,3),则a的值为()A . 4B . ﹣4C . 2D . ﹣26、(2018嘉兴.中考模拟) 如图,半径为1的的圆心A在抛物线y=(x-3)2-1上,AB∥x轴交于点B(点B在点A的右侧),当点A在抛物线上运动时,点B随之运动得到的图象的函数表达式为()A . y=(x-4)2-1B . y=(x-3)2C . y=(x-2)2-1D . y=(x-3)2-27、(2018青岛.中考模拟) 平面直角坐标系中,将三角形各点的纵坐标都减去﹣3,横坐标保持不变,所得图形与原图形相比()A . 向上平移了3个单位B . 向下平移了3个单位C . 向右平移了3个单位D . 向左平移了3个单位8、(2018青岛.中考模拟) 如图,线段AB经过平移得到线段A1B1,其中点A,B的对应点分别为点A1, B1,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A1B1上的对应点P′的坐标为( )A . (a-2,b+3)B . (a-2,b-3)C . (a+2,b+3)D . (a+2,b-3) 9、(2017成武.中考模拟) 如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣3,1),C(﹣1,2),若将△ABC平移后,点A的对应点A1的坐标为(1,2),则点C的对应点C1的坐标为()A . (﹣1,5)B . (2,2)C . (3,1)D . (2,1)10、(2017中.中考模拟) 如图,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A的对应点A′的坐标是()A . (6,1)B . (0,1)C . (0,﹣3)D . (6,﹣3)11、(2019滨州.中考真卷) 在平面直角坐标系中,将点向上平移3个单位长度,再向左平移2个单位长度,得到点,则点的坐标是().A .B .C .D .12、(2018深圳.中考模拟) 在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()A . (﹣3,﹣2)B . (2,2)C . (﹣2,2)D . (2,﹣2)13、(2016菏泽.中考真卷) 如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A . 2B . 3C . 4D . 514、(2017河南.中考模拟) 如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OA的方向平移至△O′A′B′的位置,此时点A′的横坐标为3,则点B′的坐标为()A . (4,2 )B . (3,3 )C . (4,3 )D . (3,2 )15、(2017濮阳.中考模拟) 如图,平行四边形ABCD的顶点A(﹣2,3),B(﹣3,1),C(0,1),规定“平行四边形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,则连续经过2017次变换后,平行四边形ABCD的对角线的交点M的坐标为()A . (﹣2017,2)B . (﹣2017,﹣2)C . (﹣2018,﹣2)D . (﹣2018,2)16、(2011河南.中考真卷) 如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O旋转180°到乙位置,再将它向下平移2个单位长到丙位置,则小花顶点A在丙位置中的对应点A′的坐标为()A . (3,1)B . (1,3)C . (3,﹣1)D . (1,1)17、(2019莆田.中考模拟) 如图,将“笑脸”图标向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是()A . (﹣1,6)B . (﹣9,6)C . (﹣1,2)D . (﹣9,2)18、(2012来宾.中考真卷) 在平面直角坐标系中,将点M(1,2)向左平移2个长度单位后得到点N,则点N的坐标是()A . (﹣1,2)B . (3,2)C . (1,4)D . (1,0)19、(2015来宾.中考真卷) 如图,在平面直角坐标系中,将点M(2,1)向下平移2个单位长度得到点N,则点N的坐标为()A . (2,﹣1)B . (2,3)C . (0,1)D . (4,1)20、(2017海南.中考真卷) 如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A . (﹣3,2)B . (2,﹣3)C . (1,﹣2)D . (﹣1,2)21、(2016雅安.中考真卷) 已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为()A . (7,1)B . B(1,7)C . (1,1)D . (2,1)22、(2019兰州.中考真卷) (2019·兰州) 如图,在平面直角坐标系中,将四边形ABCD先向下平移,再向右平移得到四边形A1B1C1D1,已知A(-3,5),B(-4,3),A 1(3,3),则点B1坐标为()A . (1,2)B . (2,1)C . (1,4)D . (4,1)23、(2017西宁.中考真卷) 在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()A . (﹣3,﹣2)B . (2,2)C . (﹣2,2)D . (2,﹣2)24、(2020迁安.中考模拟) 如图所示的直角坐标系内,双曲线的解析式为,若将原坐标系的轴向上平移两个单位,则双曲线在新坐标系内的解析式为()A .B .C .D .25、(2020莆田.中考模拟) 已知A(1,﹣3),B(2,﹣2),现将线段AB平移至A 1B1,如果A1(a,1),B1(5,b),那么a b的值是()A . 32B . 16C . 5D . 426、(2020兰州.中考模拟) 如图,在平面直角坐标系中,点在轴上,点的坐标为.将先绕点顺时针旋转90°,再向右平移3个单位长度,则变换后点的对应点坐标是( )A .B .C . (3,2)D . (2,2)27、(2020台州.中考真卷) 如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,-1)对应点的坐标为()A . (0,0)B . (1,2)C . (1,3)D . (3,1)28、(2020黄冈.中考模拟) 如图,若将线段AB平移至A1B1,则a+b的值为( )A . ﹣3B . 3C . ﹣2D . 029、(2021长沙.中考模拟) 如图,将线段平移到线段的位置,则a-b的值为()A . 4B . 0C . 3D .30、(2021西山.中考模拟) 在平面直角坐标系中,线段两端点的坐标分别是,,平移后得到线段,A点的对应点坐标,则的坐标为()A .B .C .D .坐标与图形变化﹣平移单选题答案1.答案:D2.答案:D3.答案:A4.答案:B5.答案:A6.答案:A7.答案:A8.答案:A9.答案:D10.答案:B11.答案:A12.答案:B13.答案:A14.答案:A15.答案:C16.答案:C17.答案:C18.答案:A19.答案:A20.答案:B21.答案:C22.答案:B23.答案:B24.答案:25.答案:26.答案:27.答案:28.答案:29.答案:30.答案:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009中考数学第一轮复习 平移与旋转专题训练
一、填空题:(每题 3 分,共 26 分)
1、平移由移动的_____和_____所决定。

2、线段CD 是由AB 平移得来的,已知AB =3cm ,则CD =
____cm 。

3、如图,△ABC 平移后得到△DEF ,若BE =4cm ,EC =3cm ,
则平移的距离是____。

4、已知A 、B 两点关于O 点成中心对称,若AO =3cm ,
则BO =____cm 。

5、如图,将△ABC 平移到△DEF
的位置,则BC ∥____。

第3题
第5题 第8题
6、电风扇的叶片转动____°后能与自身重合。

7、根据生活实际举一个平移的实例:
_______________________
8、Rt △ABC 绕着B 点旋转90°后得到△EBD ,则AC 与ED 的位置关系是______。

9、如图,△ABC 是等边三角形,且△ABE ≌△ACD ,则我们可以将△ACD 看做是△ABE 绕___点,逆时针旋转___度而得到的。

10、将一图形沿着正北方向平移 5cm 后,再沿着正西方向平移 5cm ,这时图形在原来位置的____方向上。

11、平行四边形是中心对称图形,它的对称中心是________。

12、把△ABC 绕着点C 顺时针旋转35°,得到△A'B'C',A'B'交AC 于点D ,若∠A'DC =90°,则∠A 的度数是____。

二、选择题:(每题 4 分,共 24 分) 1、在下列现象中,是平移现象的是( )
①方向盘的转动 ②电梯的上下移动 ③保持一定姿势滑行 ④钟摆的运动
A 、①②
B 、②③
C 、③④
D 、①④
2、右图是一个旋转对称图形,要使它旋转后与自身重合,
至少应将它绕中心逆时针方向旋转的度数为( ) A 、30° B 、60° C 、120° D 、180°
A D
E C F
B A
B
C
D
E
F
A B
D
C
E
3、观察下列“风车”的平面图案,其中是中心对称图形的有( )
A 、1个
B 、2个
C 、3个
D 、4个
4、如图,O 是正六边形ABCDE 的中心,下列图形可由△OBC 平移得到的是( )
A 、△OCD
B 、△OAB
C 、△OAF
D 、△OEF 5、下列说法中正确的是( )
A 、图形平移的方向只有水平方向和竖直方向
B 、图形平移后,它的位置、大小、形状都不变
C 、图形平移的方向不是惟一的,可向任何方向平行移动
D 、图形平移后对应线段不可能在一直线上
6、下列图形一定是旋转对称图形,但不是中心对称图形的是( )
A 、线段
B 、角
C 、等边三角形
D 、平行四边形 三、解答题:(每题 9 分,共
54 分)
1、如图,试将△ABC 沿MN 的方向平移,平移的距离是 3cm ,画出平移后的△A'B'C'
2、试画出四边形A'B'C'D',使它与四边形ABCD 关于点P 成中心对称。

N M
E
3、在下图(B )(C )中,画出由(A )所示的图形绕点P 顺时针方向旋转90°、180°所生成的图形。

4、如图,△ABC 与△ADE 都是等腰直角三角形,∠C 和∠AED 都是直角,点E 在AB 上,如果,△ABC 旋转后能与△ADE 重合,那么哪一点是旋转中心?旋转了多少度?
5、分别画出两个旋转对称图形,使它们的旋转角分别是45°和60°。

A
C
B
E
D

6、通过平移或旋转图形设计图案。

四、(10分)如图,已知△ABC,D为BC边的中点。

①将△ABC绕着点D旋转180°,画出旋转后的△EBC
②四边形ABEC是怎样的四边形?为什么?
五、(12分)某产品的标志如图①所示,要在所给的图形②中,把A、B、C三个菱
形通过一种变换或几种变换,使之变为与图①一样的图案。

(1)请你在图②中作出变换后的图案(最终图案用实线表示)
(2)你所用的变换方法是____________________(在以下变换方法中,选择一种正确的填在横线上,也可以用自己的话表述)
①将菱形B向上平移;②将菱形B绕点O旋转120°;③将菱形B绕点O旋转180°。

六、(14分)菱形以特殊的对称美而受人们的喜爱,在生产生活中有其广泛的应用,张伟同学家里有一面长4.2m、宽2.8m的墙壁准备装修,现有如图甲所示的型号瓷砖,其形状是一块长30cm、宽20cm的矩形,点E、F、G、H分别是边DA、AB、BC、CD的中点,阴影部分为淡蓝色花纹,中间部分为白色,解答下列各问:
(1)张伟同学家里的墙壁最少要贴这种瓷砖多少块?
(2)四边形EFGH是什么四边形?并说明理由。

(3)全部贴满后,这面墙壁上有多少个有淡蓝色花纹的菱形?
图①图②
答案:
(十四)
一、1、方向距离2、33、4cm4、35、EF6、120°7、电梯上上下下
8、互相垂直9、A6010、西北11、两条对角线的交点12、55°
二、1、B2、B3、B4、C5、C6、C
三、1-3略4、A45°5-6、略
四、②平行四边形,因为对角线互相平分
五、(1)略(2)③(3)略
六、①(420×280)÷(30×20)=196②菱形③13×13=169,因为长贴14块,宽也贴14块。

相关文档
最新文档