扩频通信实验报告
移动通信扩频实验报告(3篇)

第1篇一、实验目的1. 理解移动通信扩频技术的原理和基本概念。
2. 掌握扩频通信系统的组成和信号处理过程。
3. 通过实验验证扩频通信的抗干扰性能和频谱利用率。
4. 分析扩频通信在移动通信中的应用优势。
二、实验原理扩频通信是一种通过将信号扩展到较宽的频带上的通信技术,其基本原理是将信息数据通过一个与数据无关的扩频码进行调制,使得原始信号在频谱上扩展,从而提高信号的隐蔽性和抗干扰能力。
扩频通信的主要特点如下:1. 扩频:通过扩频码将信号扩展到较宽的频带上,提高信号的隐蔽性。
2. 抗干扰:由于信号频谱较宽,抗干扰能力强,可抵抗多径干扰、噪声等影响。
3. 频谱利用率:扩频通信采用码分复用(CDMA)技术,可充分利用频谱资源。
4. 分集:通过扩频码的不同,可实现信号的分集接收,提高通信质量。
三、实验设备1. 移动通信实验平台2. 信号发生器3. 信号分析仪4. 通信控制器5. 通信终端四、实验内容1. 扩频信号的产生(1)设置信号发生器,产生原始信号。
(2)选择合适的扩频码,进行扩频调制。
(3)观察扩频后的信号频谱,验证扩频效果。
2. 扩频信号的接收(1)设置通信控制器,模拟移动通信环境。
(2)将扩频信号发送到接收端。
(3)接收端对接收到的信号进行解扩频,恢复原始信号。
(4)观察解扩频后的信号,验证解扩频效果。
3. 抗干扰性能测试(1)在接收端加入噪声,观察信号变化。
(2)调整噪声强度,测试扩频信号的抗干扰性能。
4. 频谱利用率测试(1)设置多个扩频信号,进行码分复用。
(2)观察频谱,验证频谱利用率。
五、实验结果与分析1. 扩频信号的产生实验结果表明,通过扩频码调制,原始信号在频谱上得到了有效扩展,验证了扩频通信的基本原理。
2. 扩频信号的接收实验结果表明,接收端能够成功解扩频,恢复原始信号,验证了扩频通信的解扩频效果。
3. 抗干扰性能测试实验结果表明,扩频信号在加入噪声后,信号质量仍然较好,证明了扩频通信的抗干扰性能。
CDMA扩频通信系统实验报告

实验七、CDMA 扩频通信系统实验一、实验目的通过本实验将扩频解扩的单元实验串起来,让学生建立起CDMA 通信系统的概念,了解CDMA 通信系统的组成及特性。
二、实验内容1、搭建CDMA 扩频通信系统。
2、观察CDMA 扩频通信系统各部分信号。
3、观察两路信号码分多址及其选址。
三、基本原理扩频通信的理论基础是香农于1948年发表的《A Mathematical Theory of Communication 》一文,即著名的信息论。
香农信息论中有关信道的理论容量公式为: 2log 1S C W N ⎛⎫=+ ⎪⎝⎭ (20-1) 式(20-1)也被 称为香农定理,其中C 为信道容量,单位为bps ;W 为信道带宽(也被称为系统带宽);/S N 为信噪比(dB )。
式(20-1)给出了在给定信噪比/S N 和没有误码的情况下信道的理论容量C 与该信道带宽W 的关系。
从这个公式还可以得出也重要的结论:对于给定的信息传输速率,可以用不同的带宽和信噪比的组合来传输。
换言之,信噪比和信道带宽可以互换。
扩频通信系统正是利用这一理论,将信道带宽扩展许多倍以换取信噪比上的好处,增强了系统的抗干扰能力。
图20-1 典型的扩频通信系统模型一个典型的扩频通信系统框图如图20-1所示。
由图20-1可以看出,扩频通信系统主要由原始信息、信源编译码、信道编译码(差错控制)、载波调制与解调、扩频调制与解扩和信道六大部分组成。
信源编码的目的是减小信息的冗余度,提高信道的传输效率。
信道编码(差错控制)的目的是增加信息在信道传输轴格的冗余度,使其具有检错或纠错能力,提高信道传输质量。
调制部分的目的是使经过信道编码后的符号能在适当的频段传输,通常使用的数字信号调制方式为振幅键控、移频键控、移相键控,在码分多址移动通信中使用QPSK 和OQPSK都是PSK的改进型。
扩频通信和解扩是为了提高系统的抗干扰能力而进行的信号频谱展宽和还原。
可见,与传统通信系统相比较,该系统模型中多了扩频和解扩两个部分,经过解扩,在信道中传输的是一个宽带的低谱密度的信号。
扩频通信系统仿真实验报告

扩频通信系统仿真实验报告一、引言扩频通信是一种通过扩展信号带宽来传输信息的技术。
在扩频通信系统中,发送方将待传输的信息数据序列与扩频码序列相乘,再通过信道传输到接收方。
接收方通过与发送方使用相同的扩频码序列相乘,并将结果进行积分操作,从而将扩频信号提取出来。
本文通过MATLAB软件使用数字仿真的方法,对扩频通信系统进行了仿真实验,包括扩频信号的产生、传输和提取等过程,最后通过性能指标评估扩频通信系统的性能。
二、实验内容1.扩频信号的产生:首先生成待传输的数字信息序列,然后与扩频码进行点乘产生扩频信号。
2.信道传输:模拟信道传输过程,包括加性高斯白噪声(AWGN)等噪声影响。
3.扩频信号的提取:接收方使用与发送方相同的扩频码对接收到的信号进行点乘与积分操作,从而提取出扩频信号。
4.性能评估:通过比较接收信号与发送信号的相关性和误码率等性能指标来评估扩频通信系统的性能。
三、实验步骤1.扩频信号的产生:首先生成随机的数字信息序列,然后使用伪随机序列作为扩频码与数字信息序列相乘,产生扩频信号。
2.信道传输:将扩频信号通过信道传输,并添加加性高斯白噪声模拟噪声影响。
3.扩频信号的提取:接收方使用与发送方相同的扩频码对接收到的信号进行点乘与积分操作,提取出扩频信号。
4.性能评估:通过计算接收信号与发送信号的相关性和统计误码率等性能指标来评估扩频通信系统的性能。
实验结果展示4.性能评估:通过计算接收信号与发送信号的相关性和统计误码率等性能指标来评估扩频通信系统的性能。
相关性较高且误码率较低表示系统性能较好。
四、实验结论通过本次扩频通信系统的仿真实验,我们可以得出以下结论:1.扩频通信系统能够有效抵抗噪声影响,提高信道的抗干扰能力。
2.扩频码的选择对系统性能有较大影响,合适的扩频码可以提高系统性能。
3.扩频通信系统的误码率与信噪比有关,当信噪比较高时,系统的误码率较低。
总之,扩频通信系统在信息传输中具有较好的性能和鲁棒性,通过对其进行仿真实验可以更好地理解其工作原理和性能特点。
移动通信十一 直接序列扩频实验

实验十一直接序列扩频实验一.实验目的:1、通过本实验掌握基带信号m序列扩频原理及方法,掌握扩频前后信号在时域及频域上的变化。
2、通过本实验掌握基带信号GOLD序列扩频原理及方法,掌握扩频前后信号在时域及频域上的变化。
二.实验内容:1、观察扩频前后信息码的时域变化。
2、观察扩频前后信息码的频域变化。
3、观察已调信号在扩频前后的频域变化。
三.基本原理:扩展频谱通信系统是指将待传输信息的频谱用某个特定的扩频函数扩展成为宽频带信号后送入信道中传输,在接收端利用形相应手段将信号解压缩,从而获得传输信息的通信系统。
四.实验原理:1、实验模块简介(1)CDMA发送模块:本模块的主要功能:产生PN31伪随机序列,将伪随机序列或外部输入的其它数字序列扩频,扩频增益为32,扩频后输出码速率为512kbps,可输出两条不同扩频码信号。
(2)IQ调制解调模块:本模块的主要功能:产生调制及解调用的正交载波;完成射频正交调制及小功率线性放大;完成射频信号正交解调。
2、实验电路说明CDMA发送模块上产生的PN码,速率为16K,作为信源输入近模块中。
模块内部产生PN序列,速率为512K,作为扩频码,与输入信源模2加,完成扩频操作后输出,扩频增益为32。
经扩频后的码送入IQ调制模块中进行PSK调制,经放大后输出。
PSK已调信号载波为10.7MHz,是由21.4MHz本振源经2分频产生。
五.实验步骤(一) m序列扩频实验1、在实验箱上正确安装CDMA发送模块及IQ调制解调模块2、正确连线,检查无误后打开电源3、将发送模块上“GOLD1 SET”拨码开关第一位置“1”,其它位置“0”4、对比观察m序列扩频前后的信号波形、频谱a、示波器探头接发送模块上“DATA1 IN”测试点及改模块上“DS1”测试点,观察扩频前后信息码及扩频码的变化。
c、为避免扩频后信号带宽过大,在发送模块中将扩频后信号进行了限带滤波,测试点为“DS1 OUT”,观察该死按信号并与“DS1”测试点信号进行比较。
CDMA扩频通信系统实验

实验十四 CDMA 扩频通信系统实验一、 实验目的和要求通过本实验将扩频解扩的单元实验串起来,让学生建立起CDMA 通信系统的概念,了解CDMA 通信系统的组成及特性。
二、实验内容和原理1)、实验内容1、搭建CDMA 扩频通信系统。
2、观察CDMA 扩频通信系统各部分信号。
3、观察两路信号码分多址及其选址。
2)、基本原理扩频通信的理论基础是香农于1948年发表的《A Mathematical Theory of Communication 》一文,即著名的信息论。
香农信息论中有关信道的理论容量公式为:2log 1S C W N ⎛⎫=+ ⎪⎝⎭(14-1)式(14-1)也被 称为香农定理,其中C 为信道容量,单位为bps ;W 为信道带宽(也被称为系统带宽);/S N 为信噪比(dB )。
式(14-1)给出了在给定信噪比/S N 和没有误码的情况下信道的理论容量C 与该信道带宽W 的关系。
从这个公式还可以得出也重要的结论:对于给定的信息传输速率,可以用不同的带宽和信噪比的组合来传输。
换言之,信噪比和信道带宽可以互换。
扩频通信系统正是利用这一理论,将信道带宽扩展许多倍以换取信噪比上的好处,增强了系统的抗干扰能力。
图14-1 典型的扩频通信系统模型一个典型的扩频通信系统框图如图14-1所示。
由图14-1可以看出,扩频通信系统主要由原始信息、信源编译码、信道编译码(差错控制)、载波调制与解调、扩频调制与解扩和信道六大部分组成。
信源编码的目的是减小信息的冗余度,提高信道的传输效率。
信道编码(差错控制)的目的是增加信息在信道传输轴格的冗余度,使其具有检错或纠错能力,提高信道传输质量。
调制部分的目的是使经过信道编码后的符号能在适当的频段传输,通常使用的数字信号调制方式为振幅键控、移频键控、移相键控,在码分多址移动通信中使用QPSK 和OQPSK 都是PSK 的改进型。
扩频通信和解扩是为了提高系统的抗干扰能力而进行的信号频谱展宽和还原。
直接序列扩频实验报告

直接序列扩频实验报告1. 背景直接序列扩频(Direct Sequence Spread Spectrum,DSSS)是一种广泛应用于无线通信领域的调制技术。
它通过将原始信号与一个高速伪随机序列进行乘积运算,将信号的带宽扩展到原来的几十倍甚至上百倍,从而提高了抗干扰性能和传输安全性。
本实验旨在通过搭建直接序列扩频系统,深入了解DSSS技术的原理和性能,并通过实际测量和分析结果,对系统进行评估和改进。
2. 实验目的•掌握直接序列扩频技术的原理和基本概念;•搭建直接序列扩频系统,并对其各个组成部分进行调试和优化;•测量并分析不同条件下系统的性能指标,如误码率、传输速率等;•提出改进方案并进行验证。
3. 实验设备与材料•发射端:信号发生器、伪随机码发生器、带通滤波器、功放器等;•接收端:天线、低噪声放大器、相关器、解调器等;•其他辅助设备:示波器、频谱分析仪等。
4. 实验步骤4.1 系统搭建1.将信号发生器与伪随机码发生器连接,生成基带信号和伪随机码;2.将基带信号和伪随机码输入到乘法器中,进行乘积运算;3.将乘积结果通过带通滤波器进行滤波;4.将滤波后的信号经过功放器放大,并通过天线发送出去。
4.2 系统调试与优化1.调整信号发生器的频率和幅度,使其与要传输的数据相匹配;2.调整伪随机码发生器的参数,如码长、初始状态等,以获得较好的扩频效果;3.根据实际情况调整带通滤波器的中心频率和带宽,以确保接收端能够正确解调。
4.3 性能测量与分析1.在理想传输环境下,测量系统的误码率(Bit Error Rate,BER),并记录相关参数;2.在不同干扰条件下,如加性高斯白噪声(Additive White Gaussian Noise,AWGN)、多径衰落等情况下,测量系统的BER,并进行对比分析;3.测量系统的传输速率,并与理论值进行对比。
5. 实验结果与分析5.1 系统性能评估通过测量不同条件下的误码率和传输速率,得到如下结果:条件误码率传输速率理想环境0 理论值AWGN 较小较低多径衰落较大较低从表中可以看出,在理想环境下,系统能够实现较高的传输速率且误码率为零。
直接扩频序列实验报告

一、实验目的1. 理解直接扩频序列的基本原理;2. 掌握直接序列扩频系统的实现方法;3. 熟悉扩频信号的调制与解调过程;4. 分析直接序列扩频系统的性能。
二、实验原理直接序列扩频(Direct Sequence Spread Spectrum,DSSS)是一种扩频通信技术,其基本原理是将信息信号与扩频码进行异或运算,将信号频谱扩展到较宽的频带内,以提高信号的隐蔽性和抗干扰能力。
在发送端,信息信号与扩频码进行模2加(异或运算),得到扩频信号。
在接收端,利用相同的扩频码对接收信号进行解扩,恢复出原始信息信号。
三、实验设备1. 直流电源2. 信号发生器3. 数字信号处理器(DSP)4. 数字示波器5. 实验软件(如MATLAB)四、实验步骤1. 设计扩频码序列:生成一个长度为N的伪随机序列(PN码),作为扩频码。
2. 信号调制:将信息信号与扩频码进行模2加运算,得到扩频信号。
3. 信号解调:对接收到的扩频信号进行解扩,恢复出原始信息信号。
4. 性能分析:分析直接序列扩频系统的误码率(BER)、信噪比(SNR)等性能指标。
五、实验结果与分析1. 扩频码序列设计:本实验中,我们设计了一个长度为N=127的伪随机序列作为扩频码。
2. 信号调制与解调:通过实验,我们得到了扩频信号和解调后的信息信号。
3. 性能分析:(1)误码率(BER):在一定的信噪比条件下,本实验中直接序列扩频系统的误码率约为10^-3。
(2)信噪比(SNR):本实验中,当信噪比为10dB时,直接序列扩频系统的误码率满足要求。
4. 分析:(1)扩频码序列的长度对系统性能有较大影响。
本实验中,我们选择了长度为N=127的伪随机序列作为扩频码,能够满足实验要求。
(2)直接序列扩频系统的误码率随着信噪比的提高而降低,说明该系统具有良好的抗干扰能力。
六、实验结论通过本次实验,我们掌握了直接序列扩频序列的基本原理和实现方法,熟悉了扩频信号的调制与解调过程。
扩频与解扩实验

电子信息工程系实验报告课程名称:移动通信技术实验项目名称:扩频与解扩实验 实验时间:班级:通信091 姓名:Jxairy 学 号:910705131 实 验 目 的:1、掌握扩频的基本原理。
2、理解扩频增益的概念。
实 验 设 备:1、移动通信实验原理实验箱一台 2、20M 双踪示波器一台实 验 内 容: 1、观察基带信号扩频前后波形(频谱)。
2、观察扩频前后PSK 调制的波形(频谱)。
实 验 原 理:扩展频谱通信系统是指将待传输信息的频谱用某个特定的扩频函数扩展成为宽频带信号后送入信道中传输,在接收端利用相应手段将信号解压缩,从而获取传输信息的通信系统。
也就是说在传输同样信息时所需的射频带宽,远比我们已熟知的各种调制方式要求的带宽要宽得多。
扩频带宽至少是信息带宽的几十倍甚至几万倍。
信息不再是决定调制信号带宽的一个重要因素,其调制信号的带宽主要由扩频函数来决定。
在本实验中我们采用的是直接序列扩频。
图1 直接序列扩频流程图直接序列扩频通信的过程是将待传送的信息码元与伪随机序列相乘,在频域上将二者的频谱卷积,将信号的频谱展宽,展宽后的频谱呈窄带高斯特性,经载波调制之后发送出去。
在接收端,一般首先恢复同步的伪随机码,将伪随机码与调制信号相乘,这样就得到经过信息码元调制的载波信号,再作载波同步,解调后得到信息码元。
直接序列扩频通信的过程是将待传送的信息码元与伪随机序列相乘,在频域上将二者的频谱卷积,将信号的频谱展宽,展宽后的频谱呈窄带高斯特性,经载波调制之后发送出去。
在接收端,一般首先恢复同步的伪随机码,将伪随机码与调制信号相乘,这样就得到经过信息码元调制的载波信号,再作载波同步,解调后得到信息码元。
我们采用“扩频增益”GP 的概念来描述扩频系统抗干扰能力的优劣,其定义为解扩接收机输出信噪比与其输入信噪比的比值,即:输入信噪比输出信噪比=P G它表示经扩频接收处理之后,使信号增强的同时抑制输入到接收机的干扰信号能力的大小,越大,则抗干扰能力愈强。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《扩频通信》实验报告
m序列,S1、S2、S3、S4变为0000,G1的观测结果
G1、G2的观测结果
相关函数值
Gold序列,S2、S3变为0001,G1、G2的观测结果
相关函数值
S2为0001、S3为0010,G1、G2的观测结果
相关函数值
实验结果及分析:
由实验发现,Gold比m序列更能抗干扰;同时,Gold序列具有良好的自、互相关特性,Gold码码长和m序列一样。
m序列的自相关函数也有明显的峰值,也表明m序列具有一定的自相关特性优良存在。
《扩频通信》实验报告
实验过程原始记录(数据、图表、波形等):
扩频前的波形
TP8的序列1
黄色的是NRZ1、蓝色的是CDMA1,扩频前和后的输出码形变化
NRZ1和TP8序列1近似相同,即正常解扩
随意设置了S3=0111、S4=0010,波形不再近似相同,不能解扩
实验结果及分析:
简述实验过程:
(1)2#模块信源:用随机整数发生器(Random Integer generator)产生二进制随机信号作为信源;
(2)14#模块 PN序列生成器模块(PN Sequence Generator):伪随机码产生器,扩频过程通过信息码与PN码进行双极性变换后相乘加以实现。
解扩过程与扩频过程相同,即将接收的信号用PN码进行第二次扩频处理。
(3)11#模块扩频调制/扩频解扩:扩频调制的过程就是使用一个高速率的伪随机码与待传信号相乘,待传信号的频谱被大大的展宽,信号的能量几乎均匀地分散在带宽的频带内,使得功率谱密度大大减小。
在接收端解扩时,将接收到的已扩信号,在同步电路的控制下,接收到的信号乘以相同的伪随机码,把已扩信号解扩为窄带信号。
在信道中引入的窄带干扰信号,在接收端经过扩频解调时,被扩展为宽带信号,干扰信号的密度大大的降低。
然后解扩后的信号经过窄带滤波器,滤掉有用信号的带外干扰,从而降低了干扰信号的强度,改善了信噪比,还原出原始信号。
《扩频通信》实验报告
实验过程原始记录(数据、图表、波形等):
调节11号模块的W1,直到11号模块的Dout与信号源PN的码型一致
实验结果及分析:
一开始进行联调:先以信号源PN为参考信号,调节示波器的菜单按钮上方的旋钮,使其波形稳定不动;接着调节11模块的W2旋钮,使其波形稳定后,两个序列达到同步状态;此时连上耳机即可听到麦克风的声音。
只有采用完全相同的PN码序列且时间同步才能正确的接收对方的语音信号。
码分多址信号存在自身固有的干扰,从而造成语音接收会有较大的噪声。
《扩频通信》实验报告
跳频前TP1调制信号的频谱情况,黄色跳频输出的TP2,蓝色
开关K1切换至“10/S”档,跳变速度加快观测到最高峰在标尺左右跳变。