固定化金属螯合亲和膜色谱柱制备及纯化铜锌超氧化物歧化酶的研究
铜锌超氧化物歧化酶

铜锌超氧化物歧化酶铜锌超氧化物歧化酶(copper-zinc superoxide dismutase,CuZnSOD)是一种重要的抗氧化酶,它在细胞内起着关键的保护作用。
本文将从多个方面详细介绍铜锌超氧化物歧化酶的结构、功能、调节机制以及其在疾病发展中的作用。
一、铜锌超氧化物歧化酶的结构铜锌超氧化物歧化酶是由两个亚单位组成,其中一个亚单位含有一个铜离子,另一个亚单位含有一个锌离子。
这两个金属离子在催化过程中起到了至关重要的作用。
该酶具有四级结构,包括原初结构、次级结构、三级结构和四级结构。
原初结构由两个亚基相互连接而成,形成二聚体。
次级结构则是由多个二聚体组合而成,形成高分子量复合物。
二、铜锌超氧化物歧化酶的功能1. 抗氧化作用:铜锌超氧化物歧化酶能够将细胞内产生的超氧阴离子(O2-)催化转化为较为稳定的氧分子(O2)和过氧化氢(H2O2)。
这一反应可以有效地清除细胞内的有害自由基,保护细胞免受氧化损伤。
2. 维持细胞内氧化还原平衡:铜锌超氧化物歧化酶与其他抗氧化酶如谷胱甘肽过氧化物酶(glutathione peroxidase)和谷胱甘肽还原酶(glutathione reductase)相互作用,共同维持细胞内的氧化还原平衡。
这对于维持正常的生理功能至关重要。
三、铜锌超氧化物歧化酶的调节机制1. 转录调控:铜锌超氧化物歧化酶基因的转录受多种信号通路的调节,包括NF-κB信号通路、Nrf2-ARE信号通路等。
这些信号通路可以通过激活或抑制转录因子的活性来调控该基因的表达水平。
2. 翻译后修饰:铜锌超氧化物歧化酶在翻译后可以经历多种修饰作用,如磷酸化、乙酰化等。
这些修饰作用可以影响该酶的稳定性、活性以及亚细胞定位。
四、铜锌超氧化物歧化酶在疾病中的作用1. 炎症相关疾病:铜锌超氧化物歧化酶参与调节炎症反应,其活性的改变可能与多种炎症相关疾病的发展和进展有关,如类风湿关节炎、肺部感染等。
2. 神经系统疾病:铜锌超氧化物歧化酶在神经系统中起到重要的保护作用,其缺陷或异常表达与多种神经退行性疾病如阿尔茨海默氏症、帕金森氏综合征等的发生和发展相关。
几种抗氧化酶的作用

一.超氧化物歧化酶(SOD):超氧化物歧化酶,是一种新型酶制剂,是生物体内重要的抗氧化酶,广泛分布于各种生物体内,如动物,植物,微生物等。
SOD具有特殊的生理活性,是生物体内清除自由基的首要物质。
SOD在生物体内的水平高低意味着衰老与死亡的直观指标;现已证实,由氧自由基引发的疾病多达60多种。
它可对抗与阻断因氧自由基对细胞造成的损害,并及时修复受损细胞。
由于现代生活压力,环境污染,各种辐射和超量运动都会造成氧自由基大量形成;因此,生物抗氧化机制中SOD的地位越来越重要!超氧化物歧化酶(SOD)按其所含金属辅基不同可分为三种,第一种是含铜(Cu)锌(Zn)金属辅基的称(Cu.Zn—SOD),最为常见的一种酶,呈绿色,主要存在于机体细胞浆中;第二种是含锰(Mn)金属辅基的称(Mn—SOD),呈紫色,存在于真核细胞的线粒体和原核细胞内;第三种是含铁(Fe)金属辅基的称(Fe—SOD),呈黄褐色,存在于原核细胞中。
SOD是一种含有金属元素的活性蛋白酶。
超氧化物岐化酶(SOD)能催化如下的反应:O2-+H+→H2O2+O2,O2-称为超氧阴离子自由基,是生物体多种生理反应中自然生成的中间产物。
它是活性氧的一种,具有极强的氧化能力,是生物氧毒害的重要因素之一。
SOD是机体内天然存在的超氧自由基清除因子,它通过上述反应可以把有害的超氧自由基转化为过氧化氢。
尽管过氧化氢仍是对机体有害的活性氧,但体内的过氧化氢酶(CAT)和过氧化物酶(POD)会立即将其分解为完全无害的水。
这样,三种酶便组成了一个完整的防氧化链条。
目前,人们认为自由基(也称游离基)与绝大部分疾病以及人体的衰老有关。
所谓的自由基就是当机体进行代谢时,能夺去氧的一个电子,这样这个氧原子就变成自由基。
自由基很不稳定,它要在身体组织细胞的分子中再夺取电子来使自己配对,当细胞分子推陈出新一个电子后,它也变成自由基,又要去抢夺细胞膜或细胞核分子中的电子,这样又称会产生新的自由基。
SOD提取纯化

动物血中超氧化物歧化酶的提取与纯化动物血中超氧化物歧化酶的提取[原理]l969年,McCord和Fridovich第一次从牛血中提纯到超氧化物岐化酶。
自然界中SOD分布极广,其含量随生物体的不同而不同,即使同一种生物的不同组织或同一组织的不同部位,其SOD的种类和含量也有很大差别。
迄今为止人们已从细菌,真菌、原生动物。
藻类、昆虫、鱼类、植物和动物等各种生物体内分离得到SOD。
为拓宽提取SOD的原料,筛选或基因过程开发产SOD量较高的菌株。
目前,研究开发最多的资源还是从动物血液、动物组织中制备提纯SOD。
从动物血液材料中制备Cu Zn-SOD纯化工艺分为三个主要步骤:(1)原材料的预处理;(2)粗酶液的制备;(3)离子交换柱层析精制。
国内多采用Mccord和Fridovich法,其主要工艺过程为:第一步,乙醇-氯仿除去血红蛋白;第二步,有机溶剂和硫酸铵分级沉淀;第三步,离子交换柱层析精制。
[试剂和器材]1、试剂(1)3.8%(质量分数)柠檬酸三钠(2)0.9%(质量分数)氯化钠(3)95%(体积分数)乙醇(4)氯仿(5)丙酮(6)pH7.6、2.5mmol/L K2HPO4-KH2PO4缓冲液(7)DEAE-Sephadex A-502、器材(1)猪血(2)恒温水浴(3)离心机(4)布氏漏斗、抽滤瓶(5)烧杯、量筒、搅棒(6)透析袋[方法和步骤]1、从猪血中提取SOD(1)分离血球取新鲜猪血,加入到3.8%柠檬酸三钠抗凝液中,新鲜猪血与抗凝液的比例为3:1,轻轻搅拌均匀,4 000r/min离心20min,收集红血球。
(2)除血红蛋白红血球用3倍体积生理盐水洗涤,4000r/min离心20min,重复三次,然后向洗净的红血球加入1~1.1倍体积去离子水,搅拌溶血30min,再向溶血液中分别缓慢加入0.25倍体积的预冷95%乙醇和0.15倍体积的预冷氯仿,剧烈搅拌15min左右,静置1h,然后4000r/min离心20min除去变性血红蛋白沉淀,取清液,过滤,收集滤液(记录体积,测酶活性和蛋白浓度)。
凝胶色谱、亲和色谱研究进展及案例

1924 年,俄罗斯学者 Engelhardt提出了“固定化配体原理”,作为分离生物活性物质 的方法,为亲和色谱分离方法的根本。
1970 年,Cuatrecases 提出了“空间间隔臂”概念和方法,成功解决了配位体的立体 可接受性问题。
金属有机骨架化合物(MOFs)因具有比表面积大、结构多样性、孔道尺寸可调、骨架 可修饰、热稳定性和化学稳定性良好等优点而广泛应用于分离分析等领域。西班牙 Balearic Islands大学的 Palomino课题组利用注射器设计了一种针管式自动磁性 (MOFs )分散固相微萃取装置。
固定相
多孔整体材料作为一种新型分离介质,由于其具有制备简便、通透性好、性能稳定和 易于修饰等特点而被誉为第四代色谱分离介质。邹汉法课题组发展了一种基于光引发 巯基-丙烯酸酯点击聚合反应的新方法,并成功制备了具有高分离性能的有机-硅胶 杂化整体柱。与巯基-烯和巯基-甲基丙烯酸酯点击聚合反应相似,光引发的巯基- 丙烯酸酯点击聚合反应不仅反应效率较高,速度快,而且反应条件非常温和。
分子印迹技术是采用人工合成方法制备对目标分子有特异性识别材料的技术。由于蛋 白质体积大、结构复杂、易于变性,完整蛋白质模板分子难以获得且价格昂贵,因此 限制了蛋白质分子印迹材料的发展。中国科学院大连化学物理研究所张丽华研究员课 题组提出了一种蛋白质抗原决定基分子印迹磁性纳米材料的制备新方法。抗原决定基 印迹是以目标蛋白质上一段特异性多肽为模板分子进行印迹。由于模板肽段与目标蛋 白质间存在极强的特异性,形成的印迹位点对模板肽段及目标蛋白质均具有特异性识 别能力。
1、中国色谱发展概况
槲皮素-金属络合物的抗氧化研究进展

槲皮素-金属络合物的抗氧化研究进展摘要:槲皮素是一种黄酮醇类化合物,槲皮素同时具有很多的的生物及药理活性。
由于槲皮素结构中的共轭结构,它可以与很多常见金属离子螯合成稳定的多环状配合物,并且表现出比槲皮素本身更高的抗氧化活性。
本文通过对近年来国内外关于槲皮素的常见金属络合物(-Ca,-Cu,-Zn,-Cr,-Mg等)的制备、抗氧化/清除自由基活性的研究进行综述,并对槲皮素-金属配合物的研究现状进行分析总结,有望对该领域的深入理解以及抗氧化机理的探索研究奠定理论基础。
关键词:槲皮素-金属络合物;抗氧化;研究进展Abstract:Quercetin is a kind of flavonoids with multifarious biological and pharmacological activities. Because of the conjugated structure of quercetin, it can chelate with many common metal ions to synthesize stable polycyclic complexes. Furthermore, it’s found that the antioxidant activities of quercetin-metal complexes are significantly higher than quercetin. In this study, the preparation and the antioxidant activities (i.e. free radical scavenging capacities) of different quercetin-metal complexes (-Ca, -Cu, -Zn, -Cr, -Mg, etc.) were reviewed. On this basis, the research progress of quercetin-metal complexes was summarized, and the future development trend of this area was also analyzed. We hope the present review could benefit the deep understanding of the antioxidant activities of quercetin-metal complexes..Key words:Quercetin-metal complex; antioxidant activity; research progress.目录1 槲皮素及其金属络合物 (2)2 槲皮素金属络合物的抗氧化研究进展 (2)2.1 槲皮素-金属络合的抗氧化机制 (2)2.2 槲皮素-Zn(Ⅱ)络合物的抗氧化研究进展 (3)2.3 槲皮素-Cu络合物的抗氧化研究进展 (7)2.4 槲皮素-铬(Ⅱ)络合物的抗氧化研究进展 (7)2.5 槲皮素-镁络合物的抗氧化研究进展 (9)2.6 槲皮素-钙络合物的抗氧化研究进展 (10)3 槲皮素-金属络合物抗氧化性的对比研究 (11)3.1 不同槲皮素金属络合物的对羟基自由基(.OH)的清除率测定 (11)3.2 不同槲皮素金属络合物对超氧阴离子(O2-)自由基清除率的测定 (11)3.3 HPLC法测定不同槲皮素金属络合物对DPPH.自由基的清除率 (12)4 总结 (12)4.1 槲皮素-金属络合物抗氧化作用机制猜测 (13)4.2 槲皮素-金属络合物的抗氧化机制研究可行性策略 (13)参考文献 (14)致谢 (16)1 槲皮素及其金属络合物槲皮素(Quercetin,3,5,7,3’,4’-五羟基黄酮),有多方面的生物学活性及很高的药用价值,是一种在蔬菜水果中大量存在的生物类黄酮,常通过酸水解得到。
铜伴侣蛋白CCS介导铜锌-超氧化物歧化酶激活的过程

铜伴侣蛋白CCS介导铜锌-超氧化物歧化酶激活的过程唐玲;冯琳;刘扬;胡凯;周小秋【摘要】CCS是细胞质中铜锌-超氧化物歧化酶(SODl)的铜伴侣蛋白.本文综述了CCS介导SOD1激活的过程.CCS与SOD1通过蛋白-蛋白相互作用的方式将铜离子插入到不含铜离子的SODl( apoSOD1)中,并促进二硫键的形成而激活SOD1.影响CCS活性的因素包括:X连锁的细胞凋亡抑制蛋白(XIAP)、神经接头蛋白X11α和铜代谢中含结构域Murrl蛋白( COMMD1).%CCS is the copper chaperone for copper/zinc-superoxide dismutase 1 (SODl) in cytoplasm. This review described the activation process of cytosolic SOD1 mediated by CCS. With the protein-protein interaction of CCS and SODl, CCS can directly insert the copper ion into apoSODl and promote the formation of intramolecular disulfide bond in SODl, then finish the activation of SODl. The activity of CCS can be affected by X-linked inhibitor of apoptosis protein (XIAP), neuronal adaptor protein Xlla and copper metabolism (Murrl) domain containing 1 (C0MMDl). [ Chinese Journal of Animal Nutrition, 2011, 23 (8): 1259-1263]【期刊名称】《动物营养学报》【年(卷),期】2011(023)008【总页数】5页(P1259-1263)【关键词】CCS;铜;SOD1【作者】唐玲;冯琳;刘扬;胡凯;周小秋【作者单位】四川农业大学动物营养研究所,雅安625014;鱼类营养与安全生产四川省高校重点实验室,雅安625014;四川农业大学动物营养研究所,雅安625014;鱼类营养与安全生产四川省高校重点实验室,雅安625014;四川农业大学动物营养研究所,雅安625014;鱼类营养与安全生产四川省高校重点实验室,雅安625014;四川农业大学动物营养研究所,雅安625014;鱼类营养与安全生产四川省高校重点实验室,雅安625014;四川农业大学动物营养研究所,雅安625014;鱼类营养与安全生产四川省高校重点实验室,雅安625014;动物抗病营养教育部重点实验室,雅安625014【正文语种】中文【中图分类】S852.2铜是具有氧化还原活性的动物必需的微量元素,它以酶的催化基团或结构辅因子的形式参与多种功能活动,如电子传递、氧合与催化等[1]。
酶固定化技术的最新研究进展
西安工程大学学报J o u r n a l o f X i a n P o l y t e c h n i c U n i v e r s i t y第38卷第1期(总185期)2024年2月V o l .38,N o .1(S u m.N o .185)引文格式:潘虹,陆天炆,王晓军,等.酶固定化技术的最新研究进展[J ].西安工程大学学报,2024,38(1):83-91.P A N H o n g ,L U T i a n w e n ,WA N G X i a o j u n ,e t a l .R e c e n t a d v a n c e s i n e n z y m e i mm o b i l i z a t i o n t e c h n o l o g y [J ].J o u r n a l o f X i a n P o l y t e c h n i c U n i v e r s i t y,2024,38(1):83-91. 收稿日期:2023-08-06 修回日期:2023-10-21基金项目:陕西省自然科学基础研究计划项目(2021J Q -672㊁2022J Q -117);陕西省教育厅专项科研计划项目(22J K 0399) 通信作者:潘虹(1988 ),女,讲师,博士,研究方向为固定化酶和多孔水凝胶㊂E -m a i l :441595837@q q.c o m 酶固定化技术的最新研究进展潘 虹,陆天炆,王晓军,洪一楠(西安工程大学环境与化学工程学院,陕西西安710048)摘要 酶作为一种催化性能好且安全可靠的生物催化剂,在食品㊁医药及环境治理等诸多领域得到了广泛应用,但因受限于游离酶较差的环境稳定性而难以实现进一步的工业化应用㊂酶固定化技术有助于提高游离酶对敏感环境的耐受性和操作过程中的稳定性,大大缩减了应用成本㊂回顾了近五年内固定化技术的发展及现状,总结了吸附法㊁结合法等传统固定化方法,共固定化酶法等新型固定化方法,以及天然材料载体㊁复合材料载体和纳米载体等不同固定化载体在各个领域的研究进展㊂相比于游离酶,固定化酶体系在稳定性和重复使用性等方面得到了显著提升,但同时也存在一些不足,如固定后的活性回收率降低㊁载体合成途径繁琐且成本较高以及固定化酶作用机理尚不完善等㊂结合这些不足之处提出了酶固定化技术在未来的发展方向㊂关键词 酶固定化;固定化载体;固定化方法;纳米载体;共固定开放科学(资源服务)标识码(O S I D )中图分类号:Q 814.2 文献标志码:AD O I :10.13338/j .i s s n .1674-649x .2024.01.011R e c e n t a d v a n c e s i n e n z y m e i m m o b i l i z a t i o n t e c h n o l o g yP A N H o n g ,L U T i a n w e n ,WA N G X i a o ju n ,H O N G Y i n a n (S c h o o l o f E n v i r o n m e n t a l a n d C h e m i c a l E n g i n e e r i n g ,X i a n P o l y t e c h n i c U n i v e r s i t y,X i a n 710048,C h i n a )A b s t r a c t A s a n e f f i c i e n t a n d s a f e b i o c a t a l y s t ,e n z y m e s h a v e b e e n w i d e l y u s e d i n m a n yf i e l d s s u c h a s f o o d ,m e d i c i n e a n d e n v i r o n m e n t a lg o v e r n a n c e ,b u t i t i s d i f f i c u l t t o r e a l i z e f u r th e ri n d u s t r i a l a p-p l i c a t i o n d u e t o t h e p o o r e n v i r o n m e n t a l s t a b i l i t y o f f r e e e n z y m e s .E n z y m e i mm o b i l i z a t i o n t e c h -n o l o g y h e l p s t o i m p r o v e t h e t o l e r a n c e o f f r e e e n z y m e s t o s e n s i t i v e e n v i r o n m e n t s a n d t h e s t a b i l i t yd u r i n g o pe r a t i o n ,a n d g r e a t l y r e d u c e s t h e a p p l i c a t i o n c o s t .T h i s p a p e r r e v i e w s t h e d e v e l o pm e n t a n d c u r r e n t s i t u a t i o n o f i mm o b i l i z a t i o n t e c h n o l o g yi n t h e p a s t f i v e y e a r s ,a n d s u mm a r i z e s t h e r e -s e a r c h p r o g r e s s o f d i f f e r e n t i mm o b i l i z a t i o n m e t h o d s(i n c l u d i n g t r a d i t i o n a l i mm o b i l i z a t i o n m e t h-o d s s u c h a s a d s o r p t i o n m e t h o d a n d b i n d i n g m e t h o d a n d n e w i mm o b i l i z a t i o n m e t h o d s s u c h a s c o-i mm o b i l i z a t i o n e n z y m e m e t h o d)a n d i mm o b i l i z a t i o n c a r r i e r s(i n c l u d i n g n a t u r a l m a t e r i a l c a r r i e r s, c o m p o s i t e c a r r i e r s a n d n a n o c a r r i e r s)i n v a r i o u s f i e l d s.I n g e n e r a l,c o m p a r e d w i t h f r e e e n z y m e s, t h e i mm o b i l i z e d e n z y m e s y s t e m h a s b e e n s i g n i f i c a n t l y i m p r o v e d i n t e r m s o f s t a b i l i t y a n d r e u s-a b i l i t y.H o w e v e r,t h e r e a r e s o m e s h o r t c o m i n g s,s u c h a s l o w e r r e c o v e r y r a t e a f t e r i mm o b i l i z a-t i o n,c u m b e r s o m e a n d c o s t l y c a r r i e r s y n t h e s i s p a t h w a y,a n d i m p e r f e c t m e c h a n i s m o f i mm o b i l i z a-t i o n e n z y m e.F i n a l l y,t h e d e v e l o p m e n t d i r e c t i o n o f t h e t e c h n o l o g y i n t h e f u t u r e w a s p u t f o r w a r d b a s e d o n t h e s e s h o r t c o m i n g s.K e y w o r d s e n z y m e i mm o b i l i z a t i o n;i mm o b i l i z a t i o n c a r r i e r s;i mm o b i l i z a t i o n m e t h o d;n a n o c a r r i-e r s;c o-i mm o b i l i z a t i o n0引言生物酶是一类具有催化效率高㊁专一性强的生物催化剂[1],其本质是一种蛋白质㊂因此,生物酶通常需在常温常压等温和条件下才能表现出其高催化性能,当离开特定环境就会出现酶活性和稳定性迅速降低的缺点[2]㊂活性炭可以吸附蔗糖酶进行蔗糖水解,且保持了蔗糖酶较好的催化活性[3]㊂由此,固定化酶的思想被首次提出㊂随后,研究人员开始通过一系列酶固定化技术来改善游离酶存在的缺点㊂酶固定化技术就是指将游离酶通过一定的技术手段固定在某些不溶性载体上,进而使其在敏感环境下仍然表现出较高的稳定性和酶活性[4]㊂经固定化后的酶,可以借助载体的保护作用或者与载体之间相互作用,保护了酶蛋白的空间构象[5],进而提高了对p H㊁温度㊁重金属离子等影响因素的耐受性㊂同时,固定化酶可以通过简单的离心过滤等手段从反应体系中分离出来,促进漆酶的回收和重复使用[6]㊂目前,固定化酶技术已经在食品加工[7]㊁生物传感器[8]㊁纺织印染废水处理[9-10]㊁生物漂白[11]等诸多领域得到广泛的应用,其固定化技术也表现出愈发成熟的发展㊂本文综述了近五年酶固定化技术的发展,重点表现在固定化方法和固定化载体上,以及酶固定化技术在多个领域的应用㊂1酶固定化方法酶固定化方法可分为传统固定化方法和新型固定化方法㊂表1列出来近五年的一些酶固定化技术所用的方法㊂表1固定化酶所用固定化方法T a b.1I mm o b i l i z a t i o n m e t h o d s u s e d i n d i f f e r e n t i mm o b i l i z a t i o n t e c h n i q u e s固定化方法固定化对象载体材料参考文献传统固定化方法吸附法漆酶/α-淀粉酶生物炭/复合晶凝胶[12-13]共价结合法脂肪酶M I L-53(F e)/球形S i O2[14-15]化学交联法漆酶/葡萄糖淀粉酶磁性纳米粒/纳米S i O2[16-19]包埋法漆酶海藻酸铜微球[20]新型固定化方法吸附-交联法脂肪酶/β-葡糖糖苷酶大孔树脂/纳米S i O2[21-22]吸附-包埋法多种酶/纤维素酶多孔淀粉-阿拉伯胶微囊体/仿生S i O2[23-24]交联-包埋法漆酶聚集体介孔S i O2[25]脂肪酶/磷脂酶聚乙烯亚胺[26]共固定法葡萄糖淀粉酶/葡萄糖氧化酶S i O2[27]葡萄糖氧化酶/辣根过氧化物酶磁性聚乙二醇微凝胶颗粒[28]1.1传统固定化方法1.1.1吸附法吸附法即物理吸附,物理吸附是一种简单易行的方法,通过氢键㊁疏水作用和范德华力等相互作用48西安工程大学学报第38卷使酶吸附到不溶于水的载体表面,该方法操作步骤简洁且不需要额外添加化学试剂,但其固定效果较差且容易受外界条件影响[29]㊂WA N G等采用吸附法将漆酶固定在碱改性生物炭(A-M B)上实现对孔雀石绿(MG)的吸附降解,结果表明,A-M B对MG 表现出最大吸附量757.58m g/g,固定化漆酶A/l a c @A-M B对MG的去除率可达97.70%,10次循环后仍然表现出超过75%的去除率[12]㊂A C E T等以沸石颗粒(P P A)为原料,通过简单方法制备了C u2+-A P P a C包埋型复合晶凝胶(C u2+-A P P a C)用于α-淀粉酶吸附固定,结果表明,α-淀粉酶最大吸附量可达858.7m g/g,同时相较于游离酶,其操作稳定性和存储稳定性也表现出明显的优势[13]㊂1.1.2结合法结合法是利用酶的侧链基团与载体表面的基团发生反应形成共价键,利用共价键将酶固定在载体上[30]㊂G H A S E M I等将M I L-53(F e)通过表面官能化对2种脂肪酶进行共价固定,结果显示脂肪酶固定化体系虽然没有实现对酶的高负载,但仍然表现出更广泛的温度和p H值稳定性,同时实现了酶的可重复使用能力和稳定性的显著改善[14]㊂此外,共价结合法由于化学键的形成,容易使酶的蛋白质构象发生改变,从而降低酶活性[31]㊂F A N等采用戊二醛多点共价结合法和吸附-交联法,以球形二氧化硅为载体,固定化皱纹假丝酵母脂肪酶(C R L),结果表明,多点共价处理后脂肪酶二级结构发生变化,使酶的残余活力下降[15]㊂但相比之下,共价结合法制备的酶体系具有更好的重复使用性和稳定性,使其在酸化油脂催化水解中更有潜力㊂1.1.3化学交联法交联法是通过一些双功能试剂将酶和载体进行连接[31],主要用到的交联剂有戊二醛㊁1-(3-二甲氨基丙基)-3-乙基碳二亚胺(E D C)㊁二醛淀粉和二醛纤维素[30,32-33]等㊂C H E N等以戊二醛作为交联剂制备了一种具有超顺磁性的固定化漆酶F e3O4@S i O2-N H2-L a c,该固定化体系表现出了良好的稳定性,对有机溶剂㊁金属离子有显著的耐受性和良好的循环使用性,同时在对酚类化合物的去除降解方面也表现出巨大的潜力[16]㊂Q I U等以二醛淀粉为交联剂,采用共价固定法将漆酶在离子液体改性的磁性纳米载体上进行固定,较于其他固定化漆酶,在处理含酚废水中表现出更大优势[17]㊂然而常见的交联剂在固定化过程往往会表现出一定的负面影响[34],为此研究人员着手发掘绿色安全的新型交联剂来避免这种负面影响㊂例如,O U Y A N G等提出了一种新的绿色高效固定化酶的方法 京尼平苷酶解物作为交联剂固定化漆酶[18]㊂与直接使用京尼平或戊二醛作为交联剂,该方法绿色㊁安全,可应用于需要严格控制毒性的食品和医药行业㊂D A N I E L L I等研究了一种双功能交联剂2,5-二甲酰基呋喃(D F F)将葡糖淀粉酶固定在氨基官能化甲基丙烯酸树脂上[19]㊂使用海洋细菌费氏弧菌进行了生态毒性测定,相比于戊二醛,D F F表现出更低的生物毒性㊂1.1.4包埋法包埋法是将酶固定在聚合物材料的网格结构或微囊结构等多空隙载体中[35]㊂这种方法可以提供更好的保护和稳定性,限制了酶的扩散㊂但同时也存在孔隙的扩散阻碍,使得该方法的循环使用效率下降㊂例如,L A T I F等采用包埋法将漆酶固定化在海藻酸铜微球上进行双酚A的降解[20]㊂相比于游离酶,固定化漆酶表现出更高的p H㊁温度稳定性及储存稳定性,但在循环使用5次后剩余酶活降到了21.5%㊂1.2新型固定化方法1.2.1传统固定化方法的改进传统的单一固定化方法进行酶固定往往存在各自的缺点,因此出现了将单一方法进行两两结合来固定化酶的改进方法㊂常见的包括吸附-交联法[21-22]㊁吸附-包埋法[23-24]㊁交联-包埋法[25]等㊂例如,F A T H A L I等以介孔二氧化硅为载体,采用交联-包埋相结合的固定化方法制备了包埋交联漆酶聚集体(E-C L E A)[25]㊂相对于游离漆酶,条件优化后的固定化漆酶显示出较好的热稳定性和p H稳定性㊂此外E-C L E A存储21d仍然具有较高的相对活性,在重复使用20次后,其活性保持率可达初始活性的79%㊂对污染废水中苯酚的去除率可达73%[25]㊂1.2.2共固定化酶法共固定化酶是指将多种酶同时固定化在同一载体上的一种方法㊂A R A N A-P EÑA等实现了将5种酶进行逐层固定化的策略,使得整个固定化酶体系的活性明显增强[26]㊂与单一酶的固定化相比,共固定化酶法通常具有更大的优势㊂在保证了固定化后酶稳定性提高的同时,不同酶在共固定后,由于处于58第1期潘虹,等:酶固定化技术的最新研究进展同一载体上,酶之间可以发挥协同作用,且反应底物可以连续在酶之间传递,从而简化了反应步骤㊂G A O等制备了一种化学酶级联反应体系(G A&G O x@A u-S i O2),实现葡萄糖淀粉酶(G A)和葡萄糖氧化酶(G O x)共固定化[27]㊂借助于双酶和载体之间的级联效应,实现了从可溶性淀粉中高效提取葡萄糖酸㊂在保证了固定化双酶稳定性的同时,A u的加入可以使中间产物H2O2快速脱除,显著提高固定化体系的重复利用率㊂类似地,L I U等制备了一种具有可逆热响应释放的双酶固定化体系共固定G O x和辣根过氧化物酶(H R P),在葡萄糖浓度检测过程中表现出优于单酶检测试剂盒的良好性能[28]㊂此外,有学者研究发现,对于如漆酶这种绿色催化剂,较低的氧化还原电位大大限制了其在各个领域中的应用㊂但发现在固定化体系中引入具有高氧化还原电位的介体可以弥补漆酶的这一不足[36]㊂L O U等基于MO F s膜实现了漆酶和介体A B T S的共固定化,结果显示,固定化漆酶的底物亲和力要高于游离漆酶[37]㊂2酶固定化载体用于酶固定化的载体主要包括天然载体㊁人工合成载体和纳米载体,见表2㊂在选择固定化载体时要充分考虑具体的应用领域和需求等㊂表2固定化酶所用载体材料T a b.2 C a r r i e r s f o r i mm o b i l i z e d e n z y m e材料类别载体材料固定化对象固定化方法参考文献天然材料羧甲基纤维素漆酶包埋法[38]琼脂糖脂肪酶吸附法[39]磁性壳聚糖葡萄糖氧化酶共价结合法[40]藻酸盐脱氢酶/蛋白酶吸附法/包埋法[41-42]壳聚糖-黏土复合微球漆酶+介体包埋法[43]海藻酸钠-壳聚糖中性蛋白酶包埋法[44]人工合成材料改性二氧化硅乳酸脱氢酶/碳酸酐酶/甲酸脱氢酶化学交联法/共价结合法[45-47]二氧化钛漆酶吸附法[48]硅酸盐漆酶/葡萄糖氧化酶吸附-共价结合法/吸附法[49-50]氧化铝漆酶共价结合法[51]聚酰胺-胺树枝状大分子脂肪酶化学交联法[52]聚乙烯醇水凝胶-硅胶烯还原酶包埋法[53]二氧化硅-壳聚糖漆酶共价结合法[54]纳米材料磁性纳米粒子漆酶共价结合法[55]金属有机框架MO F s漆酶化学交联法[56]介孔Z I F-8过氧化物酶化学交联法[57]中空微球漆酶吸附法[58]共价有机框架C O F葡萄糖氧化酶+F e3O4吸附法[59]金属酚醛网络M P N酒精脱氢酶吸附法[60]磁性纳米颗粒漆酶+介体A B T S吸附法[61]2.1天然载体材料天然载体最大的优点就是来源广泛㊁低成本和低生物毒性㊂常用的天然载体有纤维素[38]㊁琼脂糖[39]㊁壳聚糖[40]和藻酸盐[41-42]等㊂同时,将天然载体杂化后用于酶固定化可以表现出更优良的固定化能力㊂M E H A N D I A[43]等利用天然载体制备了壳聚糖-黏土复合微球(C C B-L),采用包埋法对漆酶和介体进行共固定㊂微球在洗涤和储存期间均未观察到酶泄漏㊂同时固定化漆酶-介体体系通过填充床反应器系统(P B R S),对纺织废水的脱色率可达78%,C O D㊁B O D以及毒性水平均下降㊂类似地, B A I等将海藻酸钠和壳聚糖交联形成复合凝胶球,采用包埋法固定中性蛋白酶[44]㊂固定化酶在较宽的p H(5~8)和温度(30~80ħ)范围表现出高于游离酶的相对活性,循环使用性和存储稳定性也保持在良好水平㊂68西安工程大学学报第38卷2.2人工合成载体材料2.2.1无机材料无机材料来源广泛㊁合成简单㊁机械强度高,可以直接用于酶的固定㊂常见的无机材料有二氧化硅[45]㊁二氧化钛[48]㊁硅酸盐[49-50]和氧化铝[51]等㊂为了提高固定化效率,常常会先对无机材料进行表面改性再用于固定化㊂Z H A I等使用聚乙烯亚胺(P E I)和多巴胺的共沉积对二氧化硅微球进行改性,用于C O2酶促转化甲酸盐㊂优化后P D A/P E I-S i O2载体使得甲酸盐合成的初始反应速率从13.4倍增加至27.2倍㊂再通过固定化碳酸酐酶(C A)后,甲酸盐的合成速率增加到48.6倍[46]㊂随后,L I U等同样对S i O2微球进行P E I的表面改性后用来固定化甲酸脱氢酶,同样实现了C O2酶促转化甲酸盐的高效合成[47]㊂2.2.2高分子材料人工合成的高分子材料具有良好的结构刚性和其他优良的力学性能㊂如聚酰胺㊁聚乙烯醇等具有良好的固定化能力㊂Z H A O等采用3种胺类试剂将聚酰胺-胺树枝状大分子(P AMAM)接枝到F e3O4纳米粒子上,利用戊二醛作为交联剂得到了不同代数的F e3O4@S i O2/P AMAM磁性纳米载体[52]㊂固定化酶表现出相对游离酶更高的活性,而且改善了其在更宽的p H和温度范围内的耐受性㊂A L A GÖZ等先用聚乙烯醇水凝胶包裹烯还原酶(E R),再固定到氨基官能化的硅胶上㊂包埋后的E R比游离E R的热稳定性高34.4倍㊂在重复使用10次后,固定后的E R仍保持其初始活性的85%[53]㊂2.2.3复合材料针对有机㊁无机材料在实际应用中存在的不足,不少文献报道了将2类材料通过物理或化学手段进行复合得到新型复合材料,可以得到性能更优的固定化载体㊂例如,G I R E L L I等将二氧化硅和壳聚糖杂化得到复合材料,相比单材料拥有更好的机械强度㊁热稳定性及生物相容性㊂存储30d后仍具有大于70%的相对活性㊂对漆酶进行固定化后,固定化率达到92%,在较宽的温度和p H范围内固定化后漆酶表现出的稳定性也要高于游离漆酶,重复循环利用15次剩余活性仍在61%以上[54]㊂2.3纳米材料载体纳米材料凭借其小尺寸㊁高表面积和易改性等特点,成为了酶固定化载体研究的焦点㊂各种改性后的纳米材料也在酶固定化领域得到蓬勃发展㊂2.3.1磁性纳米载体磁性纳米载体是一种可以通过外部磁场实现固定化酶快速分离的良好材料㊂凭借这种磁学性质和低生物毒性[16],其在固定化载体的选择上表现突出㊂F e3O4是被广泛使用的一种磁性材料㊂但由于纯F e3O4自身的表面惰性和高团聚,往往需要对其进行表面改性后再应用于固定化㊂R A N等制备了一种壳核结构的磁性纳米载体F e3O4@M o S2@P E I 用于漆酶固定㊂在二硫化钼(M o S2)和聚乙烯亚胺(P E I)的修饰下,磁性载体拥有较大的比表面积并减弱了自身团聚效应,对漆酶的负载量可达120m g/g,酶活回收率可达90%,同时对于水中持久性致癌有机污染物也表现出了良好的降解效率[55]㊂2.3.2介孔纳米载体介孔材料作为一种多孔材料,凭借多孔结构和大的比表面积,也是酶固定化的理想载体㊂金属有机框架(MO F s)[56]凭借着可调控的孔径和较大的比表面积在酶固定化方面得到广泛应用㊂L I等采用水热法合成氨基官能化的MO F材料制备固定化漆酶,在最优条件下实现了95%的刚果红去除率,6次循环后降解率仍达到84.63%[56]㊂L U等以酵母为生物模板,将Z I F-8自组装到酵母上得到杂合Y@ Z I F-8,再用交联剂固定过氧化物酶得到Y@Z I F-8 @t-C A T㊂固定化酶的温度㊁p H耐受性得到提高,更值得一提的是固定化酶在存储45d后活性仍保持在99%以上[57]㊂除此以外,T A N G等还制备了具有中空结构的共价有机骨架微球(H-C O F-OM e)[58]㊂这种孔缺陷的中空结构有助于加快反应物的扩散,从而改善催化反应过程,对四环素具有优秀的降解效果㊂2.3.3金属纳米载体金属纳米材料由于引入了金属离子,可以提高载体的理化性质,在酶固定化过程中表现出重要作用㊂F U等将F e3+/F e2+固定到纳米花形的共价有机框架(C O F)中实现了固定化酶的磁分离[59]㊂L I 等研究了以磁性F e3O4为核,将单宁酸(T A)与不同类型金属离子(C u㊁F e㊁Z n㊁M n㊁A u)配位获得了用于固定化的金属酚醛网络(M P N)涂层[60]㊂不同金属离子的不同极化能力对M P N涂层的亲水性和疏水性造成影响,从而给酶的固定化效率㊁催化活性78第1期潘虹,等:酶固定化技术的最新研究进展和稳定性带来影响㊂对于漆酶而言,引入C u2+对漆酶的活性中心具有正向的促进作用,可以大大提高固定化漆酶的催化活性和底物亲和力[61]㊂3结论与展望生物酶作为一种极具潜力的生物催化剂,通过固定化技术使其在污染物的降解㊁食品加工㊁生物传感器等诸多领域得到了广泛应用㊂酶固定化技术促使酶在较宽的p H值和温度范围下表现出更优良的催化活性,大大提高了生物酶在敏感环境下的稳定性,实现了生物酶的可分离性及循环使用性㊂但目前看来,酶固定化技术依然存在一些不足㊂1)酶在固定化后,由于载体的存在使得底物扩散受阻,无法与酶充分接触,导致酶活性降低㊂可以通过基因工程技术从酶本身出发,利用定点突变或基因重组改变酶结构来提高酶活㊂同时,通过掺杂合适的单一过渡金属离子或多金属离子协同作用激发酶活也值得深入研究㊂2)目前固定化酶技术在污染物降解等领域的实际应用已经颇为成熟,但对于更深层次的作用机制还停留在较为浅薄的层面㊂在未来,随着生物信息技术的不断发展,将固定化酶技术与计算机模拟技术交叉,利用计算机软件模拟分析更深层次的机制原理,可以更好地掌握酶固定化技术㊂3)酶固定化技术仍处在实验室研究阶段,在实现更大规模的工业化应用仍然存在较大的挑战㊂同时,考虑到有些固定化载体制备的时间成本和资金成本,载体若仅用于一次固定化后就无法回收再利用就会造成过度浪费㊂如何实现固定化酶失活后固定化载体与酶的高效分离,从而实现载体的循环使用是一个新的挑战㊂因此,酶固定化技术仍然处在不断发展进步的阶段,需要更多的科研者来完善研究㊂参考文献(R e f e r e n c e s)[1]刘茹,焦成瑾,杨玲娟,等.酶固定化研究进展[J].食品安全质量检测学报,2021,12(5):1861-1869.L I U R,J I A O C J,Y A N G L J,e t a l.A d v a n c e s o f e n-z y m e i mm o b i l i z a t i o n[J].J o u r n a l o f F o o d S a f e t y&Q u a l i t y,2021,12(5):1861-1869.(i n C h i n e s e)[2] L I U D M,D O N G C.R e c e n t a d v a n c e s i n n a n o-c a r r i e ri mm o b i l i z e d e n z y m e s a n d t h e i r a p p l i c a t i o n s[J].P r o c e s sB i o c h e m i s t r y,2020,92:464-475.[3] MA G H R A B Y Y R,E L-S HA B A S Y R M,I B R A H I M AH,e t a l.E n z y m e i mm o b i l i z a t i o n t e c h n o l o g i e s a n d i n-d u s t r i a l a p p l i c a t i o n s[J].A C S O me g a,2023,8(6):5184-5196.[4]贾峰,郑连炳,王志强.生物酶固定化技术研究现状[J].资源节约与环保,2020(4):116.J I A F,Z H E N G L B,WA N G Z Q.R e s e a r c h s t a t u s o fb i o l o g ic a l e n z y m e i mm o b i l i z a t i o n t e c h n o l o g y[J].R e-s o u r c e s E c o n o m i z a t i o n&E n v i r o n m e n t a l P r o t e c t i o n, 2020(4):116.(i n C h i n e s e)[5] L U J W,N I E M F,L I Y R,e t a l.D e s i g n o f c o m p o s i t en a n o s u p p o r t s a n d a p p l i c a t i o n s t h e r e o f i n e n z y m e i m-m o b i l i z a t i o n:A r e v i e w[J].C o l l o i d s a n d S u r f a c e s B:B i o i n t e r f a c e s,2022,217:112602.[6] Z HA N G W,Z HA N G Z,J I L R,e t a l.L a c c a s e i mm o b i-l i z e d o n n a n o c o m p o s i t e s f o r w a s t e w a t e r p o l l u t a n t s d e g-r a d a t i o n:C u r r e n t s t a t u s a n d f u t u r e p r o s p e c t s[J].B i o-p r o c e s s a n d B i o s y s t e m s E n g i n e e r i n g,2023,46(11): 1513-1531.[7] B A C K E S E,K A T O C G,C O R RÊA R C G,e t a l.L a c-c a s e s i n f o od p r o ce s s i n g:C u r r e n t s t a t u s,b o t t l e n e c k sa n d p e r s p e c t i v e s[J].T r e n d s i n F o o d S c i e n c e&T e c h-n o l o g y,2021,115:445-460.[8] K A D A M A A,S A R A T A L E G D,G H O D A K E G S,e t a l.R e c e n t a d v a n c e s i n t h e d e v e l o p m e n t o f l a c c a s e-b a s e d b i o-s e n s o r s v i a n a n o-i m m o b i l i z a t i o n t e c h n i q u e s[J].C h e m o s e n-s o r s,2022,10(2):58.[9] Y A V A S E R R,K A R A GÖZ L E R A A.L a c c a s e i mm o b i-l i z e d p o l y a c r y l a m i d e-a l g i n a t e c r y o g e l:A c a n d i d a t e f o r t r e a t m e n t o f e f f l u e n t s[J].P r o c e s s B i o c h e m i s t r y,2021, 101:137-146.[10]MA O G T,WA N G K,WA N G F Y,e t a l.A n e n g i-n e e r e d t h e r m o s t a b l e l a c c a s e w i t h g r e a t a b i l i t y t o d e-c o l o r i z e a nd de t o x if y m a l a c h i t eg r e e n[J].I n t e r n a t i o n-a l J o u r n a l o f M o l e c u l a r S c i e n c e s,2021,22(21):11755.[11] S HA R MA A,J A I N K K,S R I V A S T A V A A,e t a l.P o t e n t i a l o f i n s i t u S S F l a c c a s e p r o d u c e d f r o m G a n o-d e r m a l u c i d u m R C K2011i n b i o b l e a c h i n g o f p a p e rp u l p[J].B i o p r o c e s s a n d B i o s y s t e m s E n g i n e e r i n g,2019,42(3):367-377.[12]WA N G Z B,R E N D J,Z HA N G X Q,e t a l.A d s o r p-t i o n-d e g r a d a t i o n o f m a l a c h i t e g r e e n u s i n g a l k a l i-m o d-i f i e d b i o c h a r i mm o b i l i z e d l a c c a s e u n d e r m u l t i-m e t h-o d s[J].A d v a n c e d P o w d e r T e c h n o l o g y,2022,33(11):103821.88西安工程大学学报第38卷[13] A C E TÖ,I N A N A N T,A C E T BÖ,e t a l.α-a m y l a s ei mm o b i l i z e d c o m p o s i t e c r y o g e l s:S o m e s t u d i e s o n k i-n e t i c a n d a d s o r p t i o n f a c t o r s[J].A p p l i e d B i o c h e m i s t r ya n d B i o t e c h n o l o g y,2021,193(8):2483-2496.[14] G HA S E M I S,Y O U S E F I M,N I K S E R E S H T A,e t a l.C o v a l e n t b i n d i n g a n d i n s i t u i mm o b i l i z a t i o n o f l i p a s e so n a f l e x i b l e n a n o p o r o u s m a t e r i a l[J].P r o c e s s B i o-c h e m i s t r y,2021,102:92-101.[15] F A N X L,Z HA N G P B,F A N M M,e t a l.E f f e c t o fg l u t a r a l d e h y d e m u l t i p o i n t c o v a l e n t t r e a t m e n t s o n i m-m o b i l i z e d l i p a s e f o r h y d r o l y s i s o f a c i d i f i e d o i l[J].A p-p l i e d B i o c h e m i s t r y a n d B i o t e c h n o l o g y,2023,195(11):6942-6958.[16] C H E N Z H,Y A O J,M A B,e t a l.A r o b u s t b i o c a t a l y s tb a s e d o n l ac c a s e i m m o b i l i z ed s u pe r p a r a m a g n e t i c F e3O4@S i O2-N H2n a n o p a r t i c l e s a n d i t s a p p l i c a t i o n f o r d e g r a-d a t i o n o f c h l o r o p he n o l s[J].C h e m o s p h e r e,2022,291:132727.[17] Q I U X,WA N G Y,X U E Y,e t a l.L a c c a s e i mm o b i l i z e do n m a g n e t i c n a n o p a r t i c l e s m o d i f i e d b y a m i n o-f u n c-t i o n a l i z e d i o n i c l i q u i d v i a d i a l d e h y d e s t a r c h f o r p h e-n o l i c c o m p o u n d s b i o d e g r a d a t i o n[J].C h e m i c a l E n g i-n e e r i n g J o u r n a l,2020,391:123564.[18] O U Y A N G J,P U S J,WA N G J Z,e t a l.E n z y m a t i c h y-d r o l y s a te ofg e n i p o s i d e d i r e c t l y a c t s a s c r o s s-l i n k i n ga g e n t f o r e n z y m e i mm ob i l i z a t i o n[J].P r oc e s s B i o-c h e m i s t r y,2020,99:187-195.[19] D A N I E L L I C,V A N L A N G E N L,B O E S D,e t a l.2,5-F u r a n d i c a r b o x a l d e h y d e a s a b i o-b a s e d c r o s s l i n k i n g a-g e n t r e p l a c i n g g l u t a r a l d e h y d e f o r c o v a l e n t e n z y m ei mm o b i l i z a t i o n[J].R S C A d v a n c e s,2022,12(55):35676-35684.[20] L A T I F A,MA Q B O O L A,S U N K,e t a l.I mm o b i l i z a-t i o n o f t r a m e t e s v e r s i c o l o r l a c c a s e o n C u-a l g i n a t eb e a d s f o r b i oc a t a l y t i cde g r a d a t i o n of b i s p h e n o l A i nw a t e r:O p t i m i z e d i mm o b i l i z a t i o n,d e g r a d a t i o n a n dt o x i c i t y a s s e s s m e n t[J].J o u r n a l o f E n v i r o n m e n t a lC h e m i c a l E n g i n e e r i n g,2022,10(1):107089.[21] N U R A L I Y A H A,P E R D A N I M S,P U T R I D N,e t a l.E f f e c t o f a d d i t i o n a l a m i n o g r o u p t o i m p r o v e t h e p e r f o r m-a n c e o f i m m ob i l i z e d l i p a s e f r o m a s p e r g i l l u s N i g e r b y a d-s o r p t i o n-c r o s s l i n k i n g m e t h o d[J].F r o n t i e r s i n E n e r g yR e s e a r c h,2021,9:616945.[22] N A S E E R S,O U Y A N G J,C H E N X,e t a l.I mm o b i-l i z a t i o n o fβ-g l u c o s i d a s e b y s e l f-c a t a l y s i s a n d c o m-p a r e d t o c r o s s l i n k i n g w i t h g l u t a r a l d e h y d e[J].I n t e r-n a t i o n a l J o u r n a l o f B i o l o g i c a l M a c r o m o l e c u l e s,2020,154:1490-1495.[23] Z HA N G Z W,Z HA O F,M E N G Y L,e t a l.M i c r o e n-c a p s u l a t i o n o f t h e e n z y m e b r e a k e r b yd o u b l e-l a ye re m b e d d i n g m e t h o d[J].S P E J o u r n a l,2023,28(2):908-916.[24] L OM B A R D I V,T R A N D E M,B A C K M,e t a l.F a c i l ec e l l u l a s e i mm o b i l i s a t i o n o n b i o i n s p i r ed s i l i c a[J].N a n o m a t e r i a l s,2022,12(4):626.[25] F A T H A L I Z,R E Z A E I S,A L I F A R A M A R Z I M,e t a l.C a t a l y t i c p h e n o l r e m o v a l u s i n g e n t r a p p e d c r o s s-l i n k e dl a c c a s e a g g r e g a t e s[J].I n t e r n a t i o n a l J o u r n a l o f B i o l o g i c a lM a c r o m o l e c u l e s,2019,122:359-366.[26] A R A N A-P E N A S,R I O S N S,M E N D E Z-S A N C H E ZC,e t a l.C o i mm o b i l i z a t i o n o f d i f f e r e n t l i p a s e s:S i m p l el a y e r b y l a y e r e n z y m e s p a t i a l o r d e r i n g[J].I n t e r n a-t i o n a l J o u r n a l o f B i o l o g i c a l M a c r o m o l e c u l e s,2020,145:856-864.[27] G A O J,WA N G Z F,G U O R R,e t a l.E f f i c i e n t c a s-c ade c o n v e r s i o n of s t a r c h t og l u c o n i c a c i d b y a ch e-m o e n z y m a t i c s y s t e m w i t h c o-i mm o b i l i z e d A u n a n o p-a r t i c l e s a n d e n z y m e s[J].C a t a l y s i s S c i e n c e&T e c h-n o l o g y,2023,13(4):991-999.[28] L I U Z Y,Z HA N G Z,HU A N G C Q,e t a l.I R780-d o pe d c o b a l tf e r r i t e n a n o p a r t i c l e s@p o l y(e t h y l e n eg l y c o l)m i c r o g e l s a s d u a l-e n z y m e i mm o b i l i z e d m i c r o-s y s t e m s:P r e p a r a t i o n s,p h o t o t h e r m a l-r e s p o n s i v e d u a l-e n z y m e r e l e a s e,a n d h i g h l y ef f i c i e n t r e c y c l i n g[J].J o u r n a l o f C o l l o i d a n d I n t e r f a c e S c i e n c e,2023,644:81-94.[29] L I A N G S,WU X L,X I O N G J,e t a l.M e t a l-o r g a n i cf r a m e w o r k s a s n o v e l m a t r i c e s f o r e f f i c i e n t e n z y m ei mm o b i l i z a t i o n:A n u p d a t e r e v i e w[J].C o o r d i n a t i o nC h e m i s t r y R e v i e w s,2020,406:213149.[30]杨月珠,李章良,吕源财,等.漆酶的固定化技术及固定化漆酶载体材料研究进展[J].净水技术,2022,41(9):8-17.Y A N G Y Z,L I Z L,LÜY C,e t a l.R e s e a r c h p r o g r e s s o f l a c c a s e i mm o b i l i z a t i o n t e c h n o l o g y a n d i mm o b i l i z e dl a c c a s e c a r r i e r m a t e r i a l s[J].W a t e r P u r i f i c a t i o n T e c h-n o l o g y,2022,41(9):8-17.(i n C h i n e s e) [31]张璟譞,高兵兵,何冰芳.生物催化中的酶固定化研究进展[J].生物加工过程,2022,20(1):9-19.Z HA N G J X,G A O B B,H E B F.R e s e a r c h p r o g r e s s o f e n z y m e i mm o b i l i z e d i n b i o c a t a l y s i s[J].C h i n e s eJ o u r n a l o f B i o p r o c e s s E n g i n e e r i n g,2022,20(1):9-19.98第1期潘虹,等:酶固定化技术的最新研究进展(i n C h i n e s e)[32] Q I A O W C,Z HA N G Z Y,Q I A N Y,e t a l.B a c t e r i a ll a c c a s e i mm o b i l i z e d o n a m a g n e t i c d i a l d e h y d e c e l l u-l o s e w i t h o u t c r o s s-l i n k i n g a g e n t s f o r d e c o l o r i z a t i o n[J].C o l l o i d s a n d S u r f a c e s A:P h y s i c o c h e m i c a l a n dE n g i n e e r i n g A s p e c t s,2022,632:127818.[33] Y A N G X Y,C H E N Y F,Y A O S,e t a l.P r e p a r a t i o n o fi mm o b i l i z e d l i p a s e o n m a g n e t i c n a n o p a r t i c l e s d i a l d e-h y d e s t a r c h[J].C a r b o h y d r a t e P o l y m e r s,2019,218:324-332.[34] MO S T A R A D D I S,P A Z HA N G M,E B A D I-N A HA R IM,e t a l.T h e r e l a t i o n s h i p b e t w e e n t h e c r o s s-l i n k e r o nc h i t o s a n-c o a t ed m a g ne t i c n a n o p a r t i c l e s a n d t h e p r o p-e r t i e s of i mm o b i l i z e d p a p a i n[J].M o l e c u l a r B i o t e c h-n o l o g y,2023,65(11):1809-1823.[35]冉帆凡,李露.S B A-15固定化酶的研究进展[J].食品研究与开发,2022,43(20):206-212.R A N F F,L I L.I mm o b i l i z e d e n z y m e o n S B A-15[J].F o o d R e s e a r c h a n d D e v e l o p m e n t,2022,43(20):206-212.(i n C h i n e s e)[36] L I U R T,WA N G S L,HA N M Y,e t a l.C o-i mm o b i-l i z a t i o n o f e l e c t r o n m e d i a t o r a n d l a c c a s e o n t o d i a l d e-h y d e s t a r c h c r o s s-l i n k e d m a g n e t i c c h i t o s a n n a n o m a-t e r i a l s f o r o r g a n i c p o l l u t a n t s'r e m o v a l[J].B i o p r o c e s sa n d B i o s y s t e m s E n g i n e e r i n g,2022,45(12):1955-1966.[37] L O U X X,Z H I F K,S U N X Y,e t a l.C o n s t r u c t i o n o fc o-i mm o b i l i z ed l a c c a se a n d m e d i a t o r b a s e d o n MO F sm e m b r a n e f o r e n h a n c i n g o r g a n i c p o l l u t a n t s r e m o v a l[J].C h e m i c a l E n g i n e e r i n g J o u r n a l,2023,451:138080.[38] Z HA O Z,R E N D J,Z HU A N G M J,e t a l.D e g r a d a t i o no f2,4-D C P b y t h e i mm o b i l i z e d l a c c a s e o n t h e c a r r i e ro f s o d i u m a l g i n a t e-s o d i u m c a r b o x y m e t h y l c e l l u l o s e[J].B i o p r o c e s s a n d B i o s y s t e m s E n g i n e e r i n g,2022,45(10):1739-1751.[39] S IÓD M I A K T,D U L E B A J,H A R A L D S S O N G G,e t a l.T h e s t u d i e s o f s e p h a r o s e-i m m o b i l i z e d l i p a s e s:C o m b i n i n gt e c h n i q u e s f o r t h e e n h a n c e m e n t o f a c t i v i t y a n d t h e r m a ls t a b i l i t y[J].C a t a l y s t s,2023,13(5):887. [40]Y E O N K M,Y O U J,A D H I K A R I M D,e t a l.E n-z y m e-i mm o b i l i z e d c h i t o s a n n a n o p a r t i c l e s a s e n v i r o n-m e n t a l l y f r i e n d l y a n d h i g h l y e f f e c t i v e a n t i m i c r o b i a l a-g e n t s[J].B i o m a c r o m o l e c u l e s,2019,20(7):2477-2485.[41] K U R A Y A M A F,M O H A MM E D B A H A D U R N,F U-R U S A W A T,e t a l.F a c i l e p r e p a r a t i o n o f a m i n o s i l a n e-a l-g i n a t e h y b r i d b e a d s f o r e n z y m e i m m o b i l i z a t i o n:K i n e t i c sa n d e q u i l ib r i u m s t u d i e s[J].I n t e r n a t i o n a l J o u r n a l o f B i o-l o g i c a l M a c r o m o l e c u l e s,2020,150:1203-1212. [42] N I N A V A N E S S A W D,L A U R E T T E B L A N D I N E MK,J O N G N E.I n c l u s i o n o f p a r t l y p u r i f i e d p r o t e a s ef r o m A b r u s p r e c a t o r i u s L i n n i n C a-a lg i n a t e g e l b e a d s[J].H e l i y o n,2022,8(11):e11791.[43]M E HA N D I A S,A HMA D S,S HA R MA S C,e t a l.D e c o l o r i z a t i o n a n d d e t o x i f i c a t i o n o f t e x t i l e e f f l u e n t b yi mm o b i l i z e d l a c c a s e-A C S i n t o c h i t o s a n-c l a y c o m p o s-i t e b e a d s u s i n g a p a c k e d b e d r e a c t o r s y s t e m:A n e c o-f r i e n d l y a p p r o a c h[J].J o u r n a l o f W a t e r P r o c e s s E ng i-n e e r i n g,2022,47:102662.[44] B A I Y,WU W.T h e n e u t r a l p r o t e a s e i mm o b i l i z a t i o n:P h y s i c a l c h a r a c t e r i z a t i o n o f s o d i u m a l g i n a t e-c h i t o s a ng e l b e a d s[J].A p p l i e d B i o c h e m i s t r y a n d B i o t e c h n o l o-g y,2022,194(5):2269-2283.[45] A L A GÖZ D,T O P R A K A,V A R A N N E,e t a l.E f f e c-t i v e i mm o b i l i z a t i o n o f l a c t a t e d e h y d r o g e n a s e o n t om e s o p o r o u s s i l i c a[J].B i o t e c h n o l o g y a n d A p p l i e d B i o-c h e m i s t r y,2022,69(6):2550-2560.[46] Z HA I T T,WA N G C H,G U F J,e t a l.D o p a m i n e/p o l y e t h y l e n i m i n e-m o d i f i e d s i l i c a f o r e n z y m e i mm o b i-l i z a t i o n a n d s t r e n g t h e n i n g o f e n z y m a t i cC O2c o n v e r s i o n[J].A C S S u s t a i n a b l e C h e m i s t r y&E n g i n e e r i n g,2020,8(40):15250-15257.[47] L I U G H,C H E N H X,Z HA O H,e t a l.A c c e l e r a t i n ge l e c t r o e n z y m a t i c C O2r e d u c t i o n b y i mm o b i l i z i n gf o r-m a t e d e h y d r o g e n a s e o n p o l y e t h y l e n i m i n e-m o d i f i e dm e s o p o r o u s s i l i c a[J].A C S S u s t a i n a b l e C h e m i s t r y&E n g i n e e r i n g,2022,10(1):633-644.[48] I S A N A P O N G J,L OHAW E T K,K UMN O R K A E WP.O p t i m i z a t i o n a n d c h a r a c t e r i z a t i o n o f i mm o b i l i z e dl a c c a s e o n t i t a n i u m d i o x i d e n a n o s t r u c t u r e a n d i t s a p-p l i c a t i o n i n r e m o v a l o f R e m a z o l B r i l l i a n t B l u e R[J].B i o c a t a l y s i s a n d A g r i c u l t u r a l B i o t e c h n o l o g y,2021,37:102186.[49] WA N G Z B,R E N D J,C H E N G Y H,e t a l.I mm o b i-l i z a t i o n o f l a c c a s e o n c h i t o s a n f u n c t i o n a l i z e d h a l l o y s-i t e n a n o t u b e s f o r d e g r a d a t i o n o f B i s p h e n o l A i n a q u e-o u s s o l u t i o n:D e g r a d a t i o n m e c h a n i s m a n d m i n e r a l i z a-t i o n p a t h w a y[J].H e l i y o n,2022,8(7):e09919.[50]Y A O H Q,X I A O R Q,T I A N Y,e t a l.S w i t c h a b l eb i o e l ec t r o c a t a l y s i s o f g l u c o s e o x id a se i mm o b i l i z e d i n-t o m u l t i l a y e r s w i t h l a m e l l a r n a n o p a r t i c l e s o f a m i n o-09西安工程大学学报第38卷。
土壤中铜污染及其超富集植物的修复作用【内容丰富】
气候温和的欧洲、美国、新西兰及澳大利亚的污染地区发现的。有的超积累
植物可同时积累多种重金属,如在37种铜的超积累植物和种30钴的超积累植
物中,有12种对铜和钴都有超积累能力,但目前还没发现哪一种植物具有广谱
的重金属超积累特性。
参考内容
27
4.4 几种铜超富集植物
目前对于植物富集铜有过不少报道,并已发现绝大多数的铜积累和超富
总体来看,南部地区的 铜含量高于北部,西部高 于东部。
15
2.6 土壤重金属污染的特性
1 隐蔽性
土壤重金属污染具有很强的隐蔽性,人们很难直观的发现,
只有对土壤样品进行化学分析和对农作物残留物进行检测,才
能了解土壤的污染情况。
2 不可逆性
由于重金属在土壤中积累到一定程度时,便引起土壤结构和 功能的变化,且由于重金属很难降解。 因此,一旦污染很难恢 复原状。
进化、或通过遗传/基因工程培育诱导而成的,地上部能比普通植物富 集某种重金属1000倍以上的植物。
特点:
①植物体内重金属浓度超 过临界值
②植物吸收的重金属大多 数分布在地上部分,即较 高转运系数(TF) ③在重金属污染土壤上生 长良好一般不发生毒害现 象
植物地上部分的铜累积量达到1000mg·kg-1才能称之为铜超富集植物
化学改良剂法、化学淋 洗法、化学栅法
生物修复技术
参考内容
植物修复法、动物修复 法、微生物修复法
18
3.2 各种修复方法的比较
优点是处理效率高、工艺简单、效果显著;
物理修复技术: 缺点是人力物力耗费较高、不能从根本上解
决污染问题。
优点是处理周期较短、效率高、效果明显;
化学修复技术: 缺点是可能对植物生长和土壤肥力造成不良
溶菌酶结构特点及分离纯化的研究
溶菌酶结构特点及分离纯化的研究摘要:本文对溶菌酶的结构特点和作用机制做了简单介绍,并对近年来溶菌酶分离纯化的方法,如结晶法、离子交换法、亲和层析法、膜处理技术、反胶团萃取法等进行了综述。
关键词:溶菌酶、结构特点、作用机制、分离纯化1 前言溶菌酶(1ysozyme;EC3.2.1.17)是一种专门作用于微生物细胞壁的水解酶,溶菌酶(lysozyme)又称胞壁质酶(muramidase)或N-乙酰胞壁质聚糖水解酶(N-acetylmuramideglycanohydrlase),是一种能水解致病菌中黏多糖的碱性酶。
人们对溶菌酶的研究始于本世纪初,英国细菌学家弗莱明(Flem ing)在发现青霉素的前6年(1922年)发现人的唾液、眼泪中存在有溶解细菌细胞壁的酶,因其具有溶菌作用,故命名为溶菌酶。
在自然界中,溶菌酶广泛存在于人体多种组织中,鸟类和家禽的蛋清、哺乳动物的泪、唾液、血浆、尿、乳汁体液、木瓜、大麦、无花果和卷心菜等植物中以及微生物中也含此酶[1],其中以蛋清含量最为丰富,约0.3%[2]。
2 溶菌酶的结构特点和作用机制2.1 溶菌酶的类型溶菌酶按其所作用的微生物不同分为两大类,即细菌细胞壁溶菌酶和真菌细胞壁溶菌酶。
细菌细胞壁溶菌酶有两种,一种是作用于β-1.4糖苷键的细胞壁溶解酶,另一种是作用于肽“尾”和酰胺部分的细胞壁溶解酶。
真菌细胞壁溶菌酶包括酵母菌细胞壁溶解酶和霉菌细胞壁溶解酶[3]。
2.2 溶菌酶的结构鸡蛋清溶菌酶是研究最清楚的一种溶菌酶,它由18种129个氨基酸残基组成的单肽链蛋白质,在分子中的4对含硫氨基酸Cys间形成4个S-S键。
Phillips 等人1956年用X射线晶体结构分析法阐明了溶菌酶的三维结构,溶菌酶分子近椭圆形,大小为4.5nm×3.0nm×3.0nm,其构象复杂,α螺旋仅占25%,在分子的一些区域有伸展着的β片层结构,研究表明溶菌酶的内部几乎都为非极性的,疏水的相互作用在溶菌酶的折叠构象中起到重要作用,其分子表面有一个容纳多糖底物6个单糖的裂隙,这是溶菌酶的活性部位。
超氧化物歧化酶的分离、纯化和活性测定
综合实验超氧化物歧化酶的分离、纯化实验背景超氧化物岐化酶(Superoxide dismutase,简称SOD) 广泛存在于生物体内的含Cu、Zn、Mn、Fe的金属类酶,生物体内重要的自由基清除剂,防御生物体氧化损伤。
按金属辅基成分的不同可分成3种类型:铜锌金属辅基(CuZn-SOD) ,蓝绿色,存在于真核细胞的细胞质中,在高等植物的叶绿体基质、类囊体内以及线粒体膜间隙;锰离子(Mn-SOD),粉红色,存在于真核细胞的线粒体和原核细胞中,以及植物的叶绿体基质和类囊体膜上;Fe-S0D,黄色或黄褐色,存在于原核细胞中,近来发现有一些真核藻类甚至某些高等植物中也有存在。
实验一超氧化物歧化酶的活性测定一、实验原理SOD的活力测定方法:化学法:黄嘌呤氧化酶法,邻苯三酚法,化学发光法,肾上腺素法,N BT-还原法,光化学扩增法,Cyte还原法等;免疫法;等电点聚焦法;本实验采用邻苯三酚自氧化法邻苯三酚自氧化法:邻苯三酚在碱性条件下,能迅速自氧化,释放出O2-,生成带色的中间产物,反应开始后反应液先变成黄棕色,几分钟后转绿,几小时后又转变成黄色,这是因为生成的中间物不断氧化的结果。
这里测定的是邻苯三酚自氧化过程中的初始阶段,中间物的积累在滞留30~45s后,与时间成线性关系,一般线性时间维持在4min的范围内,中间物在420nm波长出有强烈光吸收。
当有SOD存在时,由于它能催化O2-与H+结合生成O2和H2O2,从而阻止了中间产物的积累,因此,通过计算即可求出SOD的酶活性。
酶活力单位定义:在25℃恒温条件下,每毫升反应液中,每分钟抑制邻苯酚自氧化率达50%的酶量定义为1个酶活力单位。
二、试剂和器材1、试剂(1)pH8.2、50mmol/L Tris-HCl称取Tris 0.61g,EDTA-2Na 0.037g,用双蒸水溶解至80mL左右,用HCl调节pH =8.20(用pH计校正),最后定容至100mL。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
收稿日期:1999-07-21;修回日期:1999-11-18基金项目:国家自然科学基金资助项目(29606004)作者简介:魏 琪(1973-),男,硕士,电话:(020)87113842,E -mail:huangbao@ 。
固定化金属螯合亲和膜色谱柱制备及纯化铜锌超氧化物歧化酶的研究魏 琪1, 姚汝华1, 鲍时翔2(1.华南理工大学生物工程系,广东广州510641; 2.中国热带农科院生物技术国家重点实验室,海南海口571101)摘要:以大孔纤维素滤纸为基质,通过碱处理、环氧活化、偶联亚氨基二乙酸二钠、固定化Cu 2+,装柱后制得固定化金属螯合亲和膜色谱柱。
对Cu/Zn -SOD 粗品进行了纯化研究,将其比活从645U /mL 提高到6882U /mL,纯化倍数为10 7,蛋白回收率为92 3%,活性回收率达985%。
设计了一种解决金属离子泄露问题的方案,将Cu 2+泄露量降至86 g/L 。
关键词:亲和色谱;亲和膜;固定化金属螯合亲和色谱;超氧化物歧化酶中图分类号:O657.7;Q55 文献标识码:A 文章编号:1000-8713(2000)04-0361-031 前言固定化金属螯合亲和色谱是一种有效的蛋白质分离纯化方法,其原理是通过Cu 2+,Co 2+,Zn 2+,Ni 2+等过渡金属离子与蛋白质表面的组氨酸、色氨酸或半胱氨酸配位结合,利用蛋白质表面这些氨基酸的种类、数量、位置和空间构象的不同所导致的与金属螯合物的亲和力大小的不同,选择性地对蛋白质加以分离纯化[1,2]。
固定化金属螯合亲和色谱常以凝胶为载体,由于凝胶颗粒极易压缩,蛋白质在凝胶颗粒内扩散传质慢,所以分离操作只能在低流速下进行[3]。
近年来,人们结合亲和色谱特异性高和膜分离速度快、处理量大的优点,提出以膜作为亲和配基载体制备亲和膜用于蛋白质分离纯化[4]。
K rause 等人[5]对染料亲和膜分离苹果酸脱氢酶进行了研究;鲍时翔等人[6]采用Protein A 中空纤维膜成功地从人血清中分离出 -免疫球蛋白。
超氧化物歧化酶(superox ide dismutase,SO D)广泛存在于生物界,是生物体防御氧化损伤的一种十分重要的酶,其中Cu/Zn -SO D 已广泛应用于医药、食品和化妆品等领域[7,8]。
国内外已有采用固定化金属螯合亲和色谱柱纯化SO D 的报道[9]。
本文以纤维素滤纸为材料,对固定化金属螯合亲和膜的制备及在Cu/Zn -SOD 分离纯化上的应用进行了研究。
2 实验部分2 1 仪器与试剂BioCA D 色谱工作站购自美国PE 公司,膜色谱柱由中科院大连化物所惠赠,纤维素分析滤纸购自杭州新华造纸厂,超氧化物歧化酶购自鞍山康美生物制品厂,其它试剂均为国产分析纯化学试剂。
2 2 实验方法2 2 1 亲和膜色谱柱的制备 固定化金属螯合亲和膜的制备方法参见文献[10]。
将30张纤维素分析滤纸放入5mol/L 氢氧化钠溶液中,经碱处理30min 后,再加入90mL 5mol/L 氢氧化钠-二甲亚砜-环氧氯丙烷的混合液(体积比为2 4 5),于60 下活化4h;放入100mL 1 5mol/L 碳酸钠和1g 亚氨基二乙酸二钠,在60 下偶联反应12h,然后浸入50mmol/L 硫酸铜溶液1h,即制得固定化金属螯合亲和膜,所得亲和膜厚0 3mm 。
将其剪成直径为47mm 的圆片并装入相同内径的柱管即制得膜色谱柱。
膜柱结构参看文献[11,12]。
环氧基密度测定用硫代硫酸钠法,配基密度测定用凯氏定氮法,Cu 2+-EDTA 浓度测定用可见光吸收法(检测波长为800nm),蛋白质浓度测定用紫外光吸收法(检测波长为280nm)。
2 2 2 SO D 纯化 分别将1张,5张,30张亲和膜装柱,连入Bio CAD 色谱工作站。
先用pH 7 7的0 025mol/L 磷酸盐缓冲液洗柱,再用pH 4 0的0 20mol/L 柠檬酸盐缓冲液-1mol/L 氯化钠彻底洗去未结合的Cu 2+,最后用pH 7 7的0 025mol/L 磷酸盐缓冲液平衡膜柱。
亲和膜纯化SOD 的操作过程按平衡、上样、淋洗、洗脱和再生5个步骤进行。
上样溶液采用pH 7 7的0 025mol/L 磷酸盐缓冲液配制。
平衡、淋洗、再生液为pH 7 7的0 025第18卷第4期2000年7月色谱CHIN ESE JOU RN AL OF CHRO MA T OGRAPHYVo l.18N o.4July 2000mol/L磷酸盐缓冲液;洗脱液为pH5 0的0 20 mol/L柠檬酸盐缓冲液-1mol/L氯化钠。
实验均在室温下进行,流速为1mL/min。
3 结果与讨论3 1 亲和膜色谱柱的制备碱处理可除去滤纸中的杂质,释放并激活纤维素中的羟基;环氧氯丙烷活化纤维素介质,引入三碳链间隔臂及活性环氧基,同时在糖链间产生化学交联,大大强化了其松散的网状结构。
按上述方法制备的亲和膜表面环氧基密度可达8 33 mol/cm2。
3 2 SOD纯化分别用1张,5张,30张的亲和膜柱纯化Cu/ Zn-SO D,对应上样量分别为1mL,5mL和30mL。
上样溶液中SO D质量浓度为10g/L,比活为645 U/mL。
实验结果见图1。
纯化后SOD的总蛋白、比活等见表1。
图1 金属螯合亲和膜色谱柱纯化Cu/Zn-S ODFig 1 Purification of Cu/Zn-SO D withimmobilized meta-l chelated affinity membranes:A280; :S OD活性(SOD activity)。
a.1张膜(one sheet of membrane);b.5张膜(fi vesheets of membrane); c.30张膜(thirty sheets ofmembrane)。
表1 固定化金属螯合亲和膜色谱柱纯化铜锌SODT able1 Purification of Cu/Zn-S OD with immobilized meta-l chelated affinity membranes膜数Membrane number 张(sheet)总蛋白Total protei n(mg)总活性Total activity(U)比活Specific activity(U m L-1)纯化倍数Enrichmentfold蛋白回收率Protein recovery(%)活性回收率Activity recovery(%)1 6 853********* 5068 5582543 326577561389 5286 6824 302771906314688210 6792 3985由表1可见,经金属螯合亲和膜色谱柱一步纯化Cu/Zn-SOD后,SOD比活有很大提高,SOD蛋白回收率可达92 3%,且随着膜数的增加,SOD蛋白回收率、活性回收率等指标均有较大幅度的提高。
这是因为对亲和膜色谱而言,膜基质厚度较小,吸附高浓度样品时,膜的吸附量尚未饱和时就有部分产物未被吸附而透过。
膜越薄,轴向扩散的影响越显著(峰宽较大,峰高较低),所以一张膜的纯化效果较差,膜柱的死体积也相对较大;采用多张亲和膜,可降低轴向扩散及死体积的影响,有利于提高流速,增加样品负荷容量。
实验结果表明,应用制备的固定化金属螯合亲和膜可有效纯化Cu/Zn-SOD。
SO D活性回收率大于100%,可能是在纯化过程中SOD活性有所恢复。
SO D的活性中心是一个椭圆形的 口袋 ,Cu2+与4个组氨酸残基咪唑环上的氮原子构成配位结构,Cu2+和Zn2+之间共同连接组氨酸His61,形成 咪唑桥 结构。
金属辅酶Cu2+对Cu/Zn-SOD的催化活性影响很大,没有一种金属离子能取代Cu2+而起恢复酶活性的作用[7]。
在生产、储藏或运输过程中,氧化剂、变性剂、极端温度或pH等都可能使酶蛋白分子结构和金属辅酶及其配位结构受到破坏,从而导致酶可逆或非可逆失活。
SOD经过Cu2+螯合亲和膜色谱柱时,柱上的Cu2+可能与其活性中心发生了作用,导致酶活性中心构象发生变化,从而使酶活性得到恢复。
3 3 金属离子泄露问题用固定化金属螯合亲和膜分离纯化SOD时,洗脱过程中少量Cu2+会随SOD一起被洗脱下来,造成目标产物的污染。
为此,实验前需先用平衡缓冲液及p H4 0的0 20mol/L柠檬酸盐缓冲液-1 mol/L氯化钠彻底洗去亲和膜上未结合的Cu2+。
另外,在膜柱底部放入一张未固定化Cu2+的膜以接收可能被洗脱下来的Cu2+,可将Cu2+的泄露量从32 mg/L降至86 g/L;同样条件下用购自瑞典362色谱第18卷Pharmacia 公司的固定化金属螯合亲和色谱介质(琼脂糖凝胶)洗脱时,Cu 2+泄露量为0 6mg/L 。
4 结语以大孔纤维素滤纸为基质,通过碱处理、环氧活化、偶联亚氨基二乙酸二钠、固定化Cu 2+后,可制得性能优良的固定化金属螯合亲和膜,并可用于Cu/Zn -SOD 的分离纯化。
参考文献1 Poroth J,Carlsson I,Belfrage G Nature,1975,258(5536):598-5992 Yip T T,Hutchens T W M olecular Biotechnol ogy,1994,1:151-1643 Arnold F H Bio/Technology,1991,9:151-1584 SHANG Zhen -hua,ZHOU Liang -m o(商振华,周良模)Progress in Chemistry(化学进展),1995,7(1):47-595 Krause S,Kroner K H ,Decker W D BiotechnologyT echniques,1991,5(3):199-2036 BAO Sh-i x i ang,SH I Guo -jun ,JIANG Wei,et al(鲍时翔,石国君,姜 炜,等) Journal of Chem ical Industry and Engineering(China)(化工学报),1995,46(1):15-217 M ccord J,Fridovich I J Biol Chem,1969,244:6049-60578 ZH OU Chao,L U xing,CHEN J -i zhong,et al (周 潮,吕 星,陈吉中,等) Chinese Journal of Biochemical Pharmaceutics(中国生化药物杂志),1993,64(2):29-339 L U xing,CHEN J -i z hong,LI Pe-i feng,et al(吕 星,陈吉中,李培峰,等) Progress in Bi ochemis try and Biophysics(生物化学与生物物理进展),1994,21(3):259-26210 Naoji K,Yasuh iro N,Yukari E J Applied PolymerScience,1996,62:1153-116011 GUO Wei,SHANG Zhen -hua,YU Y-i nian,et al(郭为,商振华,于亿年,等)Chi n ese Journal ofChromatography(色谱),1996,14(3):168-17112 J IA L i ng -yun,YANG L i ,ZOU Han -fa(贾凌云,杨 利,邹汉法) Chinese Journal of Chromatography (色谱),1998,16(6):477-479Preparation of Immobilized Meta-l Chelated Affinity Membrane andIts Application to Purification of Cu/Zn -Superoxide DismutaseWEI Qi 1, YAO Ru -hua 1, BAO Sh-i xiang2(1.D ep ar tment of Bioengineering ,South China University of T echnology ,Guangz hou 510641,China;2.Biotechnology N ational K e y Labor atory ,Chinese A cademy of T r op ical A gr icultural Sciences,H aikou 571101,China)Abstract :Immobilized meta-l chelated affinity membr anes were prepared using macr opore cellulose filter paper as matrix T he matr ix was treated with alkaline,activ ated with epichlor ohy drin and coupled wit h imino diacetate sodium,and then Cu 2+was immobilized Cu/Zn -superox ide dismutase (SOD )was pur ified with prepared affinit y membr anes T he special activity of the purified Cu/Zn -SOD was increased 10 7times from 645U /mL to 6882U /mL T he pro tein recovery and the activ ity recovery w ere 92 3%and 985%,r espectiv ely A new metho d to prevent the leaking of metal ion w as developed and Cu 2+concentr atio n in the effluent w as lowered to 86 g/L Key words :affinity chromatography;affinity membr ane;immobilized meta-l chelated affinity chromatography;superox ide dismutase363 第4期魏 琪等:固定化金属螯合亲和膜色谱柱制备及纯化铜锌超氧化物歧化酶的研究。