变压器原理及接线组别

合集下载

变压器的连接组别(附各种判别方法)

变压器的连接组别(附各种判别方法)

变压器的连接组别变压器的同一相高、低压绕组都是绕在同一铁芯柱上,并被同一主磁通链绕,当主磁通交变时,在高、低压绕组中感应的电势之间存在一定的极性关系同名端:在任一瞬间,高压绕组的某一端的电位为正时,低压绕组也有一端的电位为正,这两个绕组间同极性的一端称为同名端,记作“˙”。

变压器联结组别用时钟表示法表示规定:各绕组的电势均由首端指向末端,高压绕组电势从A指向X,记为“ÈAX”,简记为“ÈA”,低压绕组电势从a指向x,简记为“Èa”。

时钟表示法:把高压绕组线电势作为时钟的长针,永远指向“12”点钟,低压绕组的线电势作为短针,根据高、低压绕组线电势之间的相位指向不同的钟点。

确定三相变压器联结组别的步骤是:①根据三相变压器绕组联结方式(Y或y、D或d)画出高、低压绕组接线图(绕组按A、B、C相序自左向右排列);②在接线图上标出相电势和线电势的假定正方向③画出高压绕组电势相量图,根据单相变压器判断同一相的相电势方法,将A、a重合,再画出低压绕组的电势相量图(画相量图时应注意三相量按顺相序画);④根据高、低压绕组线电势相位差,确定联结组别的标号。

Yy联结的三相变压器,共有Yy0、Yy4、Yy8、Yy6、Yy10、Yy2六种联结组别,标号为偶数Yd联结的三相变压器,共有Yd1、Yd5、Yd9、Yd7、Yd11、Yd3六种联结组别,标号为奇数为了避免制造和使用上的混乱,国家标准规定对单相双绕组电力变压器只有ⅠⅠ0联结组别一种。

对三相双绕组电力变压器规定只有Yyn0、Yd11、YNd11、YNy0和Yy0五种。

标准组别的应用Yyn0组别的三相电力变压器用于三相四线制配电系统中,供电给动力和照明的混合负载;Yd11组别的三相电力变压器用于低压高于0.4kV的线路中;YNd11组别的三相电力变压器用于110kV以上的中性点需接地的高压线路中;YNy0组别的三相电力变压器用于原边需接地的系统中;Yy0组别的三相电力变压器用于供电给三相动力负载的线路中。

变压器的接线组别

变压器的接线组别

变压器的接线组别就是变压器一次绕组和二次绕组组合接线形式的一种表示方法;常见的变压器绕组有二种接法,即“三角形接线”和“星形接线”;在变压器的联接组别中“D表示为三角形接线,“Yn”表示为星形带中性线的接线,Y表示星形,n表示带中性线;“11”表示变压器二次侧的线电压Uab滞后一次侧线电压UAB 330度(或超前30度)。

变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。

Y(或y)为星形接线,D(或d)为三角形接线。

数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。

“Yn,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。

也就是,二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。

变压器二个绕组组合起来就形成了4种接线组别:“Y,y”、“D,y”、“Y,d”和“D,d”。

我国只采用“Y,y”和“Y,d”。

由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表示。

n表示中性点有引出线。

Yn0接线组别,UAB与uab相重合,时、分针都指在12上。

“12”在新的接线组别中,就以“0”表示。

(一)变压器接线组别变压器的极性标注采用减极性标注。

减极性标注是将同一铁心柱上的两个绕组在某个瞬间相对高电位点或相对低电位点称为同极性,标以同名端“A”、“a”或“·”.采用减极性标注后,当电流从原绕组“A”流入,副绕组电流则由“a”流出。

变压器的接线组别是三相权绕组变压器原,副边对应的线电压之间的相位关系,采用时钟表示法。

分针代表原边线电压相量,并且将分外固定指向12上,时针代表对应的副边线电压相量,指向几点即为几点钟接线。

变压器空载运行中,Yyn0接线组别高压侧为“Y”接线,激磁电流为正弦波。

三相变压器接线组别

三相变压器接线组别

Y型接线组别的优缺点
优点
结构简单、维护方便、成本低廉 、运行稳定。
缺点
不能承受较大的不平衡负载,当 一相断路时,其它两相电压会升 高,需要配置相应的保护措施。
03
Δ型接线组别
Δ型接线组别的特点
三个线圈呈三角形连接,每个线圈的首尾相接。 三个线圈的匝数相等,相位差为120度。
输入输出电压比为3:1或1:3。
其他特殊接线组别
其他特殊接线组别包括各种不同的接线方式,如三相-三相变压器 接线、三相-单相变压器接线等。这些特殊接线组别通常用于特定 的应用场合,以满足不同的需求。
特殊接线组别的优点在于其能够实现特定的功能,如电压变换、 相位变换等。
然而,特殊接线组别也存在一些缺点,例如其结构复杂、维护困 难等。因此,在实际应用中需要根据具体需求进行选择。
02
Y型接线组别
Y型接线组别的特点
三个线圈的尾端连接 在一起,首端引出作 为电源或负载的接线 端。
输出电压与输入电压 同相位。
三个线圈的匝数相等, 相位差为120度。
Y型接线组别的应用场景
适用于高压输电线路的三相变压 器。
适用于需要三相平衡供电的工业 和商业场所。
适用于需要降低谐波干扰的场合。
Δ型接线组别的应用场景
适用于高压输电线路的三相变压器。
适用于需要平衡三相负载的电力系统。
适用于需要高电压或大电流的工业应 用。
Δ型接线组别的优缺点
优点
结构简单,制造方便,运行稳定,能 够承受较大的短路电流。
缺点
不能实现电气隔离,需要额外的隔离 变压器或光耦等设备来实现电气隔离 。
04
其他接线组别
三相变压器接线 组别
目录

变压器接线组别

变压器接线组别
原,副绕组中的电流同相位,副边对应相的根电压Ua与流过该绕组中的电流Ia同相位。即可判断此接线为Y/Y-12接线组。 变压器差动保护在正常运行及外部故障时,流入差回路的电流为变压器两侧电流互感器二次电流的和。可将变压器两侧电流互感器行成两个三相电源向三相负载——三块差动继电器供电。若两个电源的电流相位相反,则流入负载的电流相量和为零。接线如图3所示时,变压器高压侧的电流互感器LH接成Y/Y-12,低压倒电流互感器LH接成Y/Y-6。则两侧电流互感器同名相二次测电流IA2与Ia2相位相反。如图4所示。流入差回路的电流为互感器同名相二次电流的和。若变压器的变比分。等于两侧电流互感器变比nB=nLH=WLH’/WLH,则流入差回路的电流为零,即IA2十Ia2=0。 Y/Δ一11接线的变压器,由于变压器原边电流IA落后于副边电流Ia30?,即使两侧电流互感器流入差回路的电流数值相等,在差回路中仍有一个不平衡电流Ibp=2I2sin30?/2。消除此不平衡电流的方法是将变压器Y接侧的电流互感器LH的二次侧接成Δ,使电流互感器二次侧流入差回路的电流移相。为使两侧互感器二次侧流入差回路的电流相位相反,在Y/Δ一11接线的变压器Δ侧的电流互感器LH’若按成Y/Y-12,则变压器Y接线的电流互感器LH需接成Y/Δ一5。如图5所示,电流互感器LH流入差回路的电流IA2=IB2’一IA2’,不考虑互感器角误差的情况下,IB2’与IB同相位,IA2’与IA同相应,(IB一IA)的相量指向5点,为Y/Δ一5接线,其相量图见图6(a).电流互感器LH’流入差回路的电流Ia2与Ia同相位,指向11点,故Ia2与IA2反相,若其值相等,则流入差回路的电流为零,其相量图见图6,
大容量1800kVA,并规定Yyn0接线变压器中性线电流不应超过低压侧额定电流的25%;Dyn11接线中,一次绕组的零序电流可以在绕组内环流,反过来可削弱二次绕组的零序磁通,不致使零序磁通造成配变的过热,因此中性线电流几乎可达相线电流值(一般能达到相线电流的80%),规程规定Dyn11接线变压器中性线电流不应超过低压侧额定电流的40%,所以Dyn11接线能使配变容量尽可能得到充分利用,同时也降低了损耗,同容量的配变负载损耗Dyn11接线比Yyn0接线可减少20% 对于供电质量来说,对于Yyn0接线的配变,由于二次零序磁通未被去磁,零序阻抗大,因此零序电压也较大;而Dyn11接线中由于一次零序磁通的去磁,使铁芯中合成零序磁通很小。据实测数据发现,同容量的配变Yyn0接线零序阻抗比Dyn11接线大8~10倍.这样在同样的零序电流下,零序电压前者比后者大8~10倍,从而造成Yyn0接线配变中性点产生较大偏移,相电压不对称程度严重. 当低压母线处发生单相短路时,由于Dyn11接线配变零序阻抗小,因此Dyn11接线要比Yyn0接线单相短路大得多,这样低压总开关过流保护的灵敏度也高得多,对于高压侧,由于Dyn11接线低压单相短路电流对高压侧的穿越电流也大,当高压侧过流继电保护兼作低压单相接地保护时,其灵敏度也比Yyn0接线大. 尽管Dyn11接线有许多优点,但是两种接线组别的配变在农村低压电力技术规程(DL/T 499—2001)中规定都是允许的,两种接线组别的配变优缺点及适用范围 见下表1。 表1 Yyn0和Dyn11接线组别的配变优缺点及适用范围 来源组和二次绕组组合接线形式的一种表示方法; 常见的变压器绕组有二种接法,即“三角形接线”和“星形接线”;在变压器的联接组别中“D表示为三角形接线,“Yn”表示为星形带中性线的接线,Y表示星形,n表示带中性线;“11”表示变压器二次侧的线电压Uab滞后一次侧线电压UAB 330度(或超前30度)。 变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。Y(或y)为星形接线,D(或d)为三角形接线。数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。 “Yn,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。也就是,二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。 变压器二个绕组组合起来就形成了4种接线组别:“Y,y”、“D,y”、“Y,d”和“D,d”。我国只采用“Y,y”和“Y,d”。由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表示。n表示中性点有引出线。Yn0接线组别,UAB与uab相重合,时、分针都指在12上。“12”在新的接线组别中,就以“0”表示。 (一)变压器接线组别 变压器的极性标注采用减极性标注。减极性标注是将同一铁心柱上的两个绕组在某个瞬间相对高电位点或相对低电位点称为同极性,标以同名端“A”、“a”或“·”.采用减极性标注后,当电流从原绕组“A”流入,副绕组电流则由“a”流出。变压器的接线组别是三相权绕组变压器原,副边对应的线电压之间的相位关系,采用时钟表示法。分针代表原边线电压相量,并且将分外固定指向12上,时针代表对应的副边线电压相量,指向几点即为几点钟接线。 变压器空载运行中,Yyn0接线组别高压侧为“Y”接线,激磁电流为正弦波。由于变压器磁化曲线的非线性,铁芯磁通为平顶波,含有三次谐波成分较大,对于三芯柱铁芯配变,奇次磁通无通路,只有通过空气隙、箱壁、夹紧螺栓形成通路,这样就增加了磁滞及涡流损耗;Dyn11接线中,奇次谐波电流可在高压绕组内环流,这样铁芯中的磁通为正弦波,不会产生前者的损耗。同容量的配变空载损耗Dyn11接线比Yyn0接线可减少10%。 负载运行中,若二次侧负载不对称,各项均有零序电流,其值为中线电流的1/3,零序电流在配变铁芯中产生零序磁通,Yyn0接线的配变高压侧没有零序电流与之去磁,零序磁通在变压器铁芯柱中无通路,只能通过空气隙、箱壁、夹紧螺栓形成回路,产生附加损耗,鉴于此,大容量变压器不宜采用Yyn0接线,最

变压器连接组别

变压器连接组别

变压器的连接组别变压器的同一相高、低压绕组都是绕在同一铁芯柱上,并被同一主磁通链绕,当主磁通交变时,在高、低压绕组中感应的电势之间存在一定的极性关系同名端:在任一瞬间,高压绕组的某一端的电位为正时,低压绕组也有一端的电位为正,这两个绕组间同极性的一端称为同名端,记作“˙”。

变压器联结组别用时钟表示法表示规定:各绕组的电势均由首端指向末端,高压绕组电势从A指向X,记为“ÈAX”,简记为“ÈA”,低压绕组电势从a指向x,简记为“Èa”。

时钟表示法:把高压绕组线电势作为时钟的长针,永远指向“12”点钟,低压绕组的线电势作为短针,根据高、低压绕组线电势之间的相位指向不同的钟点。

确定三相变压器联结组别的步骤是:①根据三相变压器绕组联结方式(Y或y、D或d)画出高、低压绕组接线图(绕组按A、B、C相序自左向右排列);②在接线图上标出相电势和线电势的假定正方向③画出高压绕组电势相量图,根据单相变压器判断同一相的相电势方法,将A、a重合,再画出低压绕组的电势相量图(画相量图时应注意三相量按顺相序画);④根据高、低压绕组线电势相位差,确定联结组别的标号。

Yy联结的三相变压器,共有Yy0、Yy4、Yy8、Yy6、Yy10、Yy2六种联结组别,标号为偶数Yd联结的三相变压器,共有Yd1、Yd5、Yd9、Yd7、Yd11、Yd3六种联结组别,标号为奇数为了避免制造和使用上的混乱,国家标准规定对单相双绕组电力变压器只有ⅠⅠ0联结组别一种。

对三相双绕组电力变压器规定只有Yyn0、Yd11、YNd11、YNy0和Yy0五种。

标准组别的应用Yyn0组别的三相电力变压器用于三相四线制配电系统中,供电给动力和照明的混合负载;Yd11组别的三相电力变压器用于低压高于0.4kV的线路中;YNd11组别的三相电力变压器用于110kV以上的中性点需接地的高压线路中;YNy0组别的三相电力变压器用于原边需接地的系统中;Yy0组别的三相电力变压器用于供电给三相动力负载的线路中。

变压器的接线组别及其物理意义

变压器的接线组别及其物理意义

变压器的接线组别及其物理意义变压器的接线组别就是变压器一次绕组和二次绕组组合接线形式的一种表示方法;常见的变压器绕组有二种接法,即“三角形接线”和“星形接线”;在变压器的联接组别中“D”表示为三角形接线,“Y n”表示为星形带中性线的接线,Y表示星形,n表示带中性线;“11”表示变压器二次侧的线电压U ab滞后一次侧线电压U AB330度(或超前30度)。

变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。

Y(或y)为星形接线,D (或d)为三角形接线。

数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。

“Y n,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。

也就是,二次侧的线电压U ab滞后一次侧线电压U AB330度(或超前30度)。

变压器二个绕组组合起来就形成了4种接线组别:“Y,y”、“D,y”、“Y,d”和“D,d”。

我国只采用“Y,y”和“Y,d”。

由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表示。

n表示中性点有引出线。

Yn0接线组别,U AB与u ab相重合,时、分针都指在12上。

“12”在新的接线组别中,就以“0”表示。

下面是变压器接线组别的向量图及原、副边绕组的接线示意图。

例1:一台三绕组变压器,高压为中性点引出的星形联结绕组,额定电压为121kV;中压为中性点引出的星形联结绕组,额定电压为38.5kV,低压为三角形联结绕组,额定电压为10.5kV。

两个星形联结绕组的电压是同相位(钟时序数0),而三角形联结绕组上的电压超前于其他电压30°(钟时序数11)。

所以,该台变压器的联结组标号为:YN,yn0,d11。

三相变压器的连接组别

三相变压器的连接组别
纲要
一、三相变压器的连接方法 二、变压器的极性 三、变压器的连接组别 四、变压器连接组别综述(小结)
一、三相变压器的连接方法
1、 星形连接
A
将三相绕组的三个末端 X ,
B
Y , Z (低压x ,y,z) 分别连接在
C
一起,三个首端 A 、 B 、 C (低压
a、b、c) 分别引出,便构成星形连
接,用 Y表示 (新:高压Y,低压
ÙAB
ÙAB = - ÙA +ÙB Ùab = Ùb
ÙB
A
*
ÙA
Ùa
*
ÙB
Ùb
*
ÙC
Ùc
逆序三角形接法
bz Ùb
ÙAB
Ùc cx
Ùa
a y ÙA
ÙC
12
9
Ùab ÙAB
3
6
a

ab
*
*
四、变压器连接组别综述(小结)
1、变压器的连接组别很多,为了制造和并列运行 的方便,我国电力变压器只生产Y/Y0-12、 Y0/Y12 、 Y/Y-12 、Y/△-11 及Y0/△-11五种连接组别,
y )。
2 、 三角形连接
将高、低压绕组的一相末端
与另一相的首端分别依次连接在
一起,构成一个回路,便构成三
A
角形连接,用△表示( 新:高压
D,低压d )。
顺序三角形接法:ax-by-cz-a
逆序三角形接法:ax-cz-by-a
Xx
a
Yy
b
Zz
c
星形连接
顺序三角形接法 a
逆序三角形接法
二、变压器的极性
同极性端(同名端):
任意瞬间,高压绕组的某 一端点的电位为正(高电位)

变压器的接线组别及其物理意义

变压器的接线组别及其物理意义

变压器的接线组别及其物理意义变压器的接线组别就是变压器一次绕组和二次绕组组合接线形式的一种表示方法;常见的变压器绕组有二种接法,即“三角形接线”和“星形接线”;在变压器的联接组别中“D”表示为三角形接线,“Y n”表示为星形带中性线的接线,Y表示星形,n表示带中性线;“11”表示变压器二次侧的线电压U ab滞后一次侧线电压U AB330度(或超前30度)。

变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。

Y(或y)为星形接线,D (或d)为三角形接线。

数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。

“Y n,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。

也就是,二次侧的线电压U ab滞后一次侧线电压U AB330度(或超前30度)。

变压器二个绕组组合起来就形成了4种接线组别:“Y,y”、“D,y”、“Y,d”和“D,d”。

我国只采用“Y,y”和“Y,d”。

由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表示。

n表示中性点有引出线。

Yn0接线组别,U AB与u ab相重合,时、分针都指在12上。

“12”在新的接线组别中,就以“0”表示。

下面是变压器接线组别的向量图及原、副边绕组的接线示意图。

例1:一台三绕组变压器,高压为中性点引出的星形联结绕组,额定电压为121kV;中压为中性点引出的星形联结绕组,额定电压为38.5kV,低压为三角形联结绕组,额定电压为10.5kV。

两个星形联结绕组的电压是同相位(钟时序数0),而三角形联结绕组上的电压超前于其他电压30°(钟时序数11)。

所以,该台变压器的联结组标号为:YN,yn0,d11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B(X)
ÉAX与Éby反向
A B

C

y

z

x

ÉAB
b ÉAX a c
C(Y)
X

Y
Z
b
c
a
A(Z)
2015年8月21日星期五
x、y、z
《电机学》 第三章 变压器
31
例3 变压器绕组如图,画出电动势相量图,判断联接组别
A

B

C

1)画出一次绕组的相量图 2) 判断相位关系 3) 依据相序的原则,画二次绕组相量图,并判 断联接组标号。
2015年8月21日星期五 《电机学》 第三章 变压器
2、三角形联结
把一相的末端和另一相的首端连接起来,顺序连接成一闭 合电路。两种接法:
A B
A B
9
C
C
E A
X
E B
Y
E C
Z
E A
X
E B
Y
E C
Z
ZB
E AB
Z
E A
B X
E E AB B
AX-BY-CZ
5
节省材料,体积小,效率高,维护方便。大、中、小 容量的变压器广泛用于电力系统中。
2015年8月21日星期五
《电机学》 第三章 变压器
二、联接组别
6
(一) 联结法
绕组标记
单相变压器 绕组名称 三相变压器 中性点
首端 高压绕组
低压绕组
末端 X
x
首端 A、B、C
a 、 b、 c
末端 X、Y、Z
x、y、zLeabharlann B (Z)yX z

Y x

Z

ÉAB
b
ÉBY
c
C (X) ÉAX
x、y、z
c
a
b
Éab Aa (Y)
330°
ÉBY与Éax反向
∴ D, y11
2015年8月21日星期五
《电机学》 第三章 变压器
32
练习:变压器绕组如图,画电动势相量图,判断联接组标号
A

B

C

B
EAB X Y Z
ax与BY同相 by与CZ同相 Z Y X cz与AX同相
③画出高压绕组电势相量图,根据单相变压器判断同一 相的相电势方法,将A、a重合,再画出低压绕组的电 势相量图(画相量图时应注意三相量按顺相序画);
④根据高、低压绕组线电势相位差,确定联结组别的标 号。
2015年8月21日星期五
《电机学》 第三章 变压器
1、 Yy0
A B C
a A ÉAB
18
Éab
B(X)
B

C
● ● ● ●
X
Y
Z
A ÉAB B
ÉAB ÉAX
C
C(Y)
E A
X
E B
Y
E C
Z
A(Z)
2015年8月21日星期五
《电机学》 第三章 变压器
30
c.画出初级电势相量△,使Éab滞后ÉAB30º,同时画Éax,Éby, Écz。(相序顺时针a-b-c)
d.由相量图知: ÉAX与Éby反向,表明次级AX绕组与初级by 绕组在同一铁心柱上,且A与y为同极性端。同理BY与cz反 相;CZ与ax反相 e.将次级x,y,z连在一起,接成Y形
2015年8月21日星期五
《电机学》 第三章 变压器
《电机学》 第三章 变压器
5、 Yd5
B
23
ay A cx Èab zb 150º C X、Y、Z
2015年8月21日星期五
《电机学》 第三章 变压器
6、 Yd11
24
A ay
330º Èab bz
cx
C
B X、Y、Z
2015年8月21日星期五
《电机学》 第三章 变压器
25
Yd联结组别总结: Yd联结的三相变压器,共有Yd1、Yd5、Yd9、Yd7、 Yd11、Yd3六种联结组别,标号为奇数。
理论和实践证明,无论采用怎样的连接方式,一、二 次侧线电动势(电压)的相位差总是30º的整数倍。
2015年8月21日星期五
《电机学》 第三章 变压器
※ 确定三相变压器联结组别的步骤
17
①根据三相变压器绕组联结方式(Y或y、D或d)画出高、 低压绕组接线图;
②在接线图上标出相电势和线电势的假定正方向;
2015年8月21日星期五
《电机学》 第三章 变压器
标准组别的应用 Yyn0——三相四线制配电系统中,供电给动 力和照明的混合负载; Yd11——低压高于0.4kV的线路中; YNd11——110kV以上的中性点需接地的高压 线路中; YNy0——原边需接地的系统中;
37
最常用
Yy0——供电给三相动力负载的线路中。
2015年8月21日星期五
《电机学》 第三章 变压器
2、心式磁路变压器
4
特点:三相磁路彼此有关联,磁路长度不等,当外 加三相对称电压时,三相磁通对称,三相磁通之和 等于零。
A B C 0
2015年8月21日星期五



在结构上省去中 间的芯柱
《电机学》 第三章 变压器
心式应用
2015年8月21日星期五
《电机学》 第三章 变压器
34
所有Yy
2015年8月21日星期五 《电机学》 第三章 变压器
35
所有Yd
2015年8月21日星期五 《电机学》 第三章 变压器
36
标准联结组别
为了避免制造和使用上的混乱,国家标准规定对 单相双绕组电力变压器只有II0联结组别一种。对 三相双绕组电力变压器规定只有Yyn0、Yd11、 YNd11、YNy0和Yy0五种。
两种三相绕组接线:星形联结、三角形联结
1、星形联结 把三相绕组的三个末端连在一起,而把它们的首端引出 三个末端连接在一起形成中性点,如果将中性点引出, 就形成了三相四线制了,表示为YN或yn。
B
8
E E AB B
E A
A
Z
Y
E BC
X
E C
C
E CA
顺时针方向:A超前B超前C各120º
A

B

C
● ● ● ●
X
Y
Z
初级△接AX-CZ-BY联结 初级△接AX-BY-CZ联结
2015年8月21日星期五
《电机学》 第三章 变压器
例1:将变压器接成联接组标号Dy1,并画电动势相量图
A

27
B

C
● ● ● ●
ÉAB X Y Z
a. 初级△接AX-CZ-BY联结
B (Z)
b.画出高压侧电势相量 △,并标上AX,CZ, BY
A
a
N
n
2015年8月21日星期五
《电机学》 第三章 变压器
7
或者有的记法
单相变压器 绕组名称 首端 高压绕组 低压绕组 U1 u1 末端 U2 u2 首端
三相变压器 中性点 末端 U2、V2、W2 u2、v2、w2 N n
U1、V2、W1 u1、v1、w1
绕组标记
2015年8月21日星期五
《电机学》 第三章 变压器
2015年8月21日星期五
《电机学》 第三章 变压器
(二)联结组
11
1、高低压绕组中电势的相位
变压器的同一相高、低压绕组都是绕在同一铁芯柱上, 并被同一主磁通链绕,当主磁通交变时,在高、低压 绕组中感应的电势之间存在一定的极性关系。
同名端决于绕组的绕制方向
2015年8月21日星期五 《电机学》 第三章 变压器
c

a

b

y Aa z
Eab bz cx
C
x
y
∴ Y, d3
2015年8月21日星期五 《电机学》 第三章 变压器
※ 用相量图判定变压器的连接组别时应注意:
33
1. 绕组的极性只表示绕组的绕法,与绕组的首、末端 标志无关; 2. 高、低压绕组的相电动势均从首端指向末端,线电 动势由A指向B; 3. 同一铁心柱上的绕组,首端为同极性时相电动势相 位相同,首端为异极性时相电动势相位相反。
若高压绕组三相标志不变,低压绕组三相标志依次后移, 可以得到Yy4、Yy8连接组别。若异名端在对应端,可得到 Yy6、Yy10和Yy2连接组别。
※我国标准规定生产: Yyn0、YNy0、Yy0
2015年8月21日星期五
《电机学》 第三章 变压器
4、 Yd1
22
Èa
Èb
Èc
30º
2015年8月21日星期五
※ 单相变压器要点
1. 2. 3. 4. 5. 6. 7. 8. 变压器基本工作原理 变压器的额定值 变压器磁路中的主、漏磁通 铁心饱和时的励磁电流成分 电势平衡、磁势平衡、功率平衡 变压器的电抗参数(分析时和磁通对应) 变压器的主要性能指标(电压变化率和效率) 标幺值
1
2015年8月21日星期五
《电机学》 第三章 变压器
B (Z)
C (X)
A a
● ● ● ●
ÉAB
30º
Éab
b ÉAX c Éax
b

c

A(Y) a
2015年8月21日星期五
x、y、z
《电机学》 第三章 变压器
X
x
y
z
29
相关文档
最新文档