电磁场理论练习题
电磁学练习题

电磁学练习题2第六章 静电场1一、选择题1、下列几个叙述中哪一个是正确的? [ ](A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向。
(B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同。
(C )场强方向可由E =F/q 定出,其中q 为试验电荷的电量,q 可正、可负,F为试验电荷所受的电场力。
(D )以上说法都不正确。
2、一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元dS 带有dS σ的电荷,该电荷在球面内各点产生的电场强度为 [ ] (A) 处处为零; (B) 不一定都为零; (C) 处处不为零; (D) 无法判断。
3、如图所示,任一闭合曲面SO为S面上任一点,若将q由闭合曲面内的P点移到T点,且OP=OT,那么[ ](A) 穿过S面的电通量改变,O点的场强大小不变;(B) 穿过S面的电通量改变,O点的场强大小改变;(C) 穿过S面的电通量不变,O点的场强大小改变;(D) 穿过S面的电通量不变,O点的场强大小不变。
4、关于高斯定理的理解有下面几种说法,其中正确的是[ ](A) 如果高斯面内无电荷,则高斯面上E 处处为零;(B) 如果高斯面上E 处处不为零,则该面内必无电荷;(C) 如果高斯面内有净电荷,则通过该面的电通量必不为零;34(D) 如果高斯面上E处处为零,则该面内必无电荷。
5、 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1<R 2),小球带电Q ,大球带电-Q ,下列各图中哪一个正确表示了电场的分布 [ ](A) (B) (C) (D) 二、填空题1、 如图所示,边长分别为a 和b的矩形,其A 、B 、C 三个顶点上分别放置三个电量均为q的点电荷,则中心O 点的场强为 方向 。
2、在场强为E的均匀电场中,有一半径ABC60b aOO 1R 2R ErO 1R 2R E rO 1R 2R E rO 2R E1R r5为R 长为L 的圆柱面,其轴线与E的方向垂直,在通过轴线并垂直E方向将此柱面切去一半,如图所示,则穿过剩下的半圆柱面的电场强度通量等于 。
电磁场理论习题

电磁场理论习题一1、求函数ϕ=xy+z-xyz 在点(1,1,2)处沿方向角πα=3,4πβ=,3πγ=的方向的方向导数.解:由于 M ϕ∂∂x =y -M yz = -1M y ϕ∂∂=2x y -(1,1,2)xz =0 Mzϕ∂∂=2z(1,1,2)xy -=31cos 2α=,cos 2β=,1cos 2γ=所以1cos cos cos =∂∂+∂∂+∂∂=∂∂γϕβϕαϕϕz y x lM2、 求函数ϕ=xyz 在点(5, 1, 2)处沿着点(5, 1, 2)到点(9, 4, 19)的方向的方向导数。
解:指定方向l 的方向矢量为l =(9-5) e x +(4-1)e y +(19-2)e z =4e x +3e y +17e z其单位矢量zy x z y x e e e e e e l 314731433144cos cos cos ++=++=γβα5,10,2)2,1,5(==∂∂==∂∂==∂∂MMMMMxyzxzyyzxϕϕϕ所求方向导数314123cos cos cos =•∇=∂∂+∂∂+∂∂=∂∂ l z y x lMϕγϕβϕαϕϕ3、 已知ϕ=x 2+2y 2+3z 2+xy+3x-2y-6z ,求在点(0,0,0)和点(1,1,1)处的梯度。
解:由于ϕ∇=(2x+y+3) e x +(4y+x-2)e y +(6z-6)e z所以,(0,0,0)ϕ∇=3e x -2e y -6e z(1,1,1)ϕ∇=6e x +3e y4、运用散度定理计算下列积分:2232[()(2)]x y z sxz e x y z e xy y z e ds+-++⎰⎰I=S 是z=0 和 z=(a 2-x 2-y 2)1/2所围成的半球区域的外表面。
解:设:A=xz 2e x +(x 2y-z 3)e y +(2xy+y 2z)e z 则由散度定理Ω∇⎰⎰⎰⎰⎰sA ds=Adv可得2I r dvΩΩΩ=∇==⎰⎰⎰⎰⎰⎰⎰⎰⎰222Adv (z +x +y )dv2244220sin sin aar drd d d d r dr ππππθθϕϕθθ==⎰⎰⎰⎰⎰⎰525a π=5、试求▽·A 和▽×A:(1) A=xy 2z 3e x +x 3ze y +x 2y 2e z(2)22(,,)cos sin z A z e e ρρφρφρφ=+ (3 ) 211(,,)sin sin cos r A r r e e e r r θφθφθθθ=++解:(1)▽·A=y 2z 3+0+0= y 2z 3▽×A=23232(2)(23)x yx y x e xy xy z e ∂∂∂=---∂∂∂x y z23322e e e x y z xy z x z x y(2) ▽·A=()[()]z A A A z φρρρρρφ∂∂∂++∂∂∂1 =33[(cos )(sin )]ρφρφρρφ∂∂+∂∂1=3cos ρφ▽×A=ρφρφρρρφρ∂∂∂∂∂∂z ze e e 1z A A A =221cos 0ρφρρρφρφρφ∂∂∂∂∂∂z e e e z sin=cos 2sin sin ze e e ρφρφρφρφ-+(3) ▽·A=22(sin )()1[sin ]sin r A A r A r r r r φθθθθθφ∂∂∂++∂∂∂ =2322sin cos ()()1(sin )[sin ]sin r r r r r r r θθθθθθφ∂∂∂++∂∂∂ =222212[3sin 2sin cos ]3sin cos sin r r r θθθθθθ+=+▽×A=21sin rr r r rr θφθφθθθφθ∂∂∂∂∂∂e e rsin e A A rsin A =21sin 1sin sin cos rr r r r θφθθθφθθθθ∂∂∂∂∂∂e e rsin e rsin=33cos 2cos cos sin r e e e r r θφθθθθ+-习题二1、总量为q 的电荷均匀分布于球体中,分别求球内,外的电场强度。
电磁场与电磁波练习题

电磁场与电磁波练习题一、单项选择题(每小题1分,共15分)1、电位不相等的两个等位面()A. 可以相交B. 可以重合C. 可以相切D. 不能相交或相切2、从宏观效应看,物质对电磁场的响应包括三种现象,下列选项中错误的是()A.磁化B.极化C.色散D.传导3、电荷Q 均匀分布在半径为a 的导体球面上,当导体球以角速度ω绕通过球心的Z 轴旋转时,导体球面上的面电流密度为()A.sin 4q e a ?ωθπB.cos 4q e a ?ωθπC.2sin 4q e a ?ωθπD.33sin 4q e r aωθπ 4、下面说法错误的是()A.梯度是矢量, 其大小为最大方向导数,方向为最大方向导数所在的方向。
B.矢量场的散度是标量,若有一个矢量场的散度恒为零,则总可以把该矢量场表示为另一个矢量场的旋度。
C.梯度的散度恒为零。
D.一个标量场的性质可由其梯度来描述。
5、已知一均匀平面波以相位系数30rad/m 在空气中沿x 轴方向传播,则该平面波的频率为()A.81510π?HzB.8910?HzC.84510π?Hz D.9910?Hz6、坡印廷矢量表示()A.穿过与能量流动方向相垂直的单位面积的能量B.能流密度矢量C.时变电磁场中空间各点的电磁场能量密度D.时变电磁场中单位体积内的功率损耗7、在给定尺寸的矩形波导中,传输模式的阶数越高,相应的截止波长()A.越小B.越大C.与阶数无关D.与波的频率有关8、已知电磁波的电场强度为(,)cos()sin()x y E z t e t z e t z ωβωβ=---,则该电磁波为()A. 左旋圆极化波B. 右旋圆极化波C. 椭圆极化波D.直线极化波9、以下矢量函数中,可能表示磁感应强度的是()A. 3x y B e xy e y =+B.x y B e x e y =+C.22x y B e x e y =+D. x y B e y e x =+10、对于自由空间,其本征阻抗为()A. 0η=B.0η=C. 0η=D. 0η=11、自感和互感与回路的()无关。
(完整版)电磁学练习题及答案

Prλ2λ1R 1 R 21.坐标原点放一正电荷Q ,它在P 点(x =+1,y =0)产生的电场强度为E ρ。
现在,另外有一个负电荷-2Q ,试问应将它放在什么位置才能使P 点的电场强度等于零? (A) x 轴上x >1。
(B) x 轴上0<x <1。
(C) x 轴上x <0。
(D) y 轴上y >0。
(E) y 轴上y <0。
[ C ]2.个未带电的空腔导体球壳,内半径为R 。
在腔内离球心的距离为d 处( d < R ),固定一点电荷+q ,如图所示. 用导线把球壳接地后,再把地线撤去。
选无穷远处为电势零点,则球心O 处的电势为 (A) 0 (B)dq04επ(C)R q 04επ- (D) )11(40Rd q -πε [ D ] 3.图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面,均匀带电,沿轴线方向单位长度上的所带电荷分别为λ1和λ2,则在外圆柱面外面、距离轴线为r 处的P 点的电场强度大小E 为:(A) r 0212ελλπ+ (B) ()()20210122R r R r -π+-πελελ(C) ()20212R r -π+ελλ(D) 20210122R R ελελπ+π [ A ]4.荷面密度为+σ和-σ的两块“无限大”均匀带电的平行平板,放在与平面相垂直的x 轴上的+a 和-a 位置上,如图所示。
设坐标原点O 处电势为零,则在-a <x <+a 区域的电势分布曲线为 [ C ]5.点电荷+q 的电场中,若取图中P 点处为电势零点 , 则M 点的电势为(A)a q 04επ (B) a q08επ(C) a q 04επ- (D) aq08επ- [ D ]yxO +Q P(1,0)R O d +q+a aO -σ +σO-a +ax U (A)O -a +a xUO -a +a x U (C)O -a +ax U (D)aa+qPM6.图所示,CDEF 为一矩形,边长分别为l 和2l 。
电磁学部分练习题

电磁学部分练习题 一、选择题1、电场强度E = F /q 0 这一定义的适用范围是( )A 、点电荷产生的电场。
B 、静电场。
C 、匀强电场。
D 、任何电场。
2.一均匀带电球面,其内部电场强度处处为零。
球面上面元ds 的一个带电量为σds 的电荷元,在球面内各点产生的电场强度( )A 、处处为零B 、不一定都为零C 、处处不为零D 、无法判定3.半径为R 的均匀带电球面,若其电荷面密度为σ,周围空间介质的介电常数为ε0,则在距离球心R 处的电场强度为:A 、σ/ε0B 、σ/2ε0C 、σ/4ε0D 、σ/8ε04、半径为R 的带电圆环,其轴线上有两点P 1和P 2,它们支环心的距离分别为R 和2R ,如题1-4图示。
若取无限远处的电势为0,P 1点和P 2点的电势为( )A. B. C. D. 2125V V =2125V V =214V V =212V V =5、两个载有相等电流I 的圆线圈(半径都为R ),一个处于水平位置,一个处于竖直位置,如题1-5图所示。
在圆心O 处的磁感应强度的大小为( )A .0B .C .D .RI20μRI220μRI0μ题1-4图题1-5图 6、如题1-6图所示,图中曲线表示某种球对称性分布的电荷产生的电势V 随r 的分布,请指出该电势是下列哪种带电体产生的( ) A. 点电荷; B .半径为R 的均匀带电球体; C .半径为R 的均匀带电球面;D .外半径为R ,内半径为R/2的均匀带电球壳体;7、如题1-7图所示,一长直载流为I 的导线与一矩形线圈共面,且距CD 为,a 距EF 为b ,则穿过此矩形单匝线圈的磁通量的大小为( )A .B. C. D. a b a I ln 20πμa b Id ln 20πμaba Id ln 20πμ ab a Id ln 40πμ题1-6图题1-7图8、两个薄金属同心球壳,半径各为R 1和R 2(R 2>R 1),分别带有电荷q 1和q 2,二者电势差为( ) A . B .)4(101R q πε)4(202R q πεC .D .)11(42101R R q -πε)11(42102R R q -πε9、如题1-9图所示,一载有电流I 的长导线弯折成如图所示的状态,CD 为1/4圆弧,半径为R ,圆心O 在AC 、EF 的延长线上,则O 点处的磁感应强度的大小和方向为:( ) A .,方向垂直纸面向里; B .,方向垂直纸面)121(40πμ+=R I B )121(40πμ+=R I B 向外; C .,方向垂直纸面向里; D .,方向垂直纸面)141(20πμ+=R I B )141(20πμ+=R I B 向外;题1-9图 10、一带电粒子垂直射入磁场后,作周期为T 的匀速率圆周运动,若要使运动B周期变为T/2,磁感应强度应变为( )A 、2B 、/2C 、D 、–B BBB 11.已知一高斯面所包围的体积内电量的代数和Σqi=0,则可以肯定:( ) A 、高斯面上各点场强均为零。
电磁场理论习题及答案

电磁场理论习题及答案电磁场理论是电磁学的基础,它描述了电荷和电流产生的电磁场在空间中的分布和演化规律。
在学习电磁场理论时,习题是巩固和深化理解的重要方式。
本文将介绍一些电磁场理论的习题及其答案,帮助读者更好地掌握这一理论。
一、电场和电势1. 问题:一个均匀带电球体,半径为R,总电荷为Q。
求球心处的电场强度。
答案:根据库仑定律,电场强度E与电荷Q和距离r的关系为E = kQ/r^2,其中k为库仑常数。
对于球体内部的点,距离球心的距离r小于半径R,所以电场强度为E = kQ/r^2。
对于球体外部的点,距离球心的距离r大于半径R,所以电场强度为E = kQ/R^3 * r。
2. 问题:一个无限长的均匀带电线,线密度为λ。
求距离线上一点距离为r处的电势。
答案:根据电势公式V = kλ/r,其中k为库仑常数。
所以距离线上一点距离为r处的电势为V = kλ/r。
二、磁场和磁感应强度1. 问题:一根无限长的直导线,电流为I。
求距离导线距离为r处的磁感应强度。
答案:根据安培环路定理,磁感应强度B与电流I和距离r的关系为B =μ0I/2πr,其中μ0为真空中的磁导率。
所以距离导线距离为r处的磁感应强度为B = μ0I/2πr。
2. 问题:一根长为L的直导线,电流为I。
求距离导线距离为r处的磁场强度。
答案:根据比奥萨伐尔定律,磁场强度H与电流I和距离r的关系为H = I/2πr。
所以距离导线距离为r处的磁场强度为H = I/2πr。
三、电磁场的相互作用1. 问题:一个半径为R的导体球,带电量为Q。
求导体球表面的电荷密度。
答案:导体球表面的电荷密度σ等于导体球上的电荷总量Q除以导体球表面的面积A。
导体球表面的面积A等于球的表面积4πR^2。
所以导体球表面的电荷密度为σ = Q/4πR^2。
2. 问题:一个平行板电容器,两个平行金属板之间的距离为d,电介质的介电常数为ε。
一块电介质板插入到电容器中间,使得电容器的电容增加了n倍。
高中物理电磁学基础练习题及答案

高中物理电磁学基础练习题及答案练习题一:电场1. 电荷的基本单位是什么?答案:库仑(C)2. 两个等量的正电荷相距1米,它们之间的电力是多少?答案:9 × 10^9 N3. 电场强度的定义是什么?答案:单位正电荷所受到的电力4. 空间某点的电场强度为10 N/C,某个电荷在此点所受的电力是5 N,求该电荷的电量。
答案:0.5 C练习题二:磁场1. 磁力线的方向与什么方向垂直?答案:磁力线的方向与磁场的方向垂直。
2. 磁力的大小与什么有关?答案:磁力的大小与电流强度、导线长度以及磁场强度有关。
3. 磁感应强度的单位是什么?答案:特斯拉(T)4. 在垂直磁场中,一根导线受到的力大小与什么有关?答案:导线长度、电流强度以及磁场强度有关。
练习题三:电磁感应1. 什么是电磁感应?答案:电磁感应是指导体在磁场的作用下产生感应电动势的现象。
2. 什么是法拉第电磁感应定律?答案:法拉第电磁感应定律指出,当导体回路中的磁通量变化时,导体回路中会产生感应电动势。
3. 一根长度为1 m的导体以2 m/s的速度与磁感应强度为0.5 T 的磁场垂直运动,求导体两端的感应电动势大小。
答案:1 V4. 一根长度为3 m的导线以2 m/s的速度穿过磁感应强度为0.5 T的磁场,若导线两端的电压为6 V,求导线的电阻大小。
答案:1 Ω练习题四:电磁波1. 什么是电磁波?答案:电磁波是由电场和磁场相互作用产生的波动现象。
2. 电磁波的传播速度是多少?答案:光速,约为3 × 10^8 m/s。
3. 可见光属于电磁波的哪个频段?答案:可见光属于电磁波的红外线和紫外线之间的频段。
4. 无线电波属于电磁波的哪个频段?答案:无线电波属于电磁波的低频段。
练习题五:电磁学综合练习1. 一个电荷在垂直磁场中受到的磁力大小为5 N,该电荷的电量是2 C,求该磁场的磁感应强度。
答案:2.5 T2. 一段长度为2 m的导线以8 m/s的速度进入磁感应强度为0.2 T的磁场中,导线所受的感应电动势大小为4 V,求导线两端的电阻大小。
电磁学练习题积累(含部分答案)

一.选择题(本大题15小题,每题2分)第一章、第二章1.在静电场中,下列说法中哪一个是正确的 [ ](A)带正电荷的导体,其电位一定是正值(B)等位面上各点的场强一定相等(C)场强为零处,电位也一定为零(D)场强相等处,电位梯度矢量一定相等2.在真空中的静电场中,作一封闭的曲面,则下列结论中正确的是[](A)通过封闭曲面的电通量仅是面内电荷提供的(B) 封闭曲面上各点的场强是面内电荷激发的(C) 应用高斯定理求得的场强仅是由面内电荷所激发的(D) 应用高斯定理求得的场强仅是由面外电荷所激发的3.关于静电场下列说法中正确的是 [ ](A)电场和试探电荷同时存在和消失(B)由E=F/q知道,电场强度与试探电荷成反比(C)电场强度的存在与试探电荷无关(D)电场是试探电荷和场源电荷共同产生的4.下列几个说法中正确的是: [ ](A)电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向(B)在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同(C)场强方向可由E=F/q定出,其中q为试验电荷的电量,q可正、可负,F为试验电荷所受的电场力(D)以上说法全不对。
5.一平行板电容器中充满相对介电常数为的各向同性均匀电介质。
已知介质两表面上极化电荷面密度为,则极化电荷在电容器中产生的电场强度的大小为 [ ](A)0εσ' (B) 02εσ' (C) 0εεσ' (D) εσ'6. 在平板电容器中充满各向同性的均匀电介质,当电容器充电后,介质中 D 、E 、P 三矢量的方向将是 [ ] (A) D 与E 方向一致,与P 方向相反 (B) D 与E 方向相反,与P 方向一致 (C) D 、E 、P 三者方向相同(D) E 与P 方向一致,与D 方向相反7. 在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布,如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现: [ ] (A) 球壳内、外场强分布均无变化 (B) 球壳内场强分布改变,球壳外的不变 (C) 球壳外场强分布改变,球壳内的不变 (D) 球壳内、外场强分布均改变8. 一电场强度为E 的均匀电场,E 的方向与x 轴正向平行,如图所示,则通过图中一半径为R 的半球面的电场强度通量为 [ ](A) 2R E π;(B) 212R E π;(C) 22R E π;(D ) 0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 矢量分析1.1 3ˆ2ˆˆz y x e e eA -+= ,z y e eB ˆ4ˆ+-= ,2ˆ5ˆy x e eC -= 求(1)ˆA e ;(2)矢量A 的方向余弦;(3)B A ⋅;(4)B A ⨯;(5)验证()()()B A C A C B C B A ⨯⋅=⨯⋅=⨯⋅ ;(6)验证()()()B A C C A B C B A ⋅-⋅=⨯⨯。
1.2 如果给定一未知矢量与一已知矢量的标量积和矢量积,则可确定该未知矢量。
设A 为已知矢量,X A B ⋅=和X A B ⨯=已知,求X 。
1.3 求标量场32yz xy u +=在点(2,-1,1)处的梯度以及沿矢量z y x e e el ˆ2ˆ2ˆ-+= 方向上的方向导数。
1.4 计算矢量()()3222224ˆˆˆz y x e xy e x eA z y x ++= 对中心原点的单位立方体表面的面积分,再计算A ⋅∇对此立方体的体积分,以验证散度定理。
1.5 计算矢量z y e x e x eA z y x 22ˆˆˆ-+= 沿(0,0),(2,0),(2,2),(0,2),(0,0)正方形闭合回路的线积分,再计算A ⨯∇对此回路所包围的表面积的积分,以验证斯托克斯定理。
1.6 f 为任意一个标量函数,求f ∇⨯∇。
1.7 A 为任意一个矢量函数,求()A ⨯∇⋅∇。
1.8 证明:A f A f A f ⋅∇+∇=∇)(。
1.9 证明:A f A f A f ⨯∇+⨯∇=⨯∇)()()(。
1.10 证明:)()()(B A A B B A ⨯∇⋅-⨯∇⋅=⨯⋅∇。
1.11 证明:A A A 2)(∇-⋅∇∇=⨯∇⨯∇。
1.12 ϕρϕρϕρρsin cos ˆ),,(32z e ez A += ,试求A ⋅∇,A ⨯∇及A 2∇。
1.13 θθθϕθϕθcos 1ˆsin 1ˆsin ˆ),,(2re r e r e r A r ++= ,试求A ⋅∇,A ⨯∇及A 2∇。
1.14 ϕρϕρsin ),,(z zf =,试求f ∇及f 2∇。
1.15 2sin ),,(r r f θϕθ=,试求f ∇及f 2∇。
1.16 求⎰⋅Sr S e d )sin 3ˆ(θ,S 为球心位于原点,半径为5的球面。
1.17 矢量ϕϕθ23cos 1ˆ),,(re r A r = ,21<<r ,求⎰⋅∇V V A d 。
【专题】麦克斯韦方程1 在直角坐标系中,试将微分形式的麦克斯韦方程写成8个标量方程。
2 试证明:任意矢量E 在进行旋度运算后再进行散度运算,其结果恒为零,即 ∇ ⋅ (∇ ⨯ E ) = 0。
3 试由微分形式麦克斯韦方程组,导出电流连续性方程t∂∂-=⋅∇ρJ 。
4 参看4题图,分界面上方和下方两种媒质的介电常数分别为 ε1和 ε2,分界面两侧电场强度矢量E 与单位法向矢量n 21之间的夹角分别是 θ1和 θ2。
假设两种媒质分界面上的电荷面密度 ρS = 0,试证明: 2121tan tan εεθθ= 上式称为电场E 的折射定律。
5 参看4题图,分界面上方和下方两种媒质的磁导率分别为 μ1和 μ2,假设两种媒质的分界面上的表面电流密度矢量J S = 0,把题图中的电场强度矢量E 换成磁感应强度矢量B 。
试证明:2121tan tan μμθθ= 上式称为磁场B 的折射定律。
若 μ1为铁磁媒质,μ2为非铁磁媒质,即 μ1 >> μ2,当 θ1 ≠ 90︒ 时,试问 θ2的近似值为何?请用文字叙述这一结果。
6 已知电场强度矢量的表达式为E = i sin(ω t - β z ) + j 2cos(ω t - β z )通过微分形式的法拉第电磁感应定律 t∂∂-=⨯∇B E ,求磁感应强度矢量B (不必写出与时间t 无关的积分常数)。
7 一平板电容器由两块导电圆盘组成,圆盘的半径为R ,间距为d 。
其间填充介质的介电常数为 ε 。
如果电容器接有交流电源,已知流过导线的电流为I (t ) = I 0sin(ω t )。
忽略边缘效应,求电容器中的电位移矢量D 。
8 在空气中,交变电场E = j A sin(ω t - β z )。
试求:电位移矢量D ,磁感应强度矢量B 和磁场强度矢量H 。
4题图第 2-3 章 静电场和恒定电场2-1 参看图2-1,无限大导板上方点P (0, 0, h ) 处有一点电荷q 。
试求:z > 0半无限大空间的电场强度矢量E 和电位移矢量D ,以及导板上的面电荷密度 ρS 和总电荷量q 。
图2-1 导体平面上方的点电荷及其镜像2-2 如果将4块导板的电位分别改为:上板120 V ,左板40 V ,下板30 V ,右板90 V 。
按下面步骤和要求用迭代法计算4个内节点处的电位值:(1) 列出联立方程;(2) 用塞德尔迭代法求解;(3) 计算最佳加速因子 α;(4) 用超松弛迭代法求解;(5) 比较两种迭代法的结果和收敛速度。
两种迭代方法的迭代次数都取n = 4。
2-3 如果平板电容其中电荷分布的线密度为 ρ = ε0(1 + 4x 2),其余条件相同,用矩量法(伽辽金法)求两导板之间的电位分布函数 ψ。
选择基函数为f n (x ) = x (1 - x n ) n = 1,2,3,…2-4 如果在该问题中选择权函数为x k R x w k R x w 6)( 2)(2211-=∂∂=-=∂∂=和 上式中,R 是余数,由式(2-7-8)表示。
矩量法中,通过这种方式来选择权函数,又称为最小二乘法。
在其他已知条件均不变的情况下,用最小二乘法来求解两导板之间的电位分布函数 ψ。
2-5 通过直角坐标系试证明,对于任意的矢量A 都满足下面关系:(1) ∇ ⨯ (∇ψ) ≡ 0; (2) ∇ ⋅ (∇ ⨯ A ) ≡ 02-6 同轴线内、外半径分别为a 和b ,内外导体之间介质的介电常数为 ε,电导率为 σ。
设在同轴线内外导体上施加的电压为U ab ,求内外导体之间的漏电流密度J 。
2-7 求1/4垫圈两个弯曲面 ρ = a 和 ρ = b 之间的电阻。
2-8 参见2-8题图。
某输电系统的接地体为紧靠地面的半球。
土壤的平均电导率为σ = 10-2 S/m 。
设有I = 500 A 的电流流入地内。
为了保证安全,需要划出一半径为a 的禁区。
如果人的正常步伐为b = 0.6 m ,且人能经受的跨步电压为U = 200 V ,问这一安全半径a 应为多大?2-9 参看图2-9,半径为a ,间距为D 的平行双线传输线,周围介质的介电常数为 ε,电导率为 σ。
计算平行双线每单位长度的分布漏电导G 1。
图2-9 平行双线的等效线电荷2-10 半径分别为a 和b 的两个同心球壳(a < b )之间是电导率为σ = σ0(1+k/r )的导电媒质,试求两球壳之间的电阻R ab 。
再问此题中的电流位 ψ 是否满足拉普拉斯方程。
第4章 恒定磁场3-1 通过直角坐标系试证明,对于任意的矢量A 都满足下面关系:∇ ⨯ (∇ ⨯ A ) ≡ ∇(∇ ⋅ A )-∇2A2-8题图第5章 时变电磁场5-1 通过直角坐标系验证矢量恒等式:∇ ⋅ (E ⨯ H ) = H ⋅ (∇ ⨯ E ) - E ⋅ (∇ ⨯ H )5-2 根据下面复数形式的简谐场表达式,利用麦克斯韦方程求出其相应的电场或磁场表达式,并把复数形式改写成瞬时值形式。
注意,在取实部之前应加上时间因子e j ωt 。
. 2 e )2j ( 3 2 e )j ( 2 2 e )2( 1j m 00000j 0000000j 0εμηλμεωβεμηλωεμωηεμηλωεμωβ=π==-=+==π===+=+==π===+=+=--,,;,,;,,x z y kz y x kz y x E E E c k E H H c k E E E k j k j E j i j i H j i j i E )()( )(5-3 将下面瞬时形式的简谐场表达式改写成复数形式,并利用麦克斯韦方程求出其相应的电场或磁场表达式。
2 )2cos(sin 2 4 2 )cos()cos(23 )sin()cos( 2 )cos()cos( 1.0000000000000000εμηλεμωωθηλεμηλμεωβωβηεμημεωββωβωεμηεμωωηωηθθθ=π==π+-===π======-+-=+===-+--=+=,,;,,;,,;,, k kr t r IL E t z E H x t E x t E E E k ky t E ky t E H H y z y x z e e E j j H k j k j E i k i k H )( )()()(5-4 自由空间电流元的远区辐射场为 kr kr rl I H r l I E j j e sin 2j e sin 60j --==π==θλθλϕϕϕθθθe e H e e E , 试求:(1) 写出波印亭矢量的瞬时值S ;(2) 写出复数波印亭矢量S C ;(3) 总的平均辐射功率P 。
5-5 在微波环境中,如果平均功率密度 |S av | < 10 mW/cm 2对人体是安全的。
分别计算以电场强度E 和磁场强度H 表示的相应标准。
已知E = η0H ,η0 = 120π Ω。
5-6 设自由空间一天线辐射的电场强度矢量为E = i A sin(ωt - kz )上式中00εμω=k ,是电磁波的相位常数,已知波阻抗000εμη=。
试求:(1) 将电场强度矢量E 改写成复数形式;(2) 通过麦克斯韦方程求磁场强度矢量H ;(3) 瞬时波印亭矢量S ;(4)复数波印亭矢量S C 。
5-7 空中交变电磁场的电场强度矢量只有x 分量E x = A cos(ω t - kz ) + B sin(ω t + kz )试求:(1) 由麦克斯韦方程求出磁场强度矢量H ;(2) 瞬时波印亭矢量S ;(3) 复数波印亭矢量S C 。
5-8 将下列指数形式(复数形式)的场表达式变换成正、余弦形式(瞬时值形式)的场表达式,或者做相反的变换。
注意,在取实部之前应加上时间因子e j ωt 。
(1) E = i E 0e j αe -j kz ;(2) E = i E 0cos(ωt - kz ) + j 2E 0cos(ωt - kz + π);(3))(j 4j 0e ez k x k z x E +-π=j E5-9 已知磁导率为 μ,介电常数为 ε 的均匀媒质中,电场强度矢量的表达式为 E = (i + j j)A e j(ω t - β z ) 上式中,μεωβ=,是电磁波的相位常数,已知波阻抗εμη=。