现代数值计算方法习题答

合集下载

《数值计算方法》习题答案

《数值计算方法》习题答案

《数值计算方法》课后题答案详解吉 林 大 学第一章 习 题 答 案1. 已知(1)2,(1)1,(2)1f f f −===,求()f x 的Lagrange 插值多项式。

解:由题意知:()01201212001020211012012202121,1,2;2,1,1()()(1)(2)()()6()()(1)(2)()()2()()(1)(1)()()3(1)(2)(1)(2)()2162nj j j x x x y y y x x x x x x l x x x x x x x x x x l x x x x x x x x x x l x x x x x x x x L x y l x ==−=====−−−−==−−−−+−==−−−−−+−==−−−−+−==×+×−∴∑()2(1)(1)131386x x x x +−+×=−+2. 取节点01210,1,,2x x x ===对x y e −=建立Lagrange 型二次插值函数,并估计差。

解11201201210,1,;1,,2x x x y y e y e −−======1)由题意知:则根据二次Lagrange插值公式得:02011201201021012202110.510.520.51()()()()()()()()()()()()()2(1)(0.5)2(0.5)4(1)(224)(43)1x x x x x x x x x x x x L x y y y x x x x x x x x x x x x x x x x e x x e e e x e e x −−−−−−−−−−−−=++−−−−−−=−−+−−−=+−+−−+22)Lagrange 根据余项定理,其误差为(3)2210122()1|()||()||(1)(0.5)|3!61max |(1)(0.5)|,(0,1)6()(1)(0.5),()330.5030.2113()61()0.2113(0.21131)(0.21130.5)0.008026x f R x x e x x x x x x t x x x x t x x x x t x R x ξξωξ−+≤≤==−−≤−−∈′=−−=−+=−==≤××−×−=∴取 并令 可知当时,有极大值3. 已知函数y =在4, 6.25,9x x x ===处的函数值,试通过一个二次插值函数求的近似值,并估计其误差。

计算方法习题集及答案(总结版)

计算方法习题集及答案(总结版)

雅克比法:
3 10 12 5
3 (k ) 2 (k ) x1( k +1) = − 5 x2 − 5 x3 −
,x
( k +1) 2
(k ) 1 (k ) =1 4 x1 − 2 x 3 + 5
18 i
,x
( k +1) 3 −4
(k ) 3 =−1 + 10 x (2 k ) + 5 x1
取初始向量 x
(2) x (3) x
3
= 1+ x2 =
,对应迭代公式 x 对应迭代公式 x
0
k +1
= 3 1 + x k2 ;
2
1 , x −1
k
+1 =
1 xk − 1

0
判断以上三种迭代公式在 x 解: (1) ϕ ( x) = 1 + x1
2
= 1 .5
的收敛性,选一种收敛公式求出 x
2 x3

2 3
= 1 .5
5
习题 3
1.
设有方程组
5 x1 + 2 x 2 + x3 = −12 − x1 + 4 x 2 + 2 x3 = 20 2 x − 3x + 10 x = 3 2 3 1
( k +1) (k )

(1)
考察用 Jacobi 法,Gauss-Seidal 法解此方程组的收敛性; −x (2) 用 Jacobi 法及 Gauss-Seidal 法解方程组,要求当 x
1.
x
k +1 k k
'
<1
公式收敛

数值计算方法复习题

数值计算方法复习题

fuxiti例1证明方程1-x-sin x=0在区间[0,1]内有一个根,使用二分法求误差不超过0.5×10-4的根要迭代多少次?证明令f(x)=1-x-sin x,∵f(0)=1>0,f(1)=-sin1<0∴f(x)=1-x-sin x=0在[0,1]有根.又f'(x)=1-c os x>0(x∈[0.1]),故f(x)=0在区间[0,1]内有唯一实根.给定误差限ε=0.5×10-4,有只要取n=14.例4选择填空题1. 设函数f(x)在区间[a,b]上连续,若满足,则方程f(x)=0在区间[a,b]一定有实根.答案:f(a)f(b)<0解答:因为f(x)在区间[a,b]上连续,在两端点函数值异号,由连续函数的介值定理,必存在c,使得f(c)=0,故f(x)=0一定有根.2. 用简单迭代法求方程f(x)=0的实根,把方程(x)=0表成x=ϕ(x),则f(x)=0的根是( )(A)y=x与y=ϕ(x)的交点(B) y=x与y=ϕ(x)交点的横坐标(C) y=x与x轴的交点的横坐标(D) y=ϕ(x)与x轴交点的横坐标答案:(B)解答:把f(x)=0表成x=ϕ(x), 满足x=ϕ(x)的x是方程的解,它正是y=x与y=ϕ(x)的交点的横坐标.3.为求方程x3―x2―1=0在区间[1.3,1.6]内的一个根,把方程改写成下列形式,并建立相应的迭代公式,迭代公式不收敛的是( )(A)(B)(C)(D)答案:(A)解答:在(A)中故迭代发散.在(B)中,故迭代收敛.在(C)中,,故迭代收敛.在(D)中,类似证明,迭代收敛.例3填空选择题:1. 用高斯列主元消去法解线性方程组作第1次消元后的第2,3个方程分别为。

解答1. 选a21=2为主元,作行互换,第1个方程变为:2x1+2x2+3x3=3,消元得到是应填写的内容。

一、解答下列问题:1) 数值计算中,最基础的五个误差概念(术语)是 , , , , .2) 分别用 2.718281, 2.718282 作数e 的近似值 ,它们的有效位数分别有位, 位; 又取73.13≈ (三位有效数字),则≤-73.13 .3)为减少乘除法运算次数,应将算式32)1(7)1(51318---+-+=x x x y 改写成4)为减少舍入误差的影响,应将算式 9910- 改写成 5)递推公式 ⎪⎩⎪⎨⎧=-==-,2,1,110210n y y y n n如果取41.120≈=y 作计算,则计算到10y 时,误差有这个计算公式数值稳定不稳定 ?1) 绝对误差 , 相对误差 , 有效数字 , 截断误差 , 舍入误差 。

数值计算方法课后习题答案

数值计算方法课后习题答案

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。

[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。

2、设x 的相对误差为2%,求n x 的相对误差。

[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。

3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。

[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。

4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。

(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。

数值计算方法答案

数值计算方法答案

1数值计算方法习题一(2)习题二(6)习题三(15)习题四(29)习题五(37)习题六(62)习题七(70)2009.9,92习题一1.设x>0相对误差为2%,4x的相对误差。

解:由自变量的误差对函数值引起误差的公式:(())(())'()()()()f x xf x f x xf x f xδδ∆=≈得(1)()f x=11()()*2%1%22x xδδδ≈===;(2)4()f x x=时444()()'()4()4*2%8%xx x x xxδδδ≈===2.设下面各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出他们各有几位有效数字。

(1)12.1x =;(2)12.10x =;(3)12.100x =。

解:由教材9P关于1212.m nx a a a bb b=±型数的有效数字的结论,易得上面三个数的有效数字位数分别为:3,4,53.用十进制四位浮点数计算(1)31.97+2.456+0.1352;(2)31.97+(2.456+0.1352)哪个较精确?解:(1)31.97+2.456+0.1352≈21((0.3197100.245610)0.1352)fl fl⨯+⨯+=2(0.3443100.1352)fl⨯+=0.3457210⨯(2)31.97+(2.456+0.1352)21(0.319710(0.245610))fl fl≈⨯+⨯= 21(0.3197100.259110)fl⨯+⨯=0.3456210⨯易见31.97+2.456+0.1352=0.345612210⨯,故(2)的计算结果较精确。

4.计算正方形面积时,若要求面积的允许相对误差为1%,测量边长所允许的相对误差限为多少?3解:设该正方形的边长为x,面积为2()f x x=,由(())(())'()()()()f x xf x f x xf x f xδδ∆=≈解得(())()()'()f x f xxxf xδδ≈=2(())(())22f x x f xx xδδ==0.5%5.下面计算y的公式哪个算得准确些?为什么?(1)已知1x<<,(A)11121xyx x-=-++,(B)22(12)(1)xyx x=++;(2)已知1x>>,(A)y=,(B)y=;(3)已知1x<<,(A)22sin xyx=,(B)1cos2xyx-=;(4)(A)9y=(B)y=解:当两个同(异)号相近数相减(加)时,相对误差可能很大,会严重丧失有效数字;当两个数相乘(除)时,大因子(小除数)可能使积(商)的绝对值误差增大许多。

数值计算课后答案5

数值计算课后答案5

习 题 五 解 答1、用矩形公式、梯形公式、抛物线公式计算下列积分,并比较结果。

(1)120(8)4xdx n x =+⎰,(2)20sin (8)x xdx n π=⎰(3)1(4)n =⎰,(4)1(4)x e dxn -=⎰1*、用矩形公式、梯形公式、抛物线公式计算下列积分,并比较结果。

(1)120(4)4x dx n x =+⎰解:解:将区间[0,1]4等分,5个分点上的被积函数值列表如下(取2位小数)(1)矩形法。

用矩形法公式计算(取2位小数)或者 (2)梯形法用梯形法公式计算(取2位小数): (3)抛物线法用抛物线法公式计算(取2位小数):2、用复化梯形公式计算积分841dx x ⎰,由此计算ln2(注:841ln 2dx x=⎰),精度要求为410-。

解:8418ln8ln 4ln ln 24dx x =-==⎰,要求精度为410-,即误差不超过41102ε-=⨯。

将积分区间[4,8]n 等份,则步长844h n n -==在本题中,复化梯形公式的余项为2228484416()()()()12123r h f f f n nηηη--''''''=-=-=-注意到231(),(),()2f x f x x f x x x--'''==-=,所以在[4,8]区间上3()24f x -''≤⨯,则32232161621283346r n n n-⨯≤⨯⨯==⨯, 要使42111062n -≤⨯,需有42421110310577.36757862n n n n n -≤⨯⇒≥⇒≥⇒≥⇒=。

3、用复合梯形公式计算积分()baf x dx ⎰,问将积分区间[a,b]分成多少等份,才能保证误差不超过ε(不计舍入误差)?解:对于复合梯形公式来说,如果()f x ''在积分区间上连续,则其余项为2(),[,]12b a r h f a b ηη-''=-∈,设max ()a x bM f x ≤≤''=,则322()()()1212b a b a Mr h f nη--''=≤ 令32()12b a Mn ε-≤,得n ≥即当1n =+时,能保证计算的精度要求。

计算方法习题集及答案第四版

计算方法习题集及答案第四版
位)。
解:
y次迭代公式
k
0
1
2
3
3.5
3.64
3.63
3.63
6. 试证用牛顿法求方程在[1,3]内的根是线性收敛的。 解:

y次迭代公式 故
从而 ,时, 故, 故牛顿迭代公式是线性收敛的 7. 应用牛顿法于方程, 导出求立方根的迭代公式,并讨论其收敛
性。
解:
相应的牛顿迭代公式为 迭代函数,, 则,
习题1.1
1. 什么叫数值方法?数值方法的基本思想及其优劣的评价标准如 何?
数值方法是利用计算机求解数学问题近似解的方法 2. 试证明 及
证明: (1)令
即 又 即 ⑵ 设,不妨设, 令 即对任意非零,有 下面证明存在向量,使得, 设,取向量。其中。 显然且任意分量为, 故有即证。 3. 古代数学家祖冲之曾以作为圆周率的近似值,问此近似值具有
解: (1)迭代公式,公式收敛
k
0
1
2
3
0
(2),, 局部收敛 k0 1 2 3
0.25
0.25098 0.25098
456789
1.5 1.322 1.421 1.367 1.397 1.380 1.390 1.384 1.387 1.386
2. 方程在附近有根,把方程写成三种不同的等价形式:
(1),对应迭代公式;
9
10
11
12
13
14
15
16
1.4650 1.46593 1.4653 1.46572 1.46548 1.46563 1.465534 1.465595
迭代公式(2):
k
0
1
2
3

数值计算方法复习题

数值计算方法复习题

fuxiti例1证明方程1-x-sin x=0在区间[0,1]内有一个根,使用二分法求误差不超过0.5×10-4的根要迭代多少次?证明令f(x)=1-x-sin x,∵f(0)=1>0,f(1)=-sin1<0∴f(x)=1-x-sin x=0在[0,1]有根.又f'(x)=1-c os x>0(x∈[0.1]),故f(x)=0在区间[0,1]内有唯一实根.给定误差限ε=0.5×10-4,有只要取n=14.例4选择填空题1. 设函数f(x)在区间[a,b]上连续,若满足,则方程f(x)=0在区间[a,b]一定有实根.答案:f(a)f(b)<0解答:因为f(x)在区间[a,b]上连续,在两端点函数值异号,由连续函数的介值定理,必存在c,使得f(c)=0,故f(x)=0一定有根.2. 用简单迭代法求方程f(x)=0的实根,把方程(x)=0表成x=ϕ(x),则f(x)=0的根是( )(A)y=x与y=ϕ(x)的交点(B) y=x与y=ϕ(x)交点的横坐标(C) y=x与x轴的交点的横坐标(D) y=ϕ(x)与x轴交点的横坐标答案:(B)解答:把f(x)=0表成x=ϕ(x), 满足x=ϕ(x)的x是方程的解,它正是y=x与y=ϕ(x)的交点的横坐标.3.为求方程x3―x2―1=0在区间[1.3,1.6]内的一个根,把方程改写成下列形式,并建立相应的迭代公式,迭代公式不收敛的是( )(A)(B)(C)(D)答案:(A)解答:在(A)中故迭代发散.在(B)中,故迭代收敛.在(C)中,,故迭代收敛.在(D)中,类似证明,迭代收敛.例3填空选择题:1. 用高斯列主元消去法解线性方程组作第1次消元后的第2,3个方程分别为。

解答1. 选a21=2为主元,作行互换,第1个方程变为:2x1+2x2+3x3=3,消元得到是应填写的内容。

一、解答下列问题:1) 数值计算中,最基础的五个误差概念(术语)是 , , , , .2) 分别用 2.718281, 2.718282 作数e 的近似值 ,它们的有效位数分别有位, 位; 又取73.13≈ (三位有效数字),则≤-73.13 .3)为减少乘除法运算次数,应将算式32)1(7)1(51318---+-+=x x x y 改写成4)为减少舍入误差的影响,应将算式 9910- 改写成 5)递推公式 ⎪⎩⎪⎨⎧=-==-,2,1,110210n y y y n n如果取41.120≈=y 作计算,则计算到10y 时,误差有这个计算公式数值稳定不稳定 ?1) 绝对误差 , 相对误差 , 有效数字 , 截断误差 , 舍入误差 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可编辑
现代数值计算方法习题答案
习题一
1、解:根据绝对误差限不超过末位数的半个单位,相对误差限为绝对误差限除以 有效数字本身,有效数字的位数根据有效数字的定义来求.因此
49×10-2 : E = 0.005; Er = 0.0102; 2 位有效数字.
0.0490 : E = 0.00005; Er = 0.00102; 3 位有效数字.
1 102 2
于是有
| x1 x1* | = |10 x0 1 10 x0* 1| = 10| x0 x0* | < =10
| x2
x
* 2
|
=
|10 x1 1 10 x1* 1 |
=
10| x1 x1* |
<
=10 2
类推有
| x10 x1*0 |
<
=1010
1 108 2
E(n x* ) n x*
1
(
x*
)
1 n
1
(
x
x* )
n
n x*
1 n
x x* x*
1 n
Er
(
x
*
)
5、解:(1)因为 20 4.4721…… ,
又 E(x* ) | x x* | = | 20 4.47 | = 0.0021 < 0.01, 所以 x* 4.47.
(2) 20 的近似值的首位非 0 数字1 = 4,因此有
u23 a23 l21u13 2 / 3
u24 a24 l21u14 1/ 3
l32 (a32 l31u12 ) / u22 1/ 5
l42 (a42 l41u12 ) / u22 1/10 第三步:计算 U 的第三行,L 的第三列,得
u33 a33 l31u13 l32u23 37 /10
490.00 : E = 0.005; Er = 0.0000102;5 位有效数字.
2、解: 22 = 3.1428 …… , = 3.1415 …… , 7 取它们的相同部分 3.14,故有 3 位有效数字.
E
=
3.1428
- 3.1415 = 0.0013 ; Er =
E 3.14
=
0.0013 3.14
即计算到 x10 ,其误差限为1010 ,亦即若在 x0 处有误差限为 ,则 x10 的
误差将扩大1010 倍,可见这个计算过程是不稳定的.
精品文档,欢迎下载
可编辑
习题二
1、 解:只用一种方法. (1)方程组的增广矩阵为:
2 1 1 4 2 1 1 4 2 1 1 4 3 4 2 11 → 0 11 1 10 → 0 11 1 10 3 2 4 11 0 1 11 10 0 0 1 1
gt(t t* ) gt 2 / 2
2E(t) t
由上述两式易知,结论.
10、解:代入求解,经过计算可知第(3)个计算结果最好.
11、解:基本原则为:因式分解,分母分子有理化、三角函数恒等变形……
(1)通分;(2)分子有理化;(3)三角函数恒等变形.
12、解: 因为 x0
2 , x0* 1.41 ,所以| x0 x0* | < =
u34 a34 l31u14 l32u24 9 /10
精品文档,欢迎下载
可编辑
l43 (a43 l u 41 13 l42u23 ) / u33 9 / 37 第四步:计算 U 的第四行,得
u44 a44 l41u14 l42u24 l u 43 34 955 / 370
解得Y =(6,-3,23/5,-955/370)T. 解得 X =(1,-1,1,-1)T.
3、(1)解:首先检验系数矩阵的对称正定性,这可以通过计算其各阶顺序主子式
是否大于零来判断.
a11 = 3 > 0,
3 2 = 2 > 0, 22
3 21 2 2 0 = 4 > 0,所以系数矩阵是对 103
(3)适用于计算机编程计算. 2、 解:第一步:计算 U 的第一行,L 的第一列,得
u11 6
u12 2
u13 1
u14 1
l21 a21 / u11 1/ 3
l31 a31 / u11 1/ 6
l41 a41 / u11 1/ 6 第二步:计算 U 的第二行,L 的第二列,得
u22 a22 l21u12 10 / 3
称正定的.记系数矩阵为 A,则平方根法可按如下三步进行: 第一步 分解:A = L LT. 由公式计算出矩阵的各元素:
→ x1 3 , x2 1 , x3 1 .
(2)方程组的增广矩阵为:
3 1 4 7 3 1 4 7 3 1 4 7
1 2 2 1 → 0 5 2 4 → 0 5 2 4
2 3 2 0
0 1 2 2
0 0 2 1
→ x1 2 , x2 1 , x3 1/ 2 .
从而,
6 2 1 1
2
4
1
0
1 1 4 1
1 0 1
3
1 0
0 0 6 2
1
1
=
1/
3
1
0 0 0 10 / 3 2 / 3
1/ 3
1/ 6 1/ 5 1 0 0 0 37 /10 9 /10
1/ 6 1/10 9 / 37 1 0 0
0 955/ 370
由 LY b , 由UX Y ,
|
E
* r
(
x)
|
1 24
10(n1)
< = 0.01 , 解之得 n > = 3 .所以, x*
4.47.
6、解:设正方形的边长为 x ,则其面积为 y x2 ,由题设知 x 的近似值为 x* = 10 cm .
精品文档,欢迎下载
可编辑
记 y * 为 y 的近似值,则
E( y* ) 2x* (x x* ) 20(x x* ) 20 E(x* ) < = 0.1,
所以 E(x* ) < = 0.005 cm .
7、解:因为 E(x n ) nxn1 (x x* ) ,
所以 Er (x n )
E(xn ) xn
n
x x* x
nEr (x)
0.01n .
8、解:
9、证: E(S) S S * gt(t t * ) gtE(t)
Er (S)
S
S* S
= 0.00041.
3、解: 101 的近似值的首位非 0 数字1 = 1,因此有
|
E
* r
(
x)
|
1 10(n1) 21
<=
1 × 10-4 , 解之得 n > = 5,所以 n = 5 . 2
4、证: E(n
x* )
1
(
x
*
)
1 n
1
1
(
x*
)
1 n
1
(
x
x* )
n
n
Er (n
x* )
相关文档
最新文档