船舶通信系统概述.doc
水上运输的船舶通信与导航系统

水上运输的船舶通信与导航系统水上运输是现代社会中不可或缺的一部分,而船舶通信与导航系统在水上运输中起着至关重要的作用。
随着科技的不断进步,船舶通信与导航系统也在不断发展和完善,为航行安全和通信便利提供了强有力的支持。
一、船舶通信系统船舶通信系统是船舶与外界进行通信的重要手段,能够保障船舶间的信息交流和与岸上通信中心的联系。
现代船舶通信系统具有以下功能:1. 语音通信:船舶通过无线电台与其他船只和岸上通信中心进行语音通话,实现信息交流和协调。
2. 数据通信:船舶利用通信系统传输数据,如天气报告、导航信息等,确保航行安全。
3. 位置报告:通过船载的定位系统,船舶能够将自身的位置和航行状态及时报告给岸上通信中心,以便监控和调度。
4. 救援通信:船舶在遇到危险或紧急情况时,可以通过通信系统向海上救援部门发出求救信号,保障船员的生命安全。
二、船舶导航系统船舶导航系统是指船舶在航行中确定自身位置、规划航行路线以及避免碰撞的一系列技术和设备。
现代船舶导航系统具有以下特点和功能:1. 全球卫星定位系统(GNSS):船舶利用GNSS系统,如GPS、GLONASS等,可以高精度地确定船舶位置,实现全球范围内的导航。
2. 自动驾驶系统:利用电子航海图、传感器和计算机技术,船舶能够实现自主航行和自动驾驶,提高航行的精度和安全性。
3. 碰撞避免系统:船舶导航系统可以通过雷达和自动识别系统,及时发现其他船只的位置和航向,确保航行安全,并进行碰撞避免的预警和控制。
4. 气象信息集成:船舶导航系统能够集成气象信息,提供航行路线的天气条件,帮助船舶避开恶劣天气区域,确保航行安全。
三、船舶通信与导航系统的发展趋势随着科技的不断进步,船舶通信与导航系统也不断发展和完善。
未来的发展趋势主要包括以下几个方面:1. 无线通信技术:随着5G技术的逐渐普及,船舶通信系统将进一步提升通信速度和稳定性,实现更快捷高效的数据传输。
2. 智能化导航系统:利用人工智能和大数据分析技术,船舶导航系统将更加智能化,能够根据海况和交通情况动态规划最优航线,提高航行效率。
船舶航行中的船舶通信与卫星导航

船舶航行中的船舶通信与卫星导航船舶通信与卫星导航在现代航海中发挥着重要的作用。
它们不仅能确保船舶间的通讯畅通,还能提供精确的导航信息,帮助船舶安全航行。
本文将探讨船舶通信与卫星导航的原理、应用以及对船舶航行的影响。
一、船舶通信技术1. 船舶通信系统概述船舶通信系统包括船舶VHF无线电通信、全球海事无线电通信系统(GMDSS)以及船舶卫星通信等。
其中,VHF无线电通信是航海中常用的通信方式,用于船舶间短距离通信和与岸上交通管理机构进行通信。
GMDSS则提供了在紧急情况下进行求救和通信的能力。
而船舶卫星通信则通过卫星中继,实现了全球范围内的通信服务。
2. 船舶通信系统的应用船舶通信系统广泛应用于航行管理、安全通信、气象报告、货物通讯等方面。
航行管理机构可以通过船舶通信系统掌握航行动态,及时提供导航建议和警告信息。
而船舶间的通信则能确保货物装卸过程中的安全和顺利进行。
此外,船舶通信系统还能与气象局合作,提供船舶导航时所需的天气信息。
二、卫星导航技术1. 卫星导航系统原理卫星导航系统通过一系列卫星和地面站点组成,利用卫星发射信号,接收者通过接收信号并计算时间延迟,从而确定自身的位置。
目前,全球定位系统(GPS)和伽利略系统是最常用的卫星导航系统。
2. 卫星导航系统的应用卫星导航系统在航行中起到关键作用。
通过卫星导航,船舶可以准确获取自身位置信息,并结合地图数据进行导航。
此外,卫星导航系统还可以提供时间同步功能,确保船舶间的协调和安全。
三、船舶通信和卫星导航的影响1. 航行安全船舶通信和卫星导航的应用大大提高了航行的安全性。
船舶通过通信系统与岸上机构保持联系,能及时获取航行警告和建议。
同时,卫星导航系统提供准确的船舶位置信息,帮助船舶避开危险区域。
2. 航行效率船舶通信和卫星导航的应用使航行变得更加高效。
船舶可以通过通信系统与其他船舶、港口、海事机构进行及时信息交流,提前做好船舶装卸等工作准备。
此外,卫星导航系统的准确性能够帮助船舶选择最短的航线,节约时间和燃料成本。
船舶通信与电子导航设备

具有全天候、全天时、高精度、远距 离探测能力,不受光照和时间限制, 适用于海上和空中导航。
雷达导航设备类型与选择
雷达导航设备类型
包括脉冲雷达、连续波雷达、多普勒雷达等,根据工作频率、发射功率、天线 类型等参数进行分类。
雷达导航设备选择
根据实际需求和场景选择合适的雷达导航设备,考虑因素包括探测距离、精度 、抗干扰能力、可靠性等。
船舶通信的主要目的是确保船舶航行安全、提高运营效率以及满足船员的生活需求 。
船舶通信系统通常包括内部通信系统和外部通信系统,分别用于船舶内部和船舶与 外部之间的通信。
船舶内部通信系统
01
船舶内部通信系统主要 用于船舶内部各部门、 船员之间的日常通信联 系。
02
内部通信系统通常包括 有线电话、无线电话、 广播系统、内部网络等 。
AIS设备类型与选择
A根I据S设功能备和类用型途的不同,AIS设备可
分为船载AIS、岸基AIS和卫星AIS等 类型。船载AIS主要用于船舶之间的 通信和导航;岸基AIS则用于海事管 理部门对船舶的监管和调度;卫星 AIS则通过卫星通信技术实现全球范
A围I内S设的船备舶选定择位和追踪。
在选择AIS设备时,需要考虑设备的 性能、价格、兼容性以及使用环境等 因素。一般来说,性能稳定、价格合 理、兼容性好且能够适应各种恶劣环 境的设备是首选。
03
有线电话是船舶内部通 信的主要手段,具有通 话质量稳定、保密性好 的特点。
04
无线电话则适用于在船 舶内部移动时使用,方 便船员在船舶各处进行 通信。
船舶外部通信系统
船舶外部通信系统主要用于船舶与岸 上设施、其他船舶以及航海保障部门 之间的通信联系。
无线电通信是船舶外部通信的主要手 段,包括甚高频(VHF)、中频( MF)和高频(HF)等频段。
船舶通信系统概述

1船舶通信系统概述第一节 船舶通信系统基本概念船舶通信系统主要指GMDSS 系统, GMDSS 是全球海上遇险与安全系统 (Global Maritime Distress and Safety System)的英文缩写。
GMDSS 是在现代无线电通信技术的基础上,为适应 海上搜救与安全通信, 满足海上通信的需要而建立起来的遇险和安全通信系统, 该系统也满足 船舶的常规通信业务。
多年来,船舶通信系统经过了多次的变革。
由于现代数字通信与导航技术的发展,包括卫 星通信、卫星导航、大规模集成电路和微处理技术的发展,使新型的海上通信系统的建立不但 必要而且也成为可能。
国际海事组织(IMO)于 1988年 11 月在伦敦总部召开了会议,审议通过了对作为现行系 统法律依据的《1974 年国际海上人命安全公约》及《1979 年 SOLAS 议定书》的修正案,即 SOLAS公约1988年修正案。
修正案把GMDSS引入了公约, 并在SOLAS公约中规定了GMDSS 自然生效的条款,使公约生效(即 GMDSS 开始实施)的日期选定为 1992 年 2 月 1 日(所谓 “自然生效”即为若无三分之二以上的成员国或占世界船舶总吨位 50%以上的船东对公约提 出疑义,则在规定之日自然生效,无需再召开另一次会议做出决议)。
决议规定:为保障海上 人命安全,改善海上遇险和安全无线电通信,与搜救协调组织相结合,建立一个采用最新通信 技术的全球海上遇险和安全系统。
GMDSS 建立的主要目的是,当船舶遇险时能够向岸上的搜 救协调中心(RCC)发出报警,救助协调中心能立即协调搜救行动。
按照国际搜救公约有关 规定,所有船舶有义务援助任何其他遇险的船舶。
在GMDSS 实施前,当遇险船舶发出遇险报 告之后,要等附近的其他船舶前来援助;这种依靠近距离船舶通信系统的方法,在航行船舶较船舶通信系统 2 1C h a p t e r 多的海区证明有效,但在航行船舶较少的海区却有某些不足之处;另外,在世界某些地区,岸 上当局提供的援助也有局限性。
船舶内部通信系统

船舶内部通信系统一、船舶内部通信概述前面讲述的卫星通信和地面通信系统,是船舶与外界进行沟通联络的手段。
在船员的工作和生活中,也经常需要相互沟通联络,这就要求船舶内部要有一整套完善的、便利的通信系统来满足船员的需求。
船舶内部通信泛指在船舶内部进行的各种必要信息的传递,其涉及面很广。
就目前而言,大体上包括:船用程控电话系统、船用声力电话系统、船用指挥电话系统、船令广播系统、通用报警系统、应急传令钟系统、船用子母钟系统、监测报警装置和电视监控系统等等。
就安放位置和通信方式来讲,至少应确保驾驶台和机器控制室之间、驾驶台和舵机舱内操舵装置控制位置之间、驾驶台和无线电室之间、驾驶台和消防集中控制室之间的电话系统随时可用。
伴随科技水平的发展,局域网也开始在很多大型、超大型船舶上安装,从而实现船员间的无纸化办公,它也可以划归船内通信系统。
另外通过卫星船站等设施把船内局域网或者电话网络与岸上通信网络衔接,建设船岸间无缝隙网络连接已经成为发展趋势。
由于内容所限,在此只简要介绍船内电话通信系统和船令广播系统。
二、船内电话通信系统(一)船用程控电话系统1.船用程控电话系统的功能首先,电话交换机有四种基本呼叫任务,根据进出交换机的呼叫流向及发起呼叫的起源,可以将呼叫分为:本局呼叫、出局呼叫、入局呼叫和转移呼叫。
目前来看,船舶交换机主要完成本局呼叫,如果通过技术手段将其与SSB、VHF或者Inmarsat船站互联,它将具有出局和入局呼叫功能,这将是未来船舶通信的发展趋势。
而所谓程控电话也称自动电话,是指通过程控电话交换机交换信息的电话系统。
程控电话交换机也称为程控数字交换机或数字程控交换机,是利用预先编好的计算机程序来控制电话接续的交换机。
使用时,用户端电话的摘机、挂机状态由本地交换机自动检测。
用户摘机时,本地交换机立即给用户的话机回送拨号音,并接收用户话机产生的脉冲信号或双音多频拨号信号,随之完成从主叫到被叫号码的接续并保持连接。
船舶通信系统概述

---------------------------------------------------------------最新资料推荐------------------------------------------------------船舶通信系统概述第 1 章船舶通信系统概述第一节船舶通信系统基本概念1船舶通信系统主要指 GMDSS?系统, GMDSS? ? 是全球海上遇险与安全系统(Global?Maritime? Distress?and?Safety?System)的英文缩写。
GMDSS?是在现代无线电通信技术的基础上,为适应海上搜救与安全通信,满足海上通信的需要而建立起来的遇险和安全通信系统,该系统也满足船舶的常规通信业务。
多年来,船舶通信系统经过了多次的变革。
由于现代数字通信与导航技术的发展,包括卫星通信、卫星导航、大规模集成电路和微处理技术的发展,使新型的海上通信系统的建立不但必要而且也成为可能。
国际海事组织(IMO)于?1988 年?11?月在伦敦总部召开了会议,审议通过了对作为现行系统法律依据的《1974? 年国际海上人命安全公约》及《1979? 年?SOLAS? 议定书》的修正案,即? SOLAS 公约1988 年修正案。
修正案把 GMDSS 引入了公约,并在 SOLAS 公约中规定了 GMDSS? 自然生效的条款,使公约生效(即?GMDSS?开始实施)的日期选定为?1992?年?2?月?1?日(所谓“自然生效”即为若无三分之二以上的成员国或占世界船舶总吨位? 50%以上的船东对公约提出疑义,则在规定之日自然生效,无需再召开另一次会议做出决议)。
1/ 25决议规定:为保障海上人命安全,改善海上遇险和安全无线电通信,与搜救协调组织相结合,建立一个采用最新通信技术的全球海上遇险和安全系统。
GMDSS?建立的主要目的是,当船舶遇险时能够向岸上的搜救协调中心(RCC)发出报警,救助协调中心能立即协调搜救行动。
船舶通信系统与无线电设备

PART 02
无线电设备在船舶通信中 应用
无线电设备种类及功能
甚高频(VHF)无线电设备
01
用于近距离船舶间和船舶与岸站间的通信,提供话音和数据传
输功能。
中频(MF)和高频(HF)无线电设备
02
用于远距离船舶间通信,可覆盖全球范围,常用于海上紧急呼
叫和遇险通信。
卫星通信设备
03
利用卫星中继站实现全球范围内的船舶通信,提供话音、数据
5G通信技术
5G通信技术的应用将进一步提高 船舶通信系统的传输速度和稳定 性,满足船舶对实时性、大数据
量传输的需求。
物联网技术
物联网技术的应用可以实现船舶 各系统之间的互联互通,提高船 舶的智能化水平,为船舶运营提
供更加便捷、高效的服务。
市场需求变化对产业影响分析
1 2 3
数字化、智能化需求增加
随着航运业的发展,船舶对数字化、智能化的需 求不断增加,推动船舶通信系统与无线电设备产 业向更高水平发展。
关键技术实现方法
硬件接口技术
采用标准化的硬件接口,实现通 信系统与无线电设备之间的连接
。
软件协议转换技术
通过软件协议转换,实现不同通信 系统之间的信息交互。
电磁兼容技术
采取电磁屏蔽、滤波等措施,降低 设备间的电磁干扰。
整合后性能评估及优化建议
性能评估指标
包括通信质量、传输速度、系统稳定 性等。
评估方法
性能。
设备老化
长时间使用的设备可能出现老 化、磨损和腐蚀等问题,导致 设备性能下降或失效。
人为操作失误
船员在使用通信系统和无线电 设备时,可能因操作不当或疏 忽大意而导致安全事故。
恶意攻击
船舶电控系统的网络通信与数据传输

船舶电控系统的网络通信与数据传输1. 背景随着现代计算机技术和网络通信技术的飞速发展,船舶电控系统已经从传统的集中控制方式逐步向分布式网络化控制系统转变船舶电控系统的网络通信与数据传输技术在保障船舶安全、提高运行效率、降低维护成本等方面具有重要意义本文将详细介绍船舶电控系统的网络通信与数据传输技术,分析其关键技术及发展趋势2. 船舶电控系统简介船舶电控系统是利用电子技术、计算机技术和自动控制技术来实现船舶动力、导航、操纵等功能的复杂系统船舶电控系统主要包括以下几个部分:1.传感器:用于实时监测船舶各系统的运行状态,如速度、压力、温度等2.控制器:根据传感器采集的数据,对船舶各系统进行实时控制,如调整燃油喷射量、控制舵机转向等3.执行器:根据控制器的指令,实现对船舶各系统的具体操作,如调整螺旋桨转速、控制船舶减速等4.通信网络:用于实现船舶各系统之间的信息传输和共享,确保船舶各部分协同工作3. 船舶电控系统的网络通信技术船舶电控系统的网络通信技术是指利用计算机网络实现船舶各系统之间的信息传输和共享船舶电控系统的网络通信技术主要包括以下几个方面:1.网络架构:船舶电控系统的网络架构主要包括总线型、星型、环型等拓扑结构其中,总线型拓扑结构具有较好的抗干扰性能和冗余性,适用于船舶电控系统2.通信协议:船舶电控系统的通信协议主要包括TCP/IP、UDP、HTTP等其中,TCP/IP协议具有较好的可靠性、实时性和扩展性,适用于船舶电控系统3.数据传输速率:船舶电控系统的数据传输速率通常分为低速、中速和高速根据船舶电控系统的实际需求,合理选择数据传输速率,以满足系统性能要求4.网络安全:船舶电控系统的网络安全主要包括数据加密、身份认证、访问控制等确保船舶电控系统的信息安全,防止数据泄露和恶意攻击4. 船舶电控系统的数据传输技术船舶电控系统的数据传输技术是指将传感器采集的数据、控制器发出的指令等信息准确、高效地传输到目标设备船舶电控系统的数据传输技术主要包括以下几个方面:1.数据编码:为了提高数据传输的可靠性和抗干扰能力,船舶电控系统的数据传输通常采用差分编码、扰码等编码方式2.调制解调:船舶电控系统的数据传输过程中,需要将数字信号转换为模拟信号进行传输调制解调技术实现了数字信号与模拟信号的相互转换3.信号传输:船舶电控系统的信号传输通常采用双绞线、同轴电缆、光纤等传输介质根据传输距离、速率等要求,选择合适的传输介质4.数据接收与处理:船舶电控系统的数据接收与处理主要包括信号检测、滤波、放大、整形等环节确保接收到的数据准确、可靠5. 关键技术及发展趋势1.高速通信技术:随着船舶电控系统功能的不断扩展,对通信速率的要求越来越高研究高速通信技术,提高船舶电控系统的实时性和性能2.无线通信技术:无线通信技术可以降低船舶电控系统的布线复杂度,提高系统可靠性研究适用于船舶电控系统的无线通信技术,实现船舶各部分的灵活组网3.数据压缩与解压缩技术:为了提高数据传输的效率,研究数据压缩与解压缩技术,减小数据传输带宽,降低传输延迟4.网络安全技术:随着船舶电控系统网络化的不断深入,网络安全问题日益凸显研究网络安全技术,保障船舶电控系统的信息安全5.智能化与自动化:利用技术,实现船舶电控系统的智能化与自动化,提高船舶运行效率和安全性6. 结论船舶电控系统的网络通信与数据传输技术在船舶行业具有重要意义本文对船舶电控系统的网络通信与数据传输技术进行了详细介绍,分析了关键技术及发展趋势随着计算机技术和网络通信技术的不断发展,船舶电控系统的网络通信与数据传输技术将不断优化和完善,为船舶行业的发展贡献力量1. 背景在现代船舶行业中,电子控制系统发挥着越来越重要的作用电控系统通过网络通信与数据传输技术,实现了船舶各系统之间的信息共享和协同工作,大大提高了船舶的安全性、经济性和舒适性本文将深入探讨船舶电控系统的网络通信与数据传输技术,分析其关键技术和未来发展趋势2. 船舶电控系统的网络通信技术船舶电控系统的网络通信技术是通过计算机网络实现船舶各系统之间的信息传输和共享其主要内容包括以下几个方面:1.网络拓扑:船舶电控系统的网络拓扑结构主要包括总线型、星型、环型等总线型拓扑因其良好的抗干扰性能和冗余性,在船舶电控系统中得到广泛应用2.通信协议:船舶电控系统的通信协议主要包括TCP/IP、UDP、HTTP等其中,TCP/IP协议因其可靠性、实时性和扩展性,成为船舶电控系统的主要通信协议3.数据传输速率:船舶电控系统的数据传输速率分为低速、中速和高速根据船舶电控系统的实际需求,合理选择数据传输速率,以满足系统性能要求4.网络安全:网络安全技术主要包括数据加密、身份认证、访问控制等,以确保船舶电控系统的信息安全3. 船舶电控系统的数据传输技术船舶电控系统的数据传输技术主要包括数据编码、调制解调、信号传输和数据接收与处理1.数据编码:数据编码技术包括差分编码、扰码等,用于提高数据传输的可靠性和抗干扰能力2.调制解调:调制解调技术实现数字信号与模拟信号的相互转换,以适应不同的传输环境3.信号传输:信号传输介质包括双绞线、同轴电缆、光纤等选择合适的传输介质,以满足传输距离和速率的要求4.数据接收与处理:数据接收与处理包括信号检测、滤波、放大、整形等环节,以确保接收到的数据的准确性和可靠性4. 关键技术及发展趋势1.高速通信技术:随着船舶电控系统功能的扩展,对通信速率的要求也越来越高研究高速通信技术,提高船舶电控系统的实时性和性能2.无线通信技术:无线通信技术可以降低船舶电控系统的布线复杂度,提高系统可靠性研究适用于船舶电控系统的无线通信技术,实现船舶各部分的灵活组网3.数据压缩与解压缩技术:数据压缩与解压缩技术可以减小数据传输带宽,降低传输延迟,提高数据传输效率4.网络安全技术:随着船舶电控系统网络化的深入,网络安全问题日益凸显加强网络安全技术研究,保障船舶电控系统的信息安全5.智能化与自动化:利用技术,实现船舶电控系统的智能化与自动化,提高船舶的运行效率和安全性5. 结论船舶电控系统的网络通信与数据传输技术对船舶行业的发展具有重要意义本文对船舶电控系统的网络通信与数据传输技术进行了全面探讨,分析了关键技术及未来发展趋势随着科技的不断进步,船舶电控系统的网络通信与数据传输技术将不断优化和完善,为船舶行业的发展提供强大支持应用场合1.船舶建造与维护:在新船舶的建造过程中,电控系统的网络通信与数据传输技术是必不可少的,以确保各个子系统之间的顺畅协调同时,在船舶的维护和升级过程中,这些技术也用于诊断和修复系统问题2.航运公司运营:航运公司使用电控系统来监控船舶的运行状况,提高运输效率,并通过数据传输技术分析船舶的运营数据,以降低运营成本3.海上救援行动:在海上救援行动中,船舶电控系统的网络通信与数据传输能力可以迅速传递遇险船舶的位置和状况信息,加快救援行动的部署4.海军军事应用:海军舰艇的电控系统依赖于高速、可靠的网络通信与数据传输技术,以实现战场信息的实时共享和指挥控制5.海洋科学研究:在进行海洋科学研究时,船舶电控系统的网络通信与数据传输技术用于收集海底地形、水质、气候等多方面的数据,为科学研究提供支持6.海上石油勘探与开发:海上石油平台需要电控系统来实现自动化控制,网络通信与数据传输技术则用于将采集的石油数据实时传输到陆上指挥中心注意事项1.网络安全:在实施网络通信与数据传输时,必须确保数据的安全性,防止黑客攻击和数据泄露使用加密技术和防火墙是常见的防护措施2.抗干扰能力:船舶环境复杂,存在多种电磁干扰源设计和实施电控系统的网络通信与数据传输时,需要考虑抗干扰措施,确保通信的稳定性3.可靠性:船舶电控系统的网络通信与数据传输技术需要具有高可靠性,以应对海上恶劣环境对系统稳定性的挑战4.实时性:特别是在需要快速响应的场合,如紧急避碰、船舶操纵等,网络通信与数据传输技术必须保证信息的实时传输5.兼容性与扩展性:随着技术的发展和船舶电控系统功能的增加,网络通信与数据传输技术应具备良好的兼容性和扩展性,以便于未来的升级和维护6.遵守国际规定和标准:由于船舶在全球范围内航行,其电控系统的网络通信与数据传输技术应遵守国际海事组织(IMO)和国际电信联盟(ITU)等机构的规定和标准7.培训与维护:船舶电控系统的操作和维护人员应接受相应的培训,以确保他们能够熟练地操作和维护网络通信与数据传输设备8.环境适应性:网络通信与数据传输设备应适应海上恶劣环境,包括防盐雾、防水防尘、耐振动等特性9.成本效益:在设计和实施网络通信与数据传输技术时,应考虑成本效益,确保投入的资源能够带来相应的效益10.法律法规遵守:在实施网络通信与数据传输技术时,应遵守相关的法律法规,特别是涉及隐私保护、数据安全等方面的法律要求通过上述应用场合和注意事项的考虑,可以确保船舶电控系统的网络通信与数据传输技术能够在各种复杂环境下稳定运行,为船舶行业的发展提供坚实的技术支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 第 1章船舶通信系统概述第一节船舶通信系统基本概念船舶通信系统主要指GMDSS 系统,GMDSS 是全球海上遇险与安全系统(Global Maritime Distress and Safety System)的英文缩写。
GMDSS 是在现代无线电通信技术的基础上,为适应海上搜救与安全通信,满足海上通信的需要而建立起来的遇险和安全通信系统,该系统也满足船舶的常规通信业务。
多年来,船舶通信系统经过了多次的变革。
由于现代数字通信与导航技术的发展,包括卫星通信、卫星导航、大规模集成电路和微处理技术的发展,使新型的海上通信系统的建立不但必要而且也成为可能。
国际海事组织( IMO )于 1988 年 11 月在伦敦总部召开了会议,审议通过了对作为现行系统法律依据的《 1974 年国际海上人命安全公约》及《1979 年 SOLAS 议定书》的修正案,即SOLAS 公约 1988 年修正案。
修正案把 GMDSS 引入了公约,并在 SOLAS 公约中规定了 GMDSS自然生效的条款,使公约生效(即GMDSS 开始实施)的日期选定为1992 年 2 月 1 日(所谓“自然生效”即为若无三分之二以上的成员国或占世界船舶总吨位50%以上的船东对公约提出疑义,则在规定之日自然生效,无需再召开另一次会议做出决议)。
决议规定:为保障海上人命安全,改善海上遇险和安全无线电通信,与搜救协调组织相结合,建立一个采用最新通信技术的全球海上遇险和安全系统。
GMDSS 建立的主要目的是,当船舶遇险时能够向岸上的搜救协调中心( RCC)发出报警,救助协调中心能立即协调搜救行动。
按照国际搜救公约有关规定,所有船舶有义务援助任何其他遇险的船舶。
在 GMDSS 实施前,当遇险船舶发出遇险报告之后,要等附近的其他船舶前来援助;这种依靠近距离船舶通信系统的方法,在航行船舶较rtep1 ahC船舶通信系统多的海区证明有效,但在航行船舶较少的海区却有某些不足之处;另外,在世界某些地区,岸上当局提供的援助也有局限性。
在GMDSS 中,国际海事组织( IMO )把卫星通信系统用于海事通信方面,采用卫星通信系统进行在紧急情况下的报警和寻位具有许多优越性,它克服了常规地面遇险通信所存在的不足。
因此, GMDSS 可以说是地面通信和卫星通信组成的海上综合通信系统,是用于海上遇险与救助行动、安全和常规通信的系统。
GMDSS 于 1992 年 2 月 1 日起逐步实施,经过七年时间由旧系统向新系统过渡,于 1999 年 2 月 1 日起正式全面实行。
GMDSS 是以岸基为基础的船舶通信系统。
GMDSS 的基本概念是岸上的搜救当局以及遇险船舶和遇险人员附近的其他船舶,能迅速接收到遇险事件的报警,并迅速地进行搜救协调援助。
GMDSS 还可以提供紧急和安全通信,并播发海上安全信息(航行警告、气象警告、气象预报及其他紧急安全信息等)。
换言之,无论船舶航行在哪个海区,都能够完成对本船和航行在同一海区的其他船舶的安全都非常重要的一切通信任务。
一、 GMDSS 的功能GMDSS 要求海上航行的所有船舶,无论其航行在哪个海区,必须具备以下9 个功能:(1)发送船到岸的遇险报警,至少使用两个分别独立的设备,每个设备应使用不同的无线电通信业务;(2)接收岸到船的遇险报警;(3)发送和接收船到船的遇险报警;(4)发送和接收搜救协调通信信息;(5)发送和接收现场通信信息;(6)发送和接收寻位信号;( 7)发送和接收海上安全信息(MSI );(8)在船和岸上无线电通信系统或网络之间发送和接收常规无线电通信信息;(9)发送和接收驾驶台到驾驶台的通信信息。
GMDSS 提供的报警方法能够使遇险船舶发射表明其需要立即援助的报警信号。
国际海上搜救公约确立了国际上统一的搜救方案( SAR Plan )。
世界上划分了 13 个搜救区城,并规定了搜救的组织、合作与搜救程序的标准。
国际海上人命安全公约(SOLAS )要求签约国提供救助业务并要求沿其海岸线提供海岸电台值守业务,按国际海事组织(IMO )于 1985 年制定生效的《搜救公约》,为海上遇险船舶和人员提供协调搜救和援助。
二、 GMDSS 的海区划分按照 1974 年 SOLAS 公约规定,船舶无线电设备是根据其船舶吨位而配备的。
而在GMDSS 中,船舶无线电设备的配备是根据船舶航行的海区来确定的,因而在GMDSS 中 IMO 明确规定了四个海区。
GMDSS 的海区划分(见图1-1-1 )如下:2船舶通信系统概述第1章图 1-1-1 GMDSS 海区划分示意图A1 海区——至少在一个VHF 海岸电台的无线电话覆盖范围之内,并且在此海区可实现船岸 VHF DSC 报警。
此海区从VHF 海岸电台位置向海上可延至约30~ 50 海里作为报警区域。
A2 海区——在至少一个MF 海岸电台的无线电话覆盖范围之内,在此海区可实现船岸MF DSC 报警。
此海区设定为离岸约150 海里的范围,但不包括任何指定的A1 海区。
实际上,A2 海区的覆盖范围已达到离MF 海岸电台250 海里的范围。
A3 海区——在 INMARSAT静止卫星覆盖范围内,即地球南北纬度70 °以内的区域范围,但不包括指定的A1 海区和 A2 海区。
此海区可连续进行船岸报警。
A4 海区——除 A1 ,A2 和 A3 海区以外的区域,基本为南北纬度70 °以外的南北两极附近的海区。
此海区只能使用HF 无线电通信设备进行报警。
第二节船舶通信系统组成与通信业务GMDSS中的通信系统,可归纳为四大分系统,即地面通信系统、海事卫星通信(INMARSAT )系统、定位寻位系统和海上安全信息播发系统。
每一分系统又包含有若干种通信设备(见图 1-2-1 ),通信设备主要包括:(1)地面通信设备,有 MF/HF 组合电台,带有 DSC、 NBDP 无线电传终端设备的电台、便携 VHF 无线对讲机、VHF-DSC 无线电话设备等;( 2)卫星通信设备,有 A 站( 2007 年停止使用)、 B 站、 C 站、 M 站、 D 站、 P 站、 F 站和 E 站等;( 3)定位寻位设备,有应急无线电示位标(EPIRB )、搜救雷达应答器(SART—— SAR Radar Transponder);( 4)海上安全信息播发接收设备,有航行警告接收机(NAVTEX )、增强群呼( EGC)设备或带 EGC 接收功能的卫星通信设备等。
一、地面通信系统(Terrestrial Communications)1.远距离业务在船到岸和岸到船方向通信中,可使用高频(HF)来进行远距离通信。
在INMARSAT系1 Chapter3船舶通信系统统覆盖区域中,既可使用高频通信也可使用卫星通信。
在INMARSA T 的覆盖区域以外,一般指 A4 海区,高频是唯一的远距离通信手段,在4、 6、8、 12 和 16MHz 频带中,指定了远距离通信业务使用的频率。
rtep1 ahC图 1-2-1船舶通信设备总图2.中距离业务中距离业务是在2MHz 频带中的频率上进行的通信。
在船到岸、船到船和岸到船的方向通信中,可在2187.5kHz 频率上使用DSC 进行遇险报警和安全呼叫;在2182kHz 上使用无线电话进行遇险和安全通信,包括搜救协调通信和现场通信。
2174.5kHz 将用于窄带直接印字电报( NBDP )的遇险和安全通信。
3.近距离业务近距离通信业务是在甚高频( VHF )无线电话的频率段的通信。
能进行近距离遇险报警和遇险通信,其频率是:( 1)利用 DSC 进行遇险报警和安全呼叫的156.525MHz ( 70 频道);( 2 )利用无线电话进行包括搜救协调通信和现场通信在内的遇险和安全通信的VHF16 频道的 156.8MHz 。
( 3)日常通信使用的VHF 工作频率。
二、国际移动卫星通信系统(International Mobile Satellite Communications)卫星通信是GMDSS 中的重要组成部分。
利用国际移动卫星(INMARSA T)系统的静止卫星、网络协调站(NCS)、地面站( LES )和移动站( MES )组成的卫星通信网络,可实现南北纬70 °范围之间的全球卫星通信,该系统具有电话、电传、传真和数据的双向通信功能。
在GMDSS 遇险报警、紧急与安全和日常通信中, INMARSAT具有保障海上通信的快速及时、可靠和保密性等特点,并发挥着极其重要的作用。
随着卫星通信技术的发展,新型的卫星移动站已全部数字化,并趋于小型化和配有计算机4船舶通信系统概述第1章终端,人机对话界面操作十分方便;通信资费得到大大的降低,通信业务也不断发展,可以实现高速接入 Internet 、 E-mail 电子信息业务、实现动态图象的传输;可以实现综合业务数据网(ISDN )与移动数据包交换业务( MPDS )等,完成移动端与陆上办公中心之间的数据流的实时交换,实现人们感觉上的零距离的信息交流。
三、定位寻位系统该系统包括定位系统和寻位的搜救雷达应答器等。
目前船舶常用的定位系统为 COSPAS/ SARSAT 定位系统。
1. COSPAS/SARSAT 定位系统该系统由卫星、应急无线电示位标( EPIRB )、区域用户终端( LUT )和任务控制中心(MCC )所组成,其工作频率为 406MHz 。
该系统所使用的卫星是低高度极轨道卫星。
该系统目前使用四颗低高度极轨道卫星,为全球包括两极区域在内,提供通过极轨道卫星进行的船对岸遇险报警的功能。
船舶配备的应急无线电示位标(EPIRB ),在船舶遇险时可人工或自动启动(当船舶下沉到水下 2~ 4 米处时,在水的压力下,静水压力释放器被打开,EPIRB 自浮到水面并自动开启)发出包括本船识别码在内的遇险报警信息,当极轨道卫星通过时,由卫星转发器接收处理和中继后,实时或存贮转发到地面上的区域用户终端(现也称为地面站),然后通过陆上公众交换网或专用线路通知任务控制中心和有关的搜救协调中心(RCC),完成船对岸的遇险报警。
2.搜救雷达应答器(SART )在GMDSS 中,搜救雷达应答器( SART )是对遇险船舶或其救生艇筏进行寻位的主要手段。
便携式 SART 可在船上使用,或在救生艇筏上使用。
SART 其工作频率为9GHz 属于寻位设备,是救生艇筏或幸存者使用的主要设备,该设备一方面可为搜救援助单位用来确定遇险事件的位置,另一方面向幸存者表明搜救援助单位已驶近其遇险的地点,可为幸存者带来极大的信心。
当发生海难事故时,搜救雷达应答器人工开启,应答器进入待命状态,当应答器接收到进行搜索与营救工作的船舶或飞机上的9GHz 波段雷达发来的扫描信号后,应答器通过天线发出信号,该信号被9GHz 雷达接收后,在其显示器的荧光屏上显示出由一系列光点组成的信号。