高中平面解析几何知识点总结

合集下载

平面解析几何-高考复习知识点

平面解析几何-高考复习知识点

平面解析几何 高考复习知识点一、直线的倾斜角、斜率1、直线的倾斜角:(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,如果把x 轴绕着交点按逆时针方向转到和直线l 重合时所转的最小正角记为α,那么α就叫做直线的倾斜角。

当直线l 与x 轴重合或平行时,规定倾斜角为0; (2)倾斜角的范围[)π,0。

2、直线的斜率(1)定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率;(2)斜率公式:经过两点111(,)P x y 、222(,)P x y 的直线的斜率为()212121x x x x y y k ≠--=;(3)直线的方向向量(1,)a k =,直线的方向向量与直线的斜率有何关系? (4)应用:证明三点共线: AB BC k k =。

例题:例1.已知直线的倾斜角的变化范围为,求该直线斜率的变化范围;思路点拨:已知角的范围,通过正切函数的图像,可以求得斜率的范围,反之,已知斜率的范围,通过正切函数的图像,可以求得角的范围解析: ∵, ∴.总结升华:在知道斜率的取值范围求倾斜角的取值范围,或知道倾斜角的取值范围求斜率的取值范围时,可利用在和上是增函数分别求解.当时,;当时,;当时,;当不存在时,.反之,亦成立.类型二:斜率定义例2.已知△ABC 为正三角形,顶点A 在x 轴上,A 在边BC 的右侧,∠BAC 的平分线在x 轴上,求边AB 与AC 所在直线的斜率. 思路点拨:本题关键点是求出边AB 与AC 所在直线的倾斜角,利用斜率的定义求出斜率.解析:如右图,由题意知∠BAO=∠OAC=30°∴直线AB 的倾斜角为180°-30°=150°,直线AC 的倾斜角为30°,∴k AB =tan150°= k AC =tan30°=总结升华:在做题的过程中,要清楚倾斜角的定义中含有的三个条件①直线向上方向②轴正向③小于的角,只有这样才能正确的求出倾斜角.类型三:斜率公式的应用例3.求经过点,直线的斜率并判断倾斜角为锐角还是钝角.思路点拨: 已知两点坐标求斜率,直接利用斜率公式即可. 解析:且,经过两点的直线的斜率,即.即当时,为锐角,当时,为钝角.例4、过两点,的直线的倾斜角为,求的值.【答案】由题意得:直线的斜率,故由斜率公式,解得或. 经检验不适合,舍去. 故.例5.已知三点A(a ,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a 的值.思路点拨:如果过点AB ,BC 的斜率相等,那么A ,B ,C 三点共线.解析:∵A 、B 、C 三点在一条直线上,∴k AB =k AC .即二、直线方程的几种形式1、点斜式:已知直线过点00(,)x y 斜率为k ,则直线方程为00()y y k x x -=-,它不包括垂直于x 轴的直线。

高中平面解析几何知识点总结

高中平面解析几何知识点总结

高中平面解析几何知识点总结一.直线部分1.直线的倾斜角与斜率:(1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[︒∈α,︒=90α斜率不存在.(2)直线的斜率:αtan ),(211212=≠--=k x x x x y y k .两点坐标为111(,)P x y 、222(,)P x y .2.直线方程的五种形式:(1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ).注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =.(2)斜截式:b kx y += (b 为直线l 在y 轴上的截距).(3)两点式:121121x x x x y y y y --=-- (12y y ≠,12x x ≠).注:① 不能表示与x 轴和y 轴垂直的直线;② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线.(4)截距式:1=+b ya x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ).注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线.(5)一般式:0=++C By Ax (其中A 、B 不同时为0).一般式化为斜截式:B C x B A y --=,即,直线的斜率:B Ak -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =.已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或x x =.(2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合.3.直线在坐标轴上的截矩可正,可负,也可为0.(1)直线在两坐标轴上的截距相等⇔直线的斜率为1-或直线过原点. (2)直线两截距互为相反数⇔直线的斜率为1或直线过原点. (3)直线两截距绝对值相等⇔直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+,有① 212121,//b b k k l l ≠=⇔; ② 12121l l k k ⊥⇔=-.(2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有① 1221122121//C A C A B A B A l l ≠=⇔且; ② 0212121=+⇔⊥B B A A l l .5.平面两点距离公式: (1)已知两点坐标111(,)P x y 、222(,)P x y ,则两点间距离22122121)()(y y x x P P -+-=.(2)x 轴上两点间距离:AB x x AB -=.(3)线段21P P 的中点是),(00y x M ,则⎪⎪⎩⎪⎪⎨⎧+=+=22210210y y y x x x . 6.点到直线的距离公式:点),(00y x P 到直线0=++C By Ax l :的距离:2200B A CBy Ax d +++=.7.两平行直线间的距离公式:两条平行直线002211=++=++C By Ax l C By Ax l :,:的距离:2221B A C C d +-=.8.直线系方程: (1)平行直线系方程:① 直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程. ② 与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=.③ 过点00(,)P x y 与直线:0l Ax By C ++=平行的直线可表示为:00()()0A x xB y y -+-=.(2)垂直直线系方程:① 与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=.② 过点00(,)P x y 与直线:0l Ax By C ++=垂直的直线可表示为:00()()0B x x A y y ---=.(3)定点直线系方程:① 经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线x x =),其中k 是待定的系数.② 经过定点000(,)P x y 的直线系方程为00()()0A x xB y y -+-=,其中,A B 是待定的系数.(4)共点直线系方程:经过两直线0022221111=++=++C y B x A l C y B x A l :,:交点的直线系方程为0)(222111=+++++C y B x A C y B x A λ (除开2l),其中λ是待定的系数.9.两条曲线的交点坐标:曲线1:(,)0C f x y =与2:(,)0C g x y =的交点坐标⇔方程组{(,)0(,)0f x y g x y ==的解.10.平面和空间直线参数方程:① 平面直线方程以向量形式给出:nb y nax 21--=方向向量为()n n s 21,=→下面推导参数方程:⎪⎩⎪⎨⎧+=+===--tn b y tn a x tn b y na x 2121则有令:② 空间直线方程也以向量形式给出: nb z nb y nax 321---==方向向量为()n n n s 321,,=→下面推导参数方程:⎪⎪⎩⎪⎪⎨⎧+=+=+====---t n c z t n b y t n a x t nc z nb y na x 321321则有令:注意:只有封闭曲线才会产生参数方程,对于无限曲线,例如二次函数一般不会有化为如上的参数方程。

高中数学平面解析几何知识点总结

高中数学平面解析几何知识点总结

平面解析几何一、直线与圆1.斜率公式 2121y y k x x -=-(111(,)P x y 、222(,)P x y ). 2.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). < (4)截距式 1x y a b+=(a b 、分别为直线的横、纵截距,0a b ≠、). (5)一般式 0Ax By C ++=(其中A 、B 不同时为0).3.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+①121212||,l l k k b b ⇔=≠;②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222||A B C l l A B C ⇔=≠; < ②1212120l l A A B B ⊥⇔+=;4.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).5.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).圆心⎪⎭⎫ ⎝⎛--2,2E D ,半径r=2422F E D -+. 6.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种: .若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内. 7.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种: 0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d . 其中22B A CBb Aa d +++=.8.两圆位置关系的判定方法#设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ;条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ;条公切线内切121⇔⇔-=r r d ;无公切线内含⇔⇔-<<210r r d .$二、圆锥曲线1.圆锥曲线的定义(1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|);(2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|).2.圆锥曲线的标准方程(1)椭圆:x 2a 2+y 2b 2=1(a >b >0)(焦点在x 轴上)或y 2a 2+x 2b 2=1(a >b >0)(焦点在y 轴上); (2)双曲线:x 2a 2-y 2b 2=1(a >0,b >0)(焦点在x 轴上)或y 2a 2-x 2b 2=1(a >0,b >0)(焦点在y 轴上). 3.圆锥曲线的几何性质&(1)椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.长轴长为2a ,短轴长为2b ,焦距为2c ,三者满足a 2=b 2+c 2,顶点为(a,0),(0,b),焦点为(c,0),离心率e=ac ,准线c a 2±=x (X 型). (2)双曲线22221(0,0)x y a b a b-=>>,实轴长为2a ,虚轴长为2b ,焦距为2c ,三者满足a 2+b 2=c 2,顶点为(a,0),焦点为(c,0),离心率e=a c (e>1),渐近线为x ab y ±=. 4.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x ab y ±=. (2)共轭双曲线: 12222=-b y ax 与1-2222=a x b y 渐近线一样. (3)等轴双曲线:若双曲线与12222=-by a x 中a=b ,(e=2,渐近线为y=x ±). 5.抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02p CF x =+.准线:x=2p ,离心率为e=1.(点到焦点的距离等于点到准线的距离).。

高中数学解析几何知识点总结

高中数学解析几何知识点总结

高中数学解析几何知识点总结一、平面解析几何在平面解析几何中,我们主要研究平面上的点、直线、圆、曲线等几何对象。

平面解析几何的基本思想是用代数方法研究几何问题,通过建立坐标系和引入坐标变量的方法,将几何问题转化为代数问题进行研究。

在平面解析几何中,有一些重要的知识点需要掌握,下面我们将逐一进行讲解。

1. 坐标系坐标系是平面解析几何的基本工具,它通过数轴的方式将平面上的点和几何对象进行了定位。

常见的坐标系有直角坐标系和极坐标系两种。

直角坐标系是由水平轴和垂直轴组成的,水平轴称为x轴,垂直轴称为y轴。

平面上的每个点通过它的横坐标x和纵坐标y来确定,就可以唯一确定一个点的位置。

例如,点A(x,y)表示了点A在坐标系中的位置。

极坐标系是以原点O和一条射线作为坐标轴,用点到原点的距离r和与射线的夹角θ来表示点的位置。

在极坐标系中,点的坐标表示为(r,θ)。

2. 直线的方程在直角坐标系中,直线可以用方程y=ax+b或者y=kx+b来表示,其中a、b、k为常数。

当a≠0时,直线的方程为y=ax+b,a称为直线的斜率,b称为直线的截距;当a=0时,直线的方程为y=b,其斜率为0,直线与y轴平行。

另外,直线还可以用斜截式、截距式、两点式等来表示,学生需要灵活掌握不同表示方法,并能够相互转化。

3. 圆的方程在平面解析几何中,圆是一个重要的几何对象,它的方程可以用不同的形式表示。

在直角坐标系中,圆的方程一般写为(x-a)²+(y-b)²=r²,其中(a,b)为圆心的坐标,r为圆的半径。

4. 曲线的方程除了直线和圆之外,学生还需要学习其他曲线的方程,如抛物线、椭圆、双曲线等。

这些曲线都有各自的方程形式,在解析几何中有着重要的应用。

5. 解析几何的基本性质和定理在学习平面解析几何时,学生还需要掌握一些基本的性质和定理,如两点间的距离公式、直线的斜率公式、直线与圆的位置关系、圆与圆的位置关系等。

平面解析几何知识点总结

平面解析几何知识点总结

第一部分直线一、直线的斜率和倾斜角1.倾斜角α(1)定义:直线l 向上的方向与x 轴正方向所称的角叫直线的倾斜角(2)范围:1800<≤α2.斜率直线倾斜角的正切值叫做这条直线的斜率,记作αtan =k (1)倾斜角为 90的直线没有斜率(2)每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时应考虑到斜率的存在与不存在两种情况,否则会产生漏解。

(3)经过),(),,(2211y x B y x A 两点的直线的斜率为k ,则当21x x ≠时,1212tan x x y y k --==α;当21x x =时, 90=α,斜率不存在(4)切线斜率的求法:设平面曲线的方程为0),(=y x F ,则该曲线在),(00y x 点的斜率为)(')('00y F x F k -=,其中)('0x F 表示),(y x F 对x 求导得到的函数在0x x =下的值,)('0y F 表示),(y x F 对y 求导得到的函数在0y y =下的值。

若平面曲线方程为)(x f y =,则该曲线在),(00y x 点的斜率为)('0x f k =,其中)('0x f 表示)(x f 对x 求导得到的函数在0x x =下的值。

若平面曲线的参数方程为)(),(t y y t x x ==,则该曲线在0t t =时的点的斜率为)(')('00t x t y k =,其中)('0t y 表示)(t y 对t 求导得到的函数在0t t =下的值,其中)('0t x 表示)(t x 对t 求导得到的函数在0t t =下的值。

3.定比分点公式:定比分点公式是解决共线三点A(x 1,y 1),B(x 2,y 2),P(x ,y )之间数量关系的一个公式,其中λ的值是起点到分点与分点到终点的有向线段的数量之比.这里起点、分点、终点的位置是可以任意选择的,一旦选定后λ的值也就随之确定了.若以A 为起点,B 为终点,P 为分点,则定比分点公式是⎪⎪⎩⎪⎪⎨⎧++=++=λλλλ112121y y y x x x .当P 点为AB 的中点时,λ=1,此时中点坐标公式是⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x.线性规划问题平面区域的非线性规划第二部分解析几何中的范围问题(研究性学习之二)在直线与圆锥曲线相交问题中,关于直线的斜率或纵截距的取值范围,关于圆锥曲线的离心率、长轴长(或实轴长)、短轴长(或虚轴长)等有关参量的取值范围,是解析几何高考命题以及备考复习的重点问题。

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结平面解析几何是高中数学的重要组成部分,它将代数与几何巧妙地结合在一起,通过建立坐标系,用代数方法研究几何图形的性质。

下面我们来详细总结一下这部分的重要知识点。

一、直线1、直线的倾斜角直线倾斜角的范围是0, π),倾斜角α的正切值叫做直线的斜率,记为 k =tanα。

当倾斜角为 90°时,直线的斜率不存在。

2、直线的方程(1)点斜式:y y₁= k(x x₁),其中(x₁, y₁)是直线上的一点,k 是直线的斜率。

(2)斜截式:y = kx + b,其中 k 是斜率,b 是直线在 y 轴上的截距。

(3)两点式:(y y₁)/(y₂ y₁) =(x x₁)/(x₂ x₁),其中(x₁, y₁),(x₂, y₂)是直线上的两点。

(4)截距式:x/a + y/b = 1,其中 a 是直线在 x 轴上的截距,b 是直线在 y 轴上的截距。

(5)一般式:Ax + By + C = 0(A、B 不同时为 0)3、两条直线的位置关系(1)平行:两条直线斜率相等且截距不相等,即 k₁= k₂且 b₁ ≠ b₂。

(2)垂直:两条直线斜率的乘积为-1,即 k₁k₂=-1(当一条直线斜率为 0,另一条直线斜率不存在时也垂直)。

4、点到直线的距离公式点 P(x₀, y₀)到直线 Ax + By + C = 0 的距离 d =|Ax₀+ By₀+ C| /√(A²+ B²)二、圆1、圆的方程(1)标准方程:(x a)²+(y b)²= r²,其中(a, b)是圆心坐标,r是半径。

(2)一般方程:x²+ y²+ Dx + Ey + F = 0(D²+ E² 4F > 0),圆心坐标为(D/2, E/2),半径 r =√(D²+ E² 4F) / 22、直线与圆的位置关系(1)相交:圆心到直线的距离小于半径,d < r。

平面解析几何知识点归纳

平面解析几何知识点归纳

平面解析几何知识点归纳◆知识点归纳 直线与方程 1.直线的倾斜角规定:当直线l 与x 轴平行或重合时,它的倾斜角为0 X 围:直线的倾斜角α的取值X 围为),0[π 2.斜率:)2(tan πα≠=a k ,R k ∈斜率公式:经过两点),(111y x P ,),(222y x P )(21x x ≠的直线的斜率公式为121221x x y y k P P --=3.直线方程的几种形式能力提升斜率应用例1.函数)1(log )(2+=x x f 且0>>>c b a ,那么cc f b b f a a f )(,)(,)(的大小关系例2.实数y x ,满足)11(222≤≤-+-=x x x y ,试求23++x y 的最大值和最小值两直线位置关系 两条直线的位置关系设两直线的方程分别为:222111:b x k y l +=或0:22221111=++C y B x A l ;当21k k ≠或1221B A B A ≠时它们相交,交点坐标为方程组⎩⎨⎧+=+=2211b x k y b x k y 或⎩⎨⎧=++=++0222111C y B x A C y B x A直线间的夹角:①假设θ为1l 到2l 的角,12121tan k k k k +-=θ或21211221tan B B A A B A B A +-=θ;②假设θ为1l 和2l 的夹角,那么12121tan k k k k +-=θ或21211221tan B B A A B A B A +-=θ;③当0121=+k k 或02121=+B B A A 时,o90=θ;直线1l 到2l 的角θ与1l 和2l 的夹角α:)2(πθθα≤=或)2(πθθπα>-=;距离问题1.平面上两点间的距离公式),(),,(222111y x P y x P 那么 )()(121221y y x x P P -+-=2.点到直线距离公式点),(00y x P 到直线0:=++C By Ax l 的距离为:2200BA CBy Ax d +++=3.两平行线间的距离公式两条平行线直线1l 和2l 的一般式方程为1l :01=++C By Ax ,2l :02=++C By Ax ,那么1l 与2l 的距离为2221BA C C d +-=4.直线系方程:假设两条直线1l :0111=++C y B x A ,2l :0222=++C y B x A 有交点,那么过1l 与2l 交点的直线系方程为)(111C y B x A +++0)(222=++C y B x A λ或)(222C y B x A +++0)(111=++C y B x A λ (λ为常数)对称问题1.中点坐标公式:点),(),,(2211y x B y x A ,那么B A ,中点),(y x H 的坐标公式为⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x点),(00y x P 关于),(b a A 的对称点为)2,2(00y b x a Q --,直线关于点对称问题可以化为点关于点对称问题。

高中平面解析几何知识点总结 (1)

高中平面解析几何知识点总结 (1)

高中平面解析几何知识点总结一.直线部分1.直线的倾斜角与斜率:(1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[︒∈α,︒=90α斜率不存在.(2)直线的斜率:αtan ),(211212=≠--=k x x x x y y k .两点坐标为111(,)P x y 、222(,)P x y .2.直线方程的五种形式:(1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ).注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =.(2)斜截式:b kx y += (b 为直线l 在y 轴上的截距).(3)两点式:121121x x x x y y y y --=-- (12y y ≠,12x x ≠).注:① 不能表示与x 轴和y 轴垂直的直线;② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线.(4)截距式:1=+b ya x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ).注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线.(5)一般式:0=++C By Ax (其中A 、B 不同时为0).一般式化为斜截式:B C x B A y --=,即,直线的斜率:B Ak -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =.已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或x x =.(2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合.3.直线在坐标轴上的截矩可正,可负,也可为0.(1)直线在两坐标轴上的截距相等⇔直线的斜率为1-或直线过原点. (2)直线两截距互为相反数⇔直线的斜率为1或直线过原点. (3)直线两截距绝对值相等⇔直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+,有① 212121,//b b k k l l ≠=⇔; ② 12121l l k k ⊥⇔=-.(2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有① 1221122121//C A C A B A B A l l ≠=⇔且; ② 0212121=+⇔⊥B B A A l l .5.平面两点距离公式: (1)已知两点坐标111(,)P x y 、222(,)P x y ,则两点间距离22122121)()(y y x x P P -+-=.(2)x 轴上两点间距离:AB x x AB -=.(3)线段21P P 的中点是),(00y x M ,则⎪⎪⎩⎪⎪⎨⎧+=+=22210210y y y x x x . 6.点到直线的距离公式:点),(00y x P 到直线0=++C By Ax l :的距离:2200B A CBy Ax d +++=.7.两平行直线间的距离公式:两条平行直线002211=++=++C By Ax l C By Ax l :,:的距离:2221B A C C d +-=.8.直线系方程: (1)平行直线系方程:① 直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程. ② 与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=.③ 过点00(,)P x y 与直线:0l Ax By C ++=平行的直线可表示为:00()()0A x xB y y -+-=.(2)垂直直线系方程:① 与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=.② 过点00(,)P x y 与直线:0l Ax By C ++=垂直的直线可表示为:00()()0B x x A y y ---=.(3)定点直线系方程:① 经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线x x =),其中k 是待定的系数.② 经过定点000(,)P x y 的直线系方程为00()()0A x xB y y -+-=,其中,A B 是待定的系数.(4)共点直线系方程:经过两直线0022221111=++=++C y B x A l C y B x A l :,:交点的直线系方程为0)(222111=+++++C y B x A C y B x A λ (除开2l),其中λ是待定的系数.9.两条曲线的交点坐标:曲线1:(,)0C f x y =与2:(,)0C g x y =的交点坐标⇔方程组{(,)0(,)0f x y g x y ==的解.10.平面和空间直线参数方程:① 平面直线方程以向量形式给出:nb y nax 21--=方向向量为()n n s 21,=→下面推导参数方程:② 空间直线方程也以向量形式给出: nb z nb y nax 321---==方向向量为()n n n s 321,,=→下面推导参数方程:注意:只有封闭曲线才会产生参数方程,对于无限曲线,例如二次函数一般不会有化为如上的参数方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中平面解析几何知识点总结一.直线部分1.直线的倾斜角与斜率:(1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[︒∈α,︒=90α斜率不存在.(2)直线的斜率:αtan ),(211212=≠--=k x x x x y y k .两点坐标为111(,)P x y 、222(,)P x y .2.直线方程的五种形式:(1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ).注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =.(2)斜截式:b kx y += (b 为直线l 在y 轴上的截距).(3)两点式:121121x x x x y y y y --=-- (12y y ≠,12x x ≠).注:① 不能表示与x 轴和y 轴垂直的直线;② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线.(4)截距式:1=+b ya x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ).注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线.(5)一般式:0=++C By Ax (其中A 、B 不同时为0).一般式化为斜截式:B C x B A y --=,即,直线的斜率:B Ak -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =.已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或x x =.(2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合.3.直线在坐标轴上的截矩可正,可负,也可为0.(1)直线在两坐标轴上的截距相等⇔直线的斜率为1-或直线过原点. (2)直线两截距互为相反数⇔直线的斜率为1或直线过原点. (3)直线两截距绝对值相等⇔直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+,有① 212121,//b b k k l l ≠=⇔; ② 12121l l k k ⊥⇔=-.(2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有① 1221122121//C A C A B A B A l l ≠=⇔且; ② 0212121=+⇔⊥B B A A l l .5.平面两点距离公式: (1)已知两点坐标111(,)P x y 、222(,)P x y ,则两点间距离22122121)()(y y x x P P -+-=.(2)x 轴上两点间距离:AB x x AB -=.(3)线段21P P 的中点是),(00y x M ,则⎪⎪⎩⎪⎪⎨⎧+=+=22210210y y y x x x . 6.点到直线的距离公式:点),(00y x P 到直线0=++C By Ax l :的距离:2200B A CBy Ax d +++=.7.两平行直线间的距离公式:两条平行直线002211=++=++C By Ax l C By Ax l :,:的距离:2221B A C C d +-=.8.直线系方程: (1)平行直线系方程:① 直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程. ② 与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=.③ 过点00(,)P x y 与直线:0l Ax By C ++=平行的直线可表示为:00()()0A x xB y y -+-=.(2)垂直直线系方程:① 与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=.② 过点00(,)P x y 与直线:0l Ax By C ++=垂直的直线可表示为:00()()0B x x A y y ---=.(3)定点直线系方程:① 经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线x x =),其中k 是待定的系数.② 经过定点000(,)P x y 的直线系方程为00()()0A x xB y y -+-=,其中,A B 是待定的系数.(4)共点直线系方程:经过两直线0022221111=++=++C y B x A l C y B x A l :,:交点的直线系方程为0)(222111=+++++C y B x A C y B x A λ (除开2l),其中λ是待定的系数.9.两条曲线的交点坐标:曲线1:(,)0C f x y =与2:(,)0C g x y =的交点坐标⇔方程组{(,)0(,)0f x y g x y ==的解.10.平面和空间直线参数方程:① 平面直线方程以向量形式给出:nb y nax 21--=方向向量为()n n s 21,=→下面推导参数方程:⎪⎩⎪⎨⎧+=+===--tn b y tn a x tn b y na x 2121则有令:② 空间直线方程也以向量形式给出: nb z nb y nax 321---==方向向量为()n n n s 321,,=→下面推导参数方程:⎪⎪⎩⎪⎪⎨⎧+=+=+====---t n c z t n b y t n a x t nc z nb y na x 321321则有令:注意:只有封闭曲线才会产生参数方程,对于无限曲线,例如二次函数一般不会有化为如上的参数方程。

二.圆部分1.圆的方程:(1)圆的标准方程:222)()(r b y a x =-+-(0>r ).(2)圆的一般方程:)04(02222>-+=++++F E D F Ey Dx y x . (3)圆的直径式方程:若),(),(2211y x B y x A ,,以线段AB 为直径的圆的方程是:0))(())((2121=--+--y y y y x x x x .注:(1)在圆的一般方程中,圆心坐标和半径分别是)2,2(E D --,F E D r 42122-+=.(2)一般方程的特点:① 2x 和2y 的系数相同且不为零;② 没有xy 项; ③ 0422>-+F E D (3)二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的等价条件是: ① 0≠=C A ; ② 0=B ; ③ 0422>-+AF E D .2.圆的弦长的求法:(1)几何法:当直线和圆相交时,设弦长为l ,弦心距为d ,半径为r ,则:“半弦长2+弦心距2=半径2”——222)2(r d l =+;(2)代数法:设l 的斜率为k ,l 与圆交点分别为),(),(2211y x B y x A ,,则||11||1||22B A B A y y k x x k AB -+=-+=(其中|||,|2121y y x x --的求法是将直线和圆的方程联立消去y 或x ,利用韦达定理求解) 3.点与圆的位置关系: 点),(00y x P 与圆222)()(r b y a x =-+-的位置关系有三种① P 在在圆外22020)()(r b y a x r d >-+-⇔>⇔.② P 在在圆内22020)()(r b y a x r d <-+-⇔<⇔.③ P 在在圆上22020)()(r b y a x r d =-+-⇔=⇔.【P 到圆心距离d =4.直线与圆的位置关系:直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:圆心到直线距离为d (22B A C Bb Aa d +++=),由直线和圆联立方程组消去x (或y )后,所得一元二次方程的判别式为∆.0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d .5.两圆位置关系:设两圆圆心分别为21,O O ,半径分别为21,r r ,dO O =21条公切线外离421⇔⇔+>r r d ;无公切线内含⇔⇔-<21r r d ;条公切线外切321⇔⇔+=r r d ;条公切线内切121⇔⇔-=r r d ; 条公切线相交22121⇔⇔+<<-r r d r r .6.圆系方程:)04(02222>-+=++++F E D F Ey Dx y x(1)过直线0=++C By Ax l :与圆C :022=++++F Ey Dx y x 的交点的圆系方程:0)(22=+++++++C By Ax F Ey Dx y x λ,λ是待定的系数.(2)过圆1C :011122=++++F y E x D y x 与圆2C :022222=++++F y E x D y x 的交点的圆系方程:0)(2222211122=+++++++++F y E x D y x F y E x D y x λ,λ是待定的系数. 特别地,当1λ=-时,2222111222()0x y D x E y F x y D x E y F λ+++++++++=就是121212()()()0D D xE E yF F -+-+-=表示两圆的公共弦所在的直线方程,即过两圆交点的直线.7.圆的切线方程:(1)过圆222r y x =+上的点),(00y x P 的切线方程为:200r y y x x =+.(2)过圆222)()(r b y a x =-+-上的点),(00y x P 的切线方程为:200))(())((r b y b y a x a x =--+-- .(3)当点),(00y x P 在圆外时,可设切方程为)(00x x k y y -=-,利用圆心到直线距离等于半径,即r d =,求出k ;或利用0=∆,求出k .若求得k 只有一值,则还有一条斜率不存在的直线x x =.8. 圆的参数方程:圆方程参数方程源于: 1cos sin 22=+θθ那么1)()2222=+--Rb y R a x (设:⎪⎪⎪⎩⎪⎪⎪⎨⎧==--θθcos )sin )Rb y R a x (( 得:⎪⎩⎪⎨⎧==++θθcos sin R b y R a x9.把两圆011122=++++F y E x D y x 与022222=++++F y E x D y x 方程相减 即得相交弦所在直线方程:0)()()(212121=-+-+-F F y E E x D D . 10.对称问题: (1)中心对称:① 点关于点对称:点),(11y x A 关于),(00y x M 的对称点)2,2(1010y y x x A --.② 直线关于点对称:法1:在直线上取两点,利用中点公式求出两点关于已知点对称的两点坐标,由两点式求直线方程.法2:求出一个对称点,在利用21//l l 由点斜式得出直线方程. (2)轴对称:① 点关于直线对称:点与对称点连线斜率是已知直线斜率的负倒数,点与对称点的中点在直线上.点 A A '、关于直线l 对称⎩⎨⎧''⇔上中点在⊥l A A l A A ⎩⎨⎧'-=⇔'方程中点坐标满足·l A A k k l A A 1. ② 直线关于直线对称:(设b a ,关于l 对称)法1:若b a ,相交,求出交点坐标,并在直线a 上任取一点,求该点关于直线l 的对称点. 若l a //,则l b //,且b a ,与l 的距离相等.法2:求出a 上两个点B A ,关于l 的对称点,在由两点式求出直线的方程. (3)其他对称:点(a,b)关于x 轴对称:(a,-b); 关于y 轴对称:(-a,b); 关于原点对称:(-a,-b);点(a,b)关于直线y=x 对称:(b,a); 关于y=-x 对称:(-b,-a); 关于y =x+m 对称:(b-m 、a+m); 关于y=-x+m 对称:(-b+m 、-a+m).11.若),(),(),(332211y x C y x B y x A ,,,则△ABC 的重心G 的坐标是⎪⎭⎫⎝⎛++++33321321y y y x x x ,. 12.各种角的范围:直线的倾斜角 ︒<≤︒1800α 两条相交直线的夹角 ︒≤<︒900α 两条异面线所成的角 ︒≤<︒900α三.椭圆部分1.椭圆定义:① 到两定点距离之和为一常数的平面几何曲线:即∣MO1∣+∣MO2∣=2a② 或定义:任意一条线段,在线段中任取两点(不包括两端点),将线段两端点置于这两点处,用一个钉子将线段绷直旋转一周得到的平面几何曲线即为椭圆。

相关文档
最新文档