15.实数全章复习与巩固(提高)知识讲解

合集下载

人教版数学七年级下册知识重点与单元测-第六章6-4《实数》章末复习(基础巩固)

人教版数学七年级下册知识重点与单元测-第六章6-4《实数》章末复习(基础巩固)

第六章 实数6.4 《实数》章末复习(基础巩固)【要点梳理】要点一:平方根和立方根要点二:实数有理数和无理数统称为实数. 1.实数的分类 按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2等; ②有特殊意义的数,如π; ③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式. (4)实数和数轴上点是一一对应的. 2.实数与数轴上的点一 一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。

我们已经学习过的非负数有如下三种形式: (1)任何一个实数a 的绝对值是非负数,即|a |≥0; (2)任何一个实数a 的平方是非负数,即2a ≥0;(30≥ (0a ≥). 非负数具有以下性质: (1)非负数有最小值零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0.4.实数的运算:数a 的相反数是-a ;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里.5.实数的大小的比较:有理数大小的比较法则在实数范围内仍然成立.法则1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数 大;法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;法则3. 两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法.【典型例题】类型一、有关方根的问题例1、下列命题:①负数没有立方根;②一个实数的算术平方根一定是正数;③一个正数或负数的立方根与这个数同号;④如果一个数的算术平方根是这个数本身,那么这个数是1或0;⑤如果一个数的立方根是这个数本身,那么这个数是1或0 ,其中错误的有( )A.2个B.3 个C.4 个D.5个 【答案】B ;【解析】①负数有立方根;②0的算术平方根是0;⑤立方根是本身的数有0,±1. 【总结升华】把握平方根和立方根的定义是解题关键. 举一反三:【变式】下列运算正确的是( )A 2=±B =2=- D .|2|2--= 【答案】C ;例210.1== 若7160.03670.03=,542.1670.33=,则_____________3673= 【答案】±1.01;7.16;【解析】102.01的小数点向左移动2位变成1.0201,它的平方根的小数点向左移动1位,变成1.01,注意符号;0.3670的小数点向右移动3位变成367,它的立方根的小数点向右移动1位,变成7.16【总结升华】一个数的小数点向左移动2位,它的平方根的小数点向左移动1位;一个数的小数点向右移动3位,它的立方根的小数点向右移动1位.类型二、与实数有关的问题 例3、把下列各数填入相应的集合: -1、3、π、-3.14、9、26-、22-、7.0 . (1)有理数集合{ }; (2)无理数集合{ }; (3)正实数集合{ };(4)负实数集合{ }.【思路点拨】首先把能化简的数都化简,然后对照概念填到对应的括号里. 【答案与解析】(1)有理数集合{-1、-3.14、9、7.0 };(2)无理数集合{ 3、π、26-、22-}; (3)正实数集合{ 3、π、9、26-、7.0 };(4)负实数集合{ -1、-3.14、22-}. 【总结升华】有理数是有限小数和无限循环小数,无理数是无限不循环小数.总结常见的无理数形式.举一反三:【变式】在实数0、π、、、﹣中,无理数的个数有( )A .1个B .2个C .3个D .4个 【答案】B ;例4、计算(1)233)32(1000216-++(2)23)451(12726-+- (3)32)131)(951()31(--+【思路点拨】先逐个化简后,再按照计算法则进行计算. 【答案与解析】解:(1)233)32(1000216-++=226101633++= (2)23)451(12726-+-23111112743412⎛⎫--=-+=- ⎪⎝⎭ (3)32)131)(951()31(--+=3314218121393327333⎛⎫⨯-=-=-=- ⎪⎝⎭.【总结升华】根据开立方和立方,开平方和平方互逆运算的关系,可以通过立方、平方的方法去求一个数的立方根、平方根.举一反三: 【变式】计算(1) 333000216.0008.012726---- (2) ()223323)3()21()4()4(2--⨯-+-⨯-【答案】 解:(1) 333000216.0008.012726---- ()310.20.0627=---- 29150=-(2) ()223323)3()21()4()4(2--⨯-+-⨯-()184434=-⨯+-⨯- 321336=---=-. 例5、已知:(a+6)2+=0,则2b 2﹣4b ﹣a 的值为 .【答案】12. 【解析】 解:∵(a+6)2+=0,∴a+6=0,b 2﹣2b ﹣3=0, 解得,a=﹣6,b 2﹣2b=3, 可得2b 2﹣4b=6,则2b 2﹣4b ﹣a=6﹣(﹣6)=12, 故答案为:12.【总结升华】本题主要考查了非负数的性质,初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.举一反三:【变式1】实数a 、b 在数轴上所对应的点的位置如图所示: 化简2a +∣a -b ∣= .【答案】 解:∵a <0<b , ∴a -b <0∴2a +∣a -b ∣=-a -(a -b )=b -2a .【变式2】实数a 在数轴上的位置如图所示,则2,1,,a aa a -的大小关系是: ;-1a【答案】21a a a a<<<-; 类型三、实数综合应用例6、现有一面积为150平方米的正方形鱼池,为了增加养鱼量,欲把鱼池的边长增加6米,那么扩建鱼池的面积为多少(最后结果保留4个有效数字)?【答案与解析】解:因为原正方形鱼池的面积为150平方米,根据面积公式, 15012.247≈ (米).由题意可得扩建后的正方形鱼池的边长为(12.247+6)米, 所以扩建后鱼池的面积为218.247≈333.0(平方米). 答:扩建后的鱼池的面积约为333.0(平方米).【总结升华】要求扩建后的鱼池的面积,应先求出其边长,而原鱼池的面积为150平方米,由此可得原鱼池的边长,再加上增加的6米,故新鱼池面积可求.举一反三:【变式】一个底为正方形的水池的容积是4863m ,池深1.5m ,求这个水池的底边长. 【答案】解:设水池的底边长为x ,由题意得2 1.5486x ⨯=2324x =18x =答:这个水池的底边长为18m .【巩固练习】一.选择题1. 下列说法正确的是( ) A .数轴上任一点表示唯一的有理数 B .数轴上任一点表示唯一的无理数 C .两个无理数之和一定是无理数 D .数轴上任意两点之间都有无数个点2.的算术平方根是( )A .2B .±2C .D .±3.已知a 、b 是实数,下列命题结论正确的是( ) A .若a >b ,则2a >2bB .若a >|b |,则2a >2bC .若|a |>b ,则2a >2b D .若3a >3b ,则2a >2b4. 3387=-a ,则a 的值是( ) A.87 B. 87- C. 87± D. 512343- 5. 若式子3112x x -+-有意义,则x 的取值范围是 ( ). A.21≥x B. 1≤x C.121≤≤x D. 以上答案都不对. 6. 下列说法中错误的是( )A.3a 中的a 可以是正数、负数或零.B.a 中的a 不可能是负数.C. 数a 的平方根有两个.D.数a 的立方根有一个. 7. 数轴上A ,B 两点表示实数a ,b ,则下列选择正确的是( ) A.0>+b a B. 0ab > C.0a b -> D.||||0a b ->8. 估算219+的值在 ( )A. 5和6之间B.6和7之间C.7和8之间D.8和9之间 二.填空题9. 若2005的整数部分是a ,则其小数部分用a 表示为 . 10.当x 时,32-x 有意义. 11. =--32)125.0( .12. 若12-x 是225的算术平方根,则x 的立方根是 . 13. 3343的平方根是 . 14.﹣64的立方根与的平方根之和是 .15. 2112- ,5- 22 , 33 216. 数轴上离原点距离是5的点表示的数是 . 三.解答题17. 一个正数x 的平方根是32-a 与a -5,则a 是多少?18. 已知x ﹣2的平方根是±2,2x+y+7的立方根是3,求x 2+y 2的平方根.19. 已知:表示a 、b 两个实数的点在数轴上的位置如图所示,请你化简()2b a b a ++-20. 阅读题:阅读下面的文字,解答问题.大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2-1表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:已知:10+3=y x +,其中x 是整数,且10<<y ,求y x -的相反数.【答案与解析】 一.选择题 1. 【答案】D ;【解析】数轴上任一点都表示唯一的实数. 2. 【答案】C 3. 【答案】B ;【解析】B 答案表明,||||a b a b >>且,故2a >2b . 4. 【答案】B ; 【解析】33378a a ⎛⎫-=-=-- ⎪⎝⎭.5. 【答案】A ;6. 【答案】C ;【解析】数a 不确定正负,负数没有平方根. 7. 【答案】C ; 8. 【答案】B ;【解析】4195<<,61927<+<. 二.填空题9. 【答案】2005a -; 10.【答案】为任意实数 ; 【解析】任何实数都有立方根. 11.【答案】25.0-;【解析】3233(0.125)0.250.25--=-=-. 12.【答案】3;【解析】x -12=15, x =27,3273=. 13.【答案】7±;【解析】 3343=7,7的平方根是7±.14.【答案】﹣2或﹣6. 【解析】∵﹣64的立方根是﹣4,=4,∵4的平方根是±2,∵﹣4+2=﹣2,﹣4+(﹣2)=﹣6,∴﹣64的立方根与的平方根之和是﹣2或﹣6.15.【答案】>;<;>;16.【答案】5【解析】数轴上离原点距离是5的点有两个,分别在原点的左右两边.三.解答题17.【解析】解:∵一个正数x 的平方根是32-a 与a -5,∴32-a 与a -5互为相反数,即32-a +a -5=0,解得2a =-.18.【解析】解:∵x ﹣2的平方根是±2,2x+y+7的立方根是3,∴x ﹣2=22,2x+y+7=27,解得x=6,y=8,∴x 2+y 2=62+82=100,∴x 2+y 2的平方根是±10.19.【解析】解:∵b <a <0 ∴()2b a b a ++-()||2a b a b a b a b b=-++=--+=- 20.【解析】解:∵11<10+3<12∴x =11,y =10+3-11=31∴()3111312x y y x --=-=-=.。

15实数全章复习与巩固提高知识讲解

15实数全章复习与巩固提高知识讲解

实数全章复习与巩固(提高)【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点------------ 对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围.【知识网络】【要点梳理】要点二、实数有理数和无理数统称为实数1.实数的分类按定义分:「有理数:有限小数或无限循环小数 实数J [无理数:无限不循环小数按与0的大小关系分:正「正有理数正无理数实数{0负数;负有理数负无理数要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其 中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.② 有特殊意义的数,如 ③ 有特定结构的数,如(3) 凡能写成无限不循环小数的数都是无理数,式.(4) 实数和数轴上点是2. 实数与数轴上的点一一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3. 实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。

我们已经学习过的非负数有如下三种形式: (1)任何一个实数a 的绝对值是非负数,即I a | >0;(2) 任何一个实数 a 的平方是非负数,即开方、再乘除,最后算加减 .同级运算按从左到右顺序进行,有括号先算括号里.5. 实数的大小的比较:有理数大小的比较法则在实数范围内仍然成立.法则1.实数和数轴上的点——对应,在数轴上表示的两个数,右边的数总比左边的数 大; 法则2 .正数大于0, 0大于负数,正数大于一切负数,两个负数比较,绝对值大的反(2)无理数分成三类:①开方开不尽的数,如75,近等;n ;0.1010010001 …并且无理数不能写成分数形(3)任何非负数的算术平方根是非负数,即4a >o ( a 询.非负数具有以下性质: (1) 非负数有最小值零;(2) 有限个非负数之和仍是非负数;(3) 几个非负数之和等于 0,则每个非负数都等于4. 实数的运算:数a 的相反数是-a ; 一个正实数的绝对值是它本身; 数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成立0.一个负实数的绝对值是它的相反.实数混合运算的运算顺序:先乘方、对应的而小;法则3.两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法 【典型例题】 类型一、有关方根的问题 【高清课堂:389318实数复习,例1】1、( 2015春?仙桃校级期末)一个正数的 x 的平方根是2a - 3与5 - a,求a 和x 的值. 【思路点拨】根据平方根的定义得出 2a - 3+5 - a=0,进而求出a 的值,即可得出x 的值. 【答案与解析】 解:•一个正数的 x 的平方根是2a - 3与5 - a ,•- 2a - 3+5 - a=0, 解得:a=- 2,• 2a - 3= - 7,2••• x= (- 7) =49 .【总结升华】 此题主要考查了平方根的定义,正确把握定义是解题关键. 举一反三: y := J x - 2 + J 2 — X + 3,求 y 的平方根。

中考总复习:实数--知识讲解(基础)

中考总复习:实数--知识讲解(基础)

中考总复习:实数—知识讲解 (基础)【知识网络】【考点梳理】考点一、实数的分类1.按定义分类:⎧⎧⎫⎧⎫⎪⎪⎪⎬⎪⎪⎨⎪⎭⎪⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎭⎩⎪⎪⎫⎧⎪⎪⎨⎬⎪⎪⎩⎭⎩正整数自然数整数零有理数有限小数或无限循环小数负整数实数正分数分数负分数正无理数无理数无限不循环小数负无理数 2.按性质符号分类:⎧⎧⎧⎪⎨⎪⎨⎩⎪⎪⎪⎩⎪⎪⎨⎪⎧⎧⎪⎨⎪⎪⎨⎩⎪⎪⎪⎩⎩正整数正有理数正实数正分数正无理数实数零负整数负有理数负实数负分数负无理数 有理数:整数和分数统称为有理数或者“形如n m (m ,n 是整数n ≠0)”的数叫有理数. 无理数:无限不循环小数叫无理数.实数:有理数和无理数统称为实数.要点诠释:常见的无理数有以下几种形式:(1)字母型:如π是无理数,24ππ、等都是无理数,而不是分数; (2)构造型:如2.10100100010000…(每两个1之间依次多一个0)就是一个无限不循环的小数;(3…都是一些开方开不尽的数;(4)三角函数型:sin35°、tan27°、cos29°等.考点二、实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0;(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数;(3)互为相反数的两个数之和等于0.a 、b 互为相反数⇔a+b=0.2.绝对值(1)代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0. 可用式子表示为:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a (2)几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.距离是一个非负数,所以绝对值的几何意义本身就揭示了绝对值的本质,即绝对值是一个非负数.用式子表示:若a 是实数,则|a|≥0.要点诠释: 若,a a =则0a ≥;-,a a =则0a ≤;-a b 表示的几何意义就是在数轴上表示数a 与数b 的点之间的距离.3.倒数(1)实数(0)a a ≠的倒数是a1;0没有倒数; (2)乘积是1的两个数互为倒数.a 、b 互为倒数1a b ⇔⋅=.4.平方根(1)如果一个数的平方等于a ,这个数就叫做a 的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a (a ≥0)的平方根记作a ±.(2)一个正数a 的正的平方根,叫做a 的算术平方根.a (a ≥0)的算术平方根记作a .5.立方根如果x 3=a ,那么x 叫做a 的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;0的立方根仍是0.考点三、实数与数轴规定了原点、正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的每一个点都表示一个实数. 要点诠释:(1)数轴的三要素:原点、正方向和单位长度.(2)实数和数轴上的点是一一对应的.考点四、实数大小的比较1.对于数轴上的任意两个点,靠右边的点所表示的数较大.2.正数都大于0,负数都小于0,正数大于一切负数;两个负数;绝对值大的反而小.3.对于实数a 、b , 若a-b>0⇔a>b ;a-b=0⇔a=b ;a-b<0⇔a<b.4.对于实数a ,b ,c ,若a>b ,b>c ,则a>c.5.无理数的比较大小:利用平方转化为有理数:如果a>b>0, a 2>b 2⇔a>b b a >⇔; 或利用倒数转化:如比较417-与154-.要点诠释:实数大小的比较方法:(1)直接比较法:正数都大于0,负数都小于0,正数大于一切负数;两个负数,绝对值大的反而小.(2)数轴法:在数轴上,右边的数总比左边的数大.考点五、实数的运算1.加法同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.满足运算律:加法的交换律a+b=b+a ,加法的结合律(a+b)+c=a+(b+c).2.减法减去一个数等于加上这个数的相反数.3.乘法两数相乘,同号得正,异号得负,并把绝对值相乘.几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.乘法运算的运算律:(1)乘法交换律ab=ba ;(2)乘法结合律(ab)c=a(bc);(3)乘法对加法的分配律a(b+c)=ab+ac .4.除法(1)除以一个数,等于乘上这个数的倒数.(2)两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.5.乘方与开方(1)求n 个相同因数的积的运算叫做乘方,a n 所表示的意义是n 个a 相乘.正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.(3)零指数与负指数011(0)(0).p p a a aa a-==≠,≠ 要点诠释:加和减是一级运算,乘和除是二级运算,乘方和开方是三级运算.这三级运算的顺序是三、二、一.如果有括号,先算括号内的;如果没有括号,同一级运算中要从左至右依次运算.考点六、有效数字和科学记数法一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.精确度的形式有两种:(1)精确到哪一位;(2)保留几个有效数字.把一个数用±a ×10n (其中1≤<10,n 为整数)的形式记数的方法叫科学记数法.要点诠释: (1)当要表示的数的绝对值大于1时,用科学记数法写成a ×10n ,其中1≤a <10,n 为正整数,其值等于原数中整数部分的数位减去1;(2)当要表示的数的绝对值小于1时,用科学记数法写成a ×10n ,其中1≤a <10,n 为负整数,其值等于原数中第一个非零数字前面所用零的个数的相反数(包括小数点前面的零).【典型例题】 类型一、实数的有关概念1.(1)a 的相反数是15-,则a 的倒数是_______.(2)实数a 、b 在数轴上对应点的位置如图所示: 则化简2()a b +=______.0a b(3)(泉州市)去年泉州市林业用地面积约为10200000亩,用科学记数法表示为约____________.【答案】(1)5 ; (2)-a-b ; (3)1.02×107亩.【解析】(1)注意相反数和倒数概念的区别,互为相反数的两个数只有性质符号不同,互为倒数的两个数要改变分子分母的位置;或者利用互为相反数的两个数之和等于0,互为倒数的两个数乘积等于1来计算.(2)此题考查绝对值的几何意义,绝对值和二次根式的化简.注意要去掉绝对值符号,要判别绝对值内的数的性质符号.由图知:20 0 |||| 0 ()||().a b a b a b a b a b a b a b ><<∴+<+=+=-+=--,,,,(3)考查科学记数法的概念.【点评】本大题旨在通过几个简单的填空,让学生加强对实数有关概念的理解.举一反三:【变式】据市旅游局统计,今年“五·一”小长假期间,我市旅游市场走势良好,假期旅游总收入达到8.55亿元,用科学记数法可以表示为( )A .8.55×106B .8.55×107C .8.55×108D .8.55×109【答案】C.类型二、实数的分类与计算2.下列实数227、sin60°、3π、()02、3.14159、-9、()27--、8中无理数有( )个A .1B .2C .3D .4【答案】C.【解析】无理数有sin60°、3π、8. 【点评】对实数进行分类不能只看表面形式,应先化简,再根据结果去判断.举一反三:【变式】在,30cos ,2π,)23(,4,8,14.30 --,45tan ,712,1010010001.0 ,51-13.0%,3 中,哪些是有理数? 哪些是无理数?【答案】03.14,4,(32),-,45tan ,712,51-13.0%,3 都是有理数; π8,,cos30,2-0.1010010001,都是无理数. 3.计算:+|2﹣3|﹣()﹣1﹣(2015+)0. 【答案与解析】解:原式=2+3﹣2﹣3﹣1=﹣1.【点评】该题是实数的混合运算,包括绝对值,0指数幂、负整数指数幂等.只要准确把握各自的意义,就能正确的进行运算.举一反三:【变式1】计算:计算:|﹣1|+20120﹣(﹣)﹣1﹣3tan30°.【答案】解:原式=﹣1+1﹣(﹣3)﹣3×=+3﹣=3. 【变式2】计算:12004200320022001+⨯⨯⨯【答案】设n=2001,则原式=1)3)(2)(1(++++n n n n1)23)(3(22++++=n n n n (把n 2+3n 看作一个整体)=1)3(2)3(222++++n n n n=n 2+3n+1=n(n+3)+1=2001×2004+1=4010005. 类型三、实数大小的比较4.比较下列每组数的大小:(1)417-与154- (2)a 与a 1(a ≠0) 【答案与解析】(11740174=>+,4150415=>+,174+与415+1744150>+>, 174415-<-(2)当a<-1或O<a<1时,a<a1; 当-1<a<0或a>1时,a>a1; 【点评】(1)有时无理数比较大小,通过平方转化以后也无法进行比较,那么我们可以利用倒数关系比较;(2)这道题实际上是互为倒数的两个数之间的比较大小,我们可以利用数轴进行比较,我们知道,0没有倒数,±1的倒数等于它本身,这样数轴就被这3个数分成了4部分,下面就可以分类讨论每种情况.我们还可以利用函数图象来解决这个问题,把a1的值看成是关于a 的反比例函数,把a 的值看成是关于a 的正比例函数,在坐标系中画出它们的图象,可以很直观的比较出它们的大小.举一反三:【变式】比较下列每组数的大小: (1)817-和511- (2)52+和23+【答案】(1)将其通分,转化成同分母分数比较大小, 1785840= ,1188540=, 171185<, 所以171185->-. (2)()2257210740+=+=+,()232743748+=+=+,因为4048<,所以2532+<+.类型四、平方根的应用5.已知:x ,y 是实数,234690x y y ++-+=,若axy-3x=y ,则实数a 的值是_______.【答案】14. 【解析】234690x y y ++-+=,即234(3)0x y ++-=两个非负数相加和为0,则这两个非负数必定同时为0,∴340x +=,(y-3)2=0, ∴ x=43-, y=3 又∵axy-3x=y , ∴ a=43()33134433x y xy ⨯-++==-⨯. 【点评】此题考查的是非负数的性质.类型五、实数运算中的规律探索6.细心观察图形,认真分析各式,然后解答问题21222312,213,214,2SSS+==+==+==1A2AA(1)请用含有n(n是正整数)的等式表示上述变化规律;(2)推算出OA10的长;(3)求出S12+ S22+ S32+…+ S102的值.【答案与解析】(1)由题意可知,图形满足勾股定理,()2,112nSnn n=+=+(2)因为OA1=1,OA2=2,OA3=3…,所以OA10=10(3)S12+ S22+ S32+…+ S102=2222)210()23()22()21(++++=)10321(41++++=455.【点评】近几年各地的中考题中越来越多的出现了一类探究问题规律的题目,这些问题素材的选择、文字的表述、题型的设计不仅考察了数学的基础知识,基本技能,更重点考察了创新意识和能力,还考察了认真观察、分析、归纳、由特殊到一般,由具体到抽象的能力.举一反三:【变式】图中是一幅“苹果图”,第一行有1个苹果,第二行有2个,第三行有4个,•第四行有8个,……你是否发现苹果的排列规律?猜猜看,第十行有______个苹果.【答案】29(512).。

实数(全章复习与巩固)(巩固篇)(专项练习)-七年级数学下册基础知识专项讲练(沪科版)

实数(全章复习与巩固)(巩固篇)(专项练习)-七年级数学下册基础知识专项讲练(沪科版)

专题6.12 实数(全章复习与巩固)(巩固篇)(专项练习)一、单选题1.在下列各数中,无理数是( ) A .237B 38-C 916D .4π 2.下列说法正确的是( ) A .117是无理数 B 5 C .π2是无理数D .22是有理数 3.下列等式正确的是( ) A .()255-- B 93=± C 382±D 3355--4.一个长、宽,高分别为50cm 、8cm 、20cm 的长方体铁块锻造成一个立方体铁块,则锻造成的立方体铁块的棱长是( )A .20cmB .200cmC .40cmD 80cm5.若32x =-( ) A .32x =-B .32x =-C .(-x)3=-2D .x=(-2)36.已知x ,y 为实数,且22994y x x --,则x y -=( ) A .﹣1B .﹣7C .﹣1或﹣7D .1或﹣77.若24,a =31b =-,则a b +的值是( ) A .1B .-3C .1或-3D .-1或38.已知x ,y 两个实数在数轴上位置如图所示,则化简()2y x x y --( )A .2xB .2yC .22x y -D .22y x -9.如图,在数轴上点A 表示的实数是( )A 5B 51C 31D 310.如图,数轴上表示12A 、B ,点B 关于点A 的对称点是C ,设C 点表示的数为x ,则2x )A .12B .1+2C 21D .2二、填空题1149的算术平方根是______64______. 128x -3x ____________.13()2460x y -+=,那么2x y -的平方根为_______. 14.已知:23+m ,小数部分为n ,则2m n -=_____.15.已知实数a 、b 在数轴上的对应点如图,化简||a a b c b -++-=_________.16101-89.(填“>”或“<”)17.设 a 、b 是有理数,且满足等式2322152a b b ++=-则a+b=___________. 18.对于能使式子有意义的有理数,a b ,定义新运算:a △b 22a ba b+=-.如果1230x y xz -++=则x △(y △z )= _____ .三、解答题19.在数轴上表示下列各数,并将这些数按从小到大的顺序用“<”连接起来. 2,52,038-π-.20.求下列各式中x 的值: (1) 240x -=;(2) 3(1)8x +=.21.化简求值:(1) 已知a 1713b =54ab +(2) 已知:实数a ,b 323(1)2(1)||a b a b -----.22.计算:(1) 2338125(2)---(2) 2722(7)π-(3) 331631270.1251464--(4) 233416(3)22--.23.如图,每个小正方形的边长均为1.(1) 图中阴影部分的面积是______;阴影部分正方形的边长a 是______. (2) 估计边长a 的值在两个相邻整数______与______之间.(3) 我们知道π是无理数,而无理数是无限不循环小数,因此π的小数部分我们不可能全部写出来,我们可以用3来表示它的整数部分,用()3π-表示它的小数部分.设边长a 的整数部分为x ,小数部分为y ,求()x y -的相反数.24.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.小白在草稿纸上画了一条数轴进行操作探究:操作一:(1)折叠纸面,若使表示的点1与﹣1表示的点重合,则﹣2表示的点与表示的点重合;操作二:(2)折叠纸面,若使1表示的点与﹣3表示的点重合,回答以下问题:3表示的点与数表示的点重合;②若数轴上A、B两点之间距离为8(A在B的左侧),且A、B两点经折叠后重合,则A、B两点表示的数分别是__________________;操作三:(3)在数轴上剪下9个单位长度(从﹣1到8)的一条线段,并把这条线段沿某点折叠,然后在重叠部分某处剪一刀得到三条线段(如图). 若这三条线段的长度之比为1:1:2,则折痕处对应的点所表示的数可能是_________________________.参考答案1.D【分析】先对个选项进行化简,再由无理数的概念进行判断即可. 解:237是有理数,故选项A 不符合题意; 382--是有理数,故选项B 不符合题意;93164=是有理数,故选项C 不符合题意; 4π符合无理数的概念,故选项D 符合题意;. 故选:D .【点拨】此题考查的是算术平方根、立方根及无理数的概念,能够根据算术平方根的概念及立方根进行正确化简是解决此题关键.2.C【分析】根据有理数和无理数的定义,逐一判定即可,有理数包括整数和分数,无理数是无限不循环小数.解:A. 117是有理数,故A 选项说法错误; B. 5B 选项说法错误;C. π2是无理数,故C 选项说法正确; D.2D 选项说法错误. 故选:C .【点拨】本题主要考查了有理数和无理数,解决问题的关键是熟练掌握有理数和无理数的定义.3.D【分析】利用平方根与立方根的定义,逐个计算得结论.解: A 、()22555---,故选项错误,不符合题意;B 9=3,故选项错误,不符合题意;C 38=2,故选项错误,不符合题意;D 335=5--,故选项正确,符合题意. 故选:D .【点拨】本题考查了平方根、算术平方根和立方根的性质与化简,掌握平方根和立方根的定义解决本题的关键.4.A【分析】先求出体积,再求立方根即可. 解:∵铁块体积是3508208000(cm )⨯⨯=∴3800020(cm), 故选:A .【点拨】本题考查立方根的应用,会求立方根是解题的关键. 5.B【分析】利用立方根的定义分析得出答案. 解:∵3-2, ∴x 3=-2, 故选B .【点拨】本题考查立方根的定义,正确把握定义是解题关键. 6.C直接利用二次根式的性质得出x ,y 的值,然后讨论进而得出答案. 解:∵22994y x x --, ∴229090x x -≥-≥, ∴290x∴y =4, ∴3x =±,当3,4x y ==时,341x y -=-=-; 当3,4=-=x y 时,347x y -=--=-; ∴1x y -=-或7x y -=-, 故选:C .【点拨】本题考查了二次根式有意义的条件.解答本题的关键由二次根式有意义的条件求出x 、y 的值.7.C【分析】根据题意,利用平方根,立方根的定义求出a ,b 的值,再代入求解即可. 解:24,a =31,b =-2,a ∴=±1b,∴当2,a =-1b时,213a b +=--=-; ∴当2,a =1b 时,211a b +=-=.故选:C .【点拨】本题考查的知识点是平方根以及立方根的定义,根据定义求出a ,b 的值是解此题的关键.8.D【分析】根据点在数轴的位置判断式子的正负,然后化简. 解:根据图示可知:0x y <<∴0y x∴()2y x x y -+-y x y x 22y x =-故选:D .【点拨】此题的考查了数轴,绝对值的性质,合并同类项法则,解题的关键是根据点在数轴的位置判断式子的正负.9.B【分析】先根据勾股定理求出PQ 的长,即可求出点A 所表示的数. 解:如图,22125PQ =+由图可知5PA PQ ==, 所以点A 51, 故点A 51. 故选:B【点拨】本题考查勾股定理以及数轴表示数的意义和方法,掌握解答的方法是关键.。

最新数学巩固八年级《实数》

最新数学巩固八年级《实数》

最新数学巩固八年级《实数》2021年最新数学稳固八年级«实数»1.阅历在理数发现的进程,了解在理数的概念和意义。

2.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根;能用平方运算与立方运算求某些数的平方根与立方根;会用计算器求平方根和立方根,并能探求一些幽默的数学规律。

3.能用有理数估量一个在理数的大致范围,包括经过预算比拟大小,检验计算结果的合理性等等。

6.能运用实数的运算处置复杂的实践效果。

二、教学重难点重点:了解算术平方根、平方根、立方根的意义,勾股定理及逆定理。

难点:算术平方根、平方根、立方根的区别与联络,在理数和实数的概念。

三、教学剖析本章对概念的处置上,抓住主要概念,注重概念的构成进程,让先生在详细的活动中取得看法,增强了解;对内容的布置上,联络实践情境,导入新知识,留意前后知识间的对比,同时让先生在运用中促进对知识的了解和掌握。

本章先经过详细的活动求面积为2的正方形的边长,提出效果:它能够是整数吗?它能够是分数吗?让先生亲身阅历这些活动,在讨论中惹起认知抵触,感知生活中确实存在不同与有理数的数,发生探求的愿望:它不是有理数,那它是什么数?再让先生进一步借助计算器充沛探求,得出它是一个有限不循环小数,从而给出在理数的概念。

这与历史上在理数的发生和开展进程是分歧的,契合人的看法规律,同时让先生体会到笼统的数学概念在理想世界中有其实践背景。

在理数有很多,开方开不尽的数是其中的一种,也是我们计算中经常接触到的。

教科书选取了一些生动的素材,引入平方根和立方根的概念和开方运算。

由于在实践情境中的开平方运算结果取的都是算术平方根,而且正数有两个平方根与先生临时的阅历不符,先生不易接受,因此教科书先引入算术平方根的概念,然后再引入普通的平方根的概念。

在实践生活和消费实践中,关于在理数我们经常经过预算来求它的近似值。

教科书布置了一节内容:公园有多宽,引见预算的方法,包括经过预算比拟大小,检验结果的合理性等等,其目的是开展先生的数感。

《实数》全章复习与巩固(提高)知识讲解

《实数》全章复习与巩固(提高)知识讲解

《实数》全章复习与巩固(提高)【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围.【知识网络】【要点梳理】要点二、次方根如果一个数的n次方(n是大于1的整数)等于a,那么这个数叫做a的n次方根.当n 为奇数时,这个数为a的奇次方根;当n为偶数时,这个数为a的偶次方根.求一个数a的n次方根的运算叫做开n次方,a叫做被开方数,n叫做根指数.实数a 的奇次方根有且只有一个,正数a 的偶次方根有两个,它们互为相反数;负数的偶次方根不存在.;零的n 次方根等于零. 要点三、实数有理数和无理数统称为实数. 1.实数的分类要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.2.实数与数轴上的点一 一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数.我们已经学习过的非负数有如下三种形式: (1)任何一个实数a 的绝对值是非负数,即|a |≥0; (2)任何一个实数a 的平方是非负数,即2a ≥0;(30≥ (0a ≥).非负数具有以下性质: (1)非负数有最小值零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0. 4.实数的运算:数a 的相反数是-a ;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里. 5.实数的大小的比较:有理数大小的比较法则在实数范围内仍然成立.法则1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数大;法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;法则3. 两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法. 要点四、近似数及有效数字1.近似数:完全符合实际地表示一个量多少的数叫做准确数;与准确数达到一定接近程度的数叫做近似数.2.精确度:近似数与准确数的接近程度即近似程度.对近似程度的要求叫做精确度. 要点诠释:精确度有两种形式:①精确到哪一位.②保留几个有效数字.3.有效数字:从一个数的左边第一个不为零的数字起,往右到末位数字为止的所有的数字都是这个数的有效数字,如0.208的有效数字有三个:2,0,8. 要点五、分数指数幂()0m naa =≥()0m naa -=>,其中m n 、为正整数,1n >.上面规定中的m na 和m na-叫做分数指数幂,a 是底数.整数指数幂和分数指数幂统称为有理数指数幂. 要点诠释:设00a b p q >>,,、为有理数,那么(1)pqp qp q p q a a a a a a +-=÷=,.(2)()qp pq aa =.(3)()pp pp p p a a ab a b b b ⎛⎫== ⎪⎝⎭,. 【典型例题】类型一、有关方根的问题1、(2015春•仙桃校级期末)一个正数的x 的平方根是2a ﹣3与5﹣a ,求a 和x 的值.【思路点拨】根据平方根的定义得出2a ﹣3+5﹣a=0,进而求出a 的值,即可得出x 的值. 【答案与解析】解:∵一个正数的x 的平方根是2a ﹣3与5﹣a , ∴2a ﹣3+5﹣a=0, 解得:a=﹣2, ∴2a ﹣3=﹣7,∴x=(﹣7)2=49.【总结升华】此题主要考查了平方根的定义,正确把握定义是解题关键. 举一反三: 【变式1】已知322+-+-=x x y ,求x y 的平方根.【答案】解:由题意得:2020x x -≥⎧⎨-≥⎩ 解得x =2 ∴y =3,239xy ==,xy 的平方根为±3.【变式2】若373-x 互为相反数,试求x y +的值. 【答案】解:∵373-x 互为相反数, ∴3x -7+3y +4=0∴3(x y +)=3,x y +=1.2、已知M 是满足不等式63<<-a 的所有整数a 的和,N 是满足不等式2237-≤x 的最大整数.求M +N 的平方根. 【答案与解析】解:∵a <<的所有整数有-1,0,1,2所有整数的和M =-1+1+0+2=2 ∵2237-≤x ≈2,N 是满足不等式2237-≤x 的最大整数. ∴N =2∴M +N =4,M +N 的平方根是±2.【总结升华】先由已知条件确定M 、N 的值,再根据平方根的定义求出M +N 的平方根. 类型二、与实数有关的问题3、已知a b 是它的小数部分,求()()323a b -++的值.【思路点拨】一个数是由整数部分+小数部分构成的.3,那么3,再代入式子求值. 【答案与解析】解:∵a b 是它的小数部分,34<<∴3,3a b ==∴()()())23233333271017a b -++=-++=-+=-.【总结升华】方.这个数减去它的整数部分后就是它的小数部分. 举一反三:【变式】 (2015•杭州)若k <<k+1(k 是整数),则k=( ) A .6 B .7 C .8 D .9 【答案】D . 解:∵k <<k+1(k 是整数),9<<10,∴k=9.4、阅读理解,回答问题.在解决数学问题的过程中,有时会遇到比较两数大小的问题,解决这类问题的关键是根据命题的题设和结论特征,采用相应办法,其中巧用“作差法”是解决此类问题的一种行之有效的方法:若a -b >0,则a >b ;若a -b =0,则a =b ;若a -b <0,则a <b .例如:在比较21m +与2m 的大小时,小东同学的作法是: ∵()()2222111m m m m +-=+-= ∴221m m +>请你参考小东同学的作法,比较2(2+的大小.【思路点拨】仿照例题,做差后经过计算判断差与0的关系,从而比较大小. 【答案与解析】解:∵(22(43)70=+=-<∴2(2+【总结升华】实数比较大小常用的有作差法和作商法,根据具体情况加以选择. 举一反三:【变式】实数a 在数轴上的位置如图所示,则2,1,,a aa a -的大小关系是:; -1a【答案】21a a a a<<<-;5、用四舍五入法,按括号中的要求把下列各数取近似数. (1)27.15万(精确到千位);(2)12 341 000(精确到万位); (3)0.030 56(保留3个有效数字) 【答案与解析】解:(1)27.15万=2715005272000 2.7210≈=⨯或表示为27.2万;(2)12 341 00012340000≈=71.23410⨯;(3) 0.030 56≈0.030 6【总结升华】一般的近似数,四舍五入到哪一位就说它精确到哪一位,若是汉字单位“万、千、百”类近似数,精确度是由其最后一位数所在的数位确定的,但必须先把该数写成单位为“个”位的数再确定其精确度;用形如10na ⨯的数,其精确度看a 中最后一位数在原数中的数位.6、 计算:(1) ()13864⨯;(2) 4112223⎛⎫⨯ ⎪⎝⎭;(3)3422334⎛⎫⨯ ⎪⎝⎭;(4)6113245⎛⎫÷ ⎪⎝⎭【答案与解析】解:(1) ()()1113333338642488⨯⨯=⨯==;(2) 411222223234936⎛⎫⨯=⨯=⨯= ⎪⎝⎭;(3)34222333434964576⎛⎫⨯=⨯=⨯= ⎪⎝⎭;(4)611116623332216454545125⨯⨯⎛⎫÷=÷=÷= ⎪⎝⎭.【总结升华】利用有理数指数幂的运算性质解题. 类型三、实数综合应用7、已知a 、b|0b =,解关于x 的方程()122-=++a b x a .【答案与解析】|0b =∴2a +8=0, b0,解得a =-4, b()2212354a xb a x x ++=--+=-=∴【总结升华】先由非负数和为0,则几个非负数分别为0解出a 、b 的值,再解方程. 举一反三:【变式】设a 、b 、c 都是实数,且满足08)2(22=+++++-c c b a a , 求代数式23a b c --的值.【答案】解:∵08)2(22=+++++-c c b a a∴220080a a b c c -=⎧⎪++=⎨⎪+=⎩,解得248a b c =⎧⎪=⎨⎪=-⎩∴2341280a b c --=-+=.8、阅读材料:. 小明的方法:<<3k =+(01k <<).∴22(3)k =+.∴21396k k =++.∴1396k ≈+.解得 46k ≈43 3.676≈+≈. 问题:(1(2a 、b 、m,若1a a <<+,且2m a b =+≈_________________(用含a 、b 的代数式表示);(3)请用(2的近似值. 【答案与解析】 解:(1<6k =+(01k <<).∴22(6)k =+.∴2413612k k =++.∴413612k ≈+.解得 512k ≈.∴56 6.4212≈+≈.(2)∵1a a <+a k =+(01k <<).∴22()a k =+.∴222m a ak k =++. ∴22m a ak ≈+.对比2m a b =+,2,2b b ak k a≈≈2b a a≈+(3)23761,=+∴6,1a b ==,1612≈+≈6.083. 【总结升华】此题比较新颖,关键是通过阅读材料快速掌握估值的方法.(2)问中要对比式子,找准a 和b ,表示出2b k a≈.。

《实数复习》课件

《实数复习》课件

实数函数的极少和最值
极值是函数取值范围的极限值, 实数函数的最大值和最小值表现 在图象上是波峰和波谷。
实数的运用
1 实数的应用举例
实数在生活中有着广泛的应用,例如利用实数解决财务问题等。
2 实数的科学计数法
科学计数法是一种常用的表示较大和较小数据的方法。
3 实数的比较大小
实数的大小比较是实数相关概念之一,对于学习实数应用非常有帮助。
结束语
以上是实数复习PPT课件的大纲,本次课程主要复习实数的基础知识和实数的应用。希望大家可以通过这份 PPT课件更深入的了解实数,并在备考过程中取得好成绩。谢谢大家!
《实数复习》PPT课件
欢迎大家来到本次《实数复习》PPT课件。实数是数学的基础,对于数学学习 非常关键,本次课程将会复习实数的基础知识和实数的应用。请跟随我一起 来学习吧!
实数的定义
实数的概念与特点
实数是包括有理数和无理数的数集。它们可以有正负之分,是有序的。
实数的分类
实数可以按大小分类,分为正数、负数和零。也可以按有理数和无理数分类。
实数的运算规律
1
实数的交换律
实数之间的加法和乘法都满足交换律。
2
实数的结合律
实数之间的加法和乘法都满足结合律。
3
实数的分配律
实数之间的乘法和加法之间满足分配律。
实数解方程
一次方程、二次方程、三次方程
实数解方程是研究实数的应用之一,其中包括一次方程、二次方程、三次方程等多种类型。
方程的根的概念和特点
根是指方程的解,其中包括有理数根和无理数根。
方程解判定标准
方程解判定标准是指判断方程的根的种类和个数的规则和方法。
实数的图象与应用
坐标系的概念

实数(单元复习)标准教案

实数(单元复习)标准教案

实数(单元复习)标准教案一、教学目标:1. 知识与技能:(1)理解实数的定义及分类,掌握有理数和无理数的特点。

(2)掌握实数的性质,如相反数、绝对值、平方等。

(3)学会实数的运算方法,包括加、减、乘、除、乘方等。

2. 过程与方法:(1)通过复习实数的定义和性质,提高学生的逻辑思维能力。

(2)运用实数运算方法,培养学生解决实际问题的能力。

3. 情感态度与价值观:培养学生对数学的兴趣,提高学生分析问题、解决问题的能力。

二、教学重点与难点:1. 教学重点:(1)实数的定义及分类。

(2)实数的性质和运算方法。

2. 教学难点:(1)实数分类的理解和运用。

(2)实数运算的灵活应用。

三、教学过程:1. 导入新课:回顾实数的定义,引导学生思考实数的分类和性质。

2. 知识讲解:(1)讲解实数的分类,包括有理数和无理数。

(2)阐述实数的性质,如相反数、绝对值、平方等。

(3)介绍实数的运算方法,如加、减、乘、除、乘方等。

3. 例题解析:选取典型例题,讲解实数的运算方法和应用。

4. 课堂练习:设计练习题,让学生巩固实数的分类、性质和运算方法。

5. 总结提升:对本节课的内容进行总结,强调实数在数学中的重要性。

四、课后作业:1. 复习实数的定义、分类和性质。

2. 练习实数的运算方法,解决实际问题。

3. 总结实数在实际生活中的应用。

五、教学评价:1. 学生对实数的定义、分类和性质的掌握程度。

2. 学生实数运算方法的运用能力。

3. 学生解决实际问题的能力。

4. 学生对数学学科的兴趣和积极性。

六、教学策略与方法:1. 采用问题驱动法,引导学生主动探究实数的性质和运算方法。

2. 通过小组讨论,培养学生合作学习的能力。

3. 利用信息技术辅助教学,如数学软件、网络资源等。

4. 设计富有挑战性的数学问题,激发学生的创新思维。

七、教学实践与拓展:1. 结合实际生活中的问题,让学生运用实数知识和方法解决问题。

2. 开展数学竞赛,提高学生的学习积极性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实数全章复习与巩固(提高)【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围.【知识网络】【要点梳理】类型项目平方根立方根被开方数非负数任意实数符号表示a±3a性质一个正数有两个平方根,且互为相反数;零的平方根为零;负数没有平方根;一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零;重要结论⎩⎨⎧<-≥==≥=)0()0()0()(22aaaaaaaaa333333)(aaaaaa-=-==要点二、实数有理数和无理数统称为实数.1.实数的分类按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.(4)实数和数轴上点是一一对应的.2.实数与数轴上的点一 一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。

我们已经学习过的非负数有如下三种形式: (1)任何一个实数a 的绝对值是非负数,即|a |≥0; (2)任何一个实数a 的平方是非负数,即2a ≥0;(30≥ (0a ≥).非负数具有以下性质: (1)非负数有最小值零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0. 4.实数的运算:数a 的相反数是-a ;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里. 5.实数的大小的比较:有理数大小的比较法则在实数范围内仍然成立.法则1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数大;法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;法则3. 两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法. 【典型例题】类型一、有关方根的问题【高清课堂:389318 实数复习,例1】1、已知31233-+-+-=x x x y ,求y x 2的值.【思路点拨】由被开方数是非负数,分母不为0得出x 的值,从而求出y 值,及y x 2的值. 【答案与解析】 解:由题意得303030x x x ⎧-≥⎪-≥⎨⎪-≠⎩ ,解得x =-3 31233-+-+-=x x x y =-2∴y x 2=()()23218-⨯-=-.【总结升华】根据使式子有意义的条件列出方程,解方程,从而得到y x 2的值. 举一反三: 【变式1】已知322+-+-=x x y ,求x y 的平方根。

【答案】解:由题意得:2020x x -≥⎧⎨-≥⎩解得x =2 ∴y =3,239xy ==,xy 的平方根为±3.【变式2】若373-x 和334y +互为相反数,试求x y +的值。

【答案】解:∵373-x 和334y +互为相反数, ∴3x -7+3y +4=0∴3(x y +)=3,x y +=1.2、已知M 是满足不等式63<<-a 的所有整数a 的和,N 是满足不等式2237-≤x 的最大整数.求M +N 的平方根. 【答案与解析】 解:∵36a -<<的所有整数有-1,0,1,2所有整数的和M =-1+1+0+2=2∵2237-≤x ≈2,N 是满足不等式2237-≤x 的最大整数. ∴N =2∴M +N =4,M +N 的平方根是±2.【总结升华】先由已知条件确定M 、N 的值,再根据平方根的定义求出M +N 的平方根. 类型二、与实数有关的问题3、已知a 是10的整数部分,b 是它的小数部分,求()()323a b -++的值. 【思路点拨】一个数是由整数部分+小数部分构成的.通过估算10的整数部分是3,那么它的小数部分就是103-,再代入式子求值. 【答案与解析】解:∵a 是10的整数部分,b 是它的小数部分,3104<<∴3,103a b ==- ∴()()()()2323331033271017a b -++=-+-+=-+=-.【总结升华】可用夹挤法来确定,即看10介于哪两个相邻的完全平方数之间,然后开平方.这个数减去它的整数部分后就是它的小数部分. 举一反三:【变式】 已知5+11的小数部分为a ,5-11的小数部分为b ,则a +b 的值是 ;a -b 的值是_______.【答案】1;2117a b a b +=-=-;提示:由题意可知113a =-,411b =-.4、阅读理解,回答问题.在解决数学问题的过程中,有时会遇到比较两数大小的问题,解决这类问题的关键是根据命题的题设和结论特征,采用相应办法,其中巧用“作差法”是解决此类问题的一种行之有效的方法:若a -b >0,则a >b ;若a -b =0,则a =b ;若a -b <0,则a <b .例如:在比较21m +与2m 的大小时,小东同学的作法是: ∵()()2222111m mmm +-=+-=∴221m m +>请你参考小东同学的作法,比较43与2(23)+的大小.【思路点拨】仿照例题,做差后经过计算判断差与0的关系,从而比较大小. 【答案与解析】 解:∵()2432343(4433)70-+=-++=-<∴43<2(23)+【总结升华】实数比较大小常用的有作差法和作商法,根据具体情况加以选择. 举一反三:【高清课堂:389318 实数复习,例5】 【变式】实数a 在数轴上的位置如图所示,则2,1,,a aa a -的大小关系是:;【答案】21a a a a<<<-; 类型三、实数综合应用5、已知a 、b 28|30a b +-=,解关于x 的方程()122-=++a b x a 。

【答案与解析】28|30a b ++-=∴2a +8=0, b 30,解得a =-4, b 3()2212354a xb a x x ++=--+=-=∴【总结升华】先由非负数和为0,则几个非负数分别为0解出a 、b 的值,再解方程. 举一反三:【变式】设a 、b 、c 都是实数,且满足08)2(22=+++++-c c b a a , 求代数式23a b c --的值。

【答案】解:∵08)2(22=+++++-c c b a a∴220080a a b c c -=⎧⎪++=⎨⎪+=⎩,解得248a b c =⎧⎪=⎨⎪=-⎩∴2341280a b c --=-+=. 【高清课堂:实数复习,例6】6、阅读材料:13. 小明的方法:91316<<133k =+(01k <<).∴2213)(3)k =+.∴21396k k =++.∴1396k ≈+.解得 46k ≈4133 3.676≈+≈. 问题:(141(2m a 、b 、m ,若1a m a <<+,且2m a b =+m ≈_________________(用含a 、b 的代数式表示);(3)请用(237的近似值. 【答案与解析】 解:(1364149<416k =+(01k <<).∴2241)(6)k =+.∴2413612k k =++.∴413612k ≈+.解得 512k ≈. ∴5416 6.4212≈+≈.(2)∵1a m a <+m a k =+(01k <<).∴22)()m a k =+.∴222m a ak k =++. ∴22m a ak ≈+.对比2m a b =+,2,2b b ak k a≈≈ 2b m a a≈+(3)23761,=+∴6,1a b ==,1612≈+≈6.083. 【总结升华】此题比较新颖,关键是通过阅读材料快速掌握估值的方法.(2)问中要对比式子,找准a 和b ,表示出2b k a≈.。

相关文档
最新文档