高中数学向量的加法运算及其几何意义设计说明素材新人教A版必修3

合集下载

高中数学新人教版A版精品教案《2.2.1 向量加法运算及其几何意义》

高中数学新人教版A版精品教案《2.2.1 向量加法运算及其几何意义》

《向量的加法运算及其几何意义》教学设计一、教材分析向量是近代数学中重要和基本的数学概念之一,是沟通代数、几何与三角函数的一种工具,在实际生活中有着广泛的应用。

向量的加法是向量的第一运算,是向量其他运算的基础。

通过本节课的学习,使学生认识到向量作为一种量,也同其他的量一样,有自己的运算。

学好本节课将为后面学习向量的其他知识奠定基础,为用“数”的运算解决“形”的问题提供工具和方法。

二、教学目标知识目标:理解向量加法的概念,会用向量加法法则及运算律求向量的和。

能力目标:培养学生用类比的方法探索研究数学问题的素养及数学交流能力。

情感目标:增强学生学习的积极性、主动性,挖掘出学生自身智力潜能,促进学生的个性发展。

三、重难点分析教学重点:向量加法的定义与三角形法则的概念建构,以及利用法则作两个向量的和向量.教学难点:理解向量的加法法则及其几何意义.四、教法、学法分析1、教法分析本着“以学生为主体,以教师为主导,以问题解决为主线,以能力发展为目标”的指导思想,结合学生实际,主要采用“问题导引,自主探究”式教学方法。

2、学法指导引导学生从实际问题中抽象出数学模型,提高观察、归纳、分析的能力;引导学生自己发现问题、提出问题并予以解决,学会合作交流;引导学生具有“用数学”的意识,尝试着用数学知识解决实际问题。

五、教学过程环节一复习回顾1、复习:提问向量的定义以及有关概念。

2、强调:向量是既有大小又有方向的量长度相等、方向相同的向量相等因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置【设计意图】复习回顾,巩固上节课知识,做好知识的衔接工作。

环节二实例引入揭示课题[实例1]外地游客到甘南旅游,玛曲到合作约2021里,合作到卓尼约100公里,那么玛曲到卓尼的路程是多少,位移是多少?[实例2]有两辆汽车牵引一辆大卡车,他们的牵引力分别是F1=3000N,F2=2021N,牵绳间的夹角θ=600。

高中数学新课程创新教学设计案例--向量加法运算及其几何意义

高中数学新课程创新教学设计案例--向量加法运算及其几何意义

37 向量加法运算及其几何意义教材分析引入向量后,考查向量的运算及运算律,是数学研究中的基本的问题.教材中向量的加法运算是以位移的合成、力的合成等物理模型为背景引入的,在此基础上抽象概括了向量加法的意义,总结了向量加法的三角形法则、平行四边形法则.向量加法的运算律,教材是通过“探究”和构造图形引导学生类比数的运算律,验证向量的交换律和结合律.例2是一道实际问题,主要是要让学生体会向量加法的实际意义.这节课的重点是向量加法运算(三角形法则、平行四边形法则),向量的运算律.难点是对向量加法意义的理解和认识.教学目标1. 通过物理学中的位移合成、力的合成等实例,认识理解向量加法的意义,体验数学知识发生、发展的过程.2. 理解和掌握向量加法的运算,熟练运用三角形法则和平行四边形法则作向量的和向量.3. 理解和掌握向量加法的运算律,能熟练地运用它们进行向量运算.4. 通过由实例到概念,由具体到抽象,培养学生的探究能力,使学生数学地思考问题,数学地解决问题.任务分析这节的主要内容是向量加法的运算和向量加法的应用.对向量加法运算,学生可能不明白向量可以相加的道理,产生疑惑:向量既有大小、又有方向,难道可以相加吗?为此,在案例设计中,首先回顾物理学中位移、力的合成,让学生体验向量加法的实际含义,明确向量的加法就是物理学中的矢量合成.在此基础上,归纳总结向量加法的三角形法则和平行四边形法则.向量加法的运算律发现并不困难,主要任务是让学生对向量进行探究,构造图形进行验证.关于例2的教学,主要是帮助学生正确理解题意,把问题转化为向量加法运算.教学设计一、问题情境1. 如图,某物体从A点经B点到C点,两次位移,的结果,与A点直接到C点的位移结果相同.2. 如图,表示橡皮筋在两个力F1,F2的作用下,沿GE的方向伸长了EO,与力F的作用结果相同.位移与合成为等效,力F与分力F1,F2的共同作用等效,这时我们可以认为:,F分别是位移与、分力F1与F2某种运算的结果.数的加法启发我们,位移、力的合成可看作数学上的向量加法.2. 在师生交流讨论基础上,归纳并抽象概括出向量加法的定义已知非零向量a,b(如图37-3),在平面内任取一点A,作=a,=b,再作向量,则向量叫a与b的和,记作a+b,即a+b=+=.求两个向量和的运算,叫作向量的加法.这种求向量和的作图法则,称为向量求和的三角形法则,我们规定0+a=a+0=a.3. 提出问题,组织学生讨论(1)根据力的合成的平行四边形法则,你能定义两个向量的和吗?(2)当a与b平行时,如何作出a+b?强调:向量的和仍是一个向量.用三角形法则求和时,作图要求两向量首尾相连;而用平行四边形法则求和时,作图要求两向量的起点平移在一起.(3)实数的运算和运算律紧密联系,类似地,向量的加法是否也有运算律呢?首先,让学生回忆实数加法运算律,类比向量加法运算律.向量加法的交换律由平行四边形法则容易验证.向量加法的结合律的验证则比较困难,教学时,应放手让学生进行充分探索.最后通过下面的两个图形验证加法结合律.三、解释应用[例题]1. 已知非零向量a,b,就(1)a与b不共线,(2)a与b共线,分别求作向量a+b.注:要求写出作法,规范解题格式.2. 长江两岸之间没有大桥的地方,常常通过轮船进行运输.一艘轮船从长江南岸A点出发,以5km/h的速度向垂直于对岸的方向行驶,同时江水的速度为向东2km/h.(1)试用向量表示江水速度、船速以及船实际航行的速度.(2)求船实际航行的速度的大小与方向(速度的大小保留2个有效数字,方向用与江水速度间的夹角表示,精确到度).[练习]1. 如图,已知a,b,画图表示a+b.2. 已知两个力F1,F2的夹角是直角,合力F与F1的夹角是60°,|F|=10N,求F1和F2的大小.3. 在△ABC中,求证.4. 在n边形A1A2…A n中,计算四、拓展延伸1. 对于任意向量a,b,探索|a+b|与|a|+|b|的大小,并指出取“=”号的条件.2. 在求作两个向量和时,你可能选择不同的始点求和.你有没有想过,选择不同的始点作出的向量和都相等吗?你可能认为,这是“显然”对的,你能证明这个问题吗?点评向量的加法运算是向量的基本运算.为了正确认识理解向量加法的运算,案例首先回顾了的物理学中的位移、力的合成.在此基础上,使学生认识到:物理学中的矢量合成可抽象为数学中的向量加法运算,进而总结出向量加法的三角形法则,平行四边形法则,这样设计自然,流畅,全面.向量加法的运算律的教学,是引导学生通过类比方法发现的,并让学生自主探索,构造图形验证,这样不仅体现了学生的主体地位,同时还能培养学生科学的探究能力.例题与练习、“拓展延伸”的设计,有层次,有力度,深入浅出,能较好地培养学生的创新能力.这是一篇优秀的案例设计.。

向量加法运算及其几何意义

向量加法运算及其几何意义

向量加法运算及其几何意义兰溪兰荫中学张城兵内容和内容解析本节课内容选自普通高中课程标准实验教科书必修4(A版)P89——94,是在学习平面向量基本概念之后的一节比较重要的课,因为引入一个新的量后,考察它的运算及运算律是数学研究中的基本问题,类比数的运算,向量是否能够进行运算呢?向量的工具作用如何发挥呢?这是学生认知冲突的地方,这一冲突正是数学建模思想应运而生,也是激发学生进一步探究数学新知的契机。

这一节内容更是后续学习的铺垫,因为向量加法运算是平面向量的线性运算(向量加法、向量减法、向量数乘运算以及它们之间的混合运算)最基本、最重要的运算,减法运算、数乘向量运算都可以归结为加法运算,这一节学习好坏关系后续内容能否进一步领会和掌握。

因此教学重点放在对向量加法的三角形法则和平行四边形法则的理解上,也即向量是如何相加的,而数学建模思想是帮助学生理解的神经中枢。

目标和目标解析1.通过对物理中的位移合成认识、动手操作力的合成实验,了解向量加法不同于一般意义上数量相加,有其遵循的新规则,在此基础上理解向量加法的意义,体验数学知识发生、发展的过程。

2.在学生探究向量加法感性认识的基础上,引导学生理解向量加法遵循的“规则”,即三角形法则和平行四边形法则,并能正确作出两向量和的图形,能对学生不同理解作出正确评价,为探究运算律奠定基础,切实掌握两个向量加法运算律,因为在今后向量运算中,缺少箭头表示方向,很多学生会产生陌生感,影响向量工具性能,务必使学生能灵活应用它们进行向量运算。

3.从位移合成、力的合成实践中得到向量加法运算法则,之后用来解决例2实际问题,让学生体验数学来源于现实生活,又服务于现实生活的道理,渗透数学建模思想。

教学问题诊断分析向量加法不同于小学里“2个苹果加上3个苹果共有几个苹果?”,也不同于初一时的求“两线段的和”不考虑方向。

向量是既有大小又有方向的量,如何处理大小相加和方向相加,这是本节课学生最难弄懂的地向量加法的定义和平行四边形法则三角形法则方。

人教A版高中数学选修新课标优秀教案示范教案向量加法运算及其几何意义

人教A版高中数学选修新课标优秀教案示范教案向量加法运算及其几何意义

2.2 平面向量的线性运算2.2.1 向量加法运算及其几何意义整体设计教学分析向量的加法是学生在认识向量概念之后首先要掌握的运算,是向量的第二节内容.其主要内容是运用向量的定义和向量相等的定义得出向量加法的三角形法则、平行四边形法则,并对向量加法的交换律、结合律进行证明,同时运用他们进行相关计算,这可让同学们进一步加强对向量几何意义的理解,同时也为接下来学习向量的减法奠定基础,起到承上启下的重要作用.学生已经通过上节的学习,掌握了向量的概念、几何表示,理解了什么是相等向量和共线向量.在学习物理的过程中,已经知道位移、速度和力这些物理量都是向量,可以合成,而且知道这些矢量的合成都遵循平行四边形法则,这为本课题的引入提供了较好的条件.培养数学的应用意识是当今数学教育的主题,本节课的内容与实际问题联系紧密,更应强化数学来源于实际又应用于实际的意识.在向量加法的概念中,由于涉及到两个向量有不平行和平行这两种情况,因此有利于渗透分类讨论的数学思想,而在猜测向量加法的运算律时,通过引导学生利用实数加法的运算律进行类比.则能培养学生类比、迁移等能力.在实际教学中,类比数的运算,向量也能够进行运算.运算引入后,向量的工具作用才能得到充分发挥.实际上,引入一个新的量后,考察它的运算及运算律,是数学研究中的基本问题.教师应引导学生体会考察一个量的运算问题,最主要的是认清运算的定义及其运算律,这样才能正确、方便地实施运算.向量的加法运算是通过类比数的加法,以位移的合成、力的合力等两个物理模型为背景引入的.这样做使加法运算的学习建立在学生已有的认知基础上,同时还可以提醒学生注意,由于向量有方向,因此在进行向量运算时,不但要考虑大小问题,而且要考虑方向问题,从而使学生体会向量运算与数的运算的联系与区别.这样做,有利于学生更好地把握向量加法的特点.三维目标1.通过经历向量加法的探究,掌握向量加法概念,结合物理学实际理解向量加法的意义.能熟练地掌握向量加法的平行四边形法则和三角形法则,并能作出已知两向量的和向量.2.在应用活动中,理解向量加法满足交换律和结合律及表述两个运算律的几何意义.掌握有特殊位置关系的两个向量的和,比如共线向量、共起点向量、共终点向量等.3.通过本节内容的学习,让学生认识事物之间的相互转化,培养学生的数学应用意识,体会数学在生活中的作用.培养学生类比、迁移、分类、归纳等能力.重点难点教学重点:向量加法的运算及其几何意义.教学难点:对向量加法法则定义的理解.课时安排1课时教学过程导入新课思路1.(复习导入)上一节,我们一起学习了向量的有关概念,明确了向量的表示方法,了解了零向量、单位向量、平行向量、相等向量等概念,并接触了这些概念的辨析判断.另外,向量和我们熟悉的数一样也可以进行加减运算,这一节,我们先学习向量的加法.思路2.(问题导入)2004年大陆和台湾没有直航,因此春节探亲,要先从台北到香港,再从香港到上海,这两次位移之和是什么?怎样列出数学式子?一位同学按以下的命令进行活动:向北走20米,再向西走15米,再向东走5米,最后向南走10米,怎样计算他所在的位置?由此导入新课.推进新课新知探究提出问题①数能进行运算,向量是否也能进行运算呢?类比数的加法,猜想向量的加法,应怎样定义向量的加法?②猜想向量加法的法则是什么?与数的运算法则有什么不同?图1活动:向量是既有大小、又有方向的量,教师引导学生回顾物理中位移的概念,位移可以合成,如图1.某对象从A点经B点到C点,两次位移AB、BC的结果,与A点直接到C点的位移AC结果相同.力也可以合成,老师引导,让学生共同探究如下的问题:图2(1)表示橡皮条在两个力的作用下,沿着GC的方向伸长了EO;图2(2)表示撤去F1和F2,用一个力F作用在橡皮条上,使橡皮条沿着相同的方向伸长相同的长度.图2改变力F1与F2的大小和方向,重复以上的实验,你能发现F与F1、F2之间的关系吗?力F对橡皮条产生的效果与力F1与F2共同作用产生的效果相同,物理学中把力F叫做F1与F2的合力.合力F与力F1、F2有怎样的关系呢?由图2(3)发现,力F在以F1、F2为邻边的平行四边形的对角线上,并且大小等于平行四边形对角线的长.数的加法启发我们,从运算的角度看,F可以认为是F1与F2的和,即位移、力的合成看作向量的加法.讨论结果:①向量加法的定义:如图3,已知非零向量a、b,在平面内任取一点A,作=a,=b,则向量叫做a与b的和,记作a+b,即a+b=+=.图3求两个向量和的运算,叫做向量的加法.②向量加法的法则:1°向量加法的三角形法则在定义中所给出的求向量和的方法就是向量加法的三角形法则.运用这一法则时要特别注意“首尾相接”,即第二个向量要以第一个向量的终点为起点,则由第一个向量的起点指向第二个向量的终点的向量即为和向量.0位移的合成可以看作向量加法三角形法则的物理模型.2°向量加法的平行四边形法则图4如图4,以同一点O为起点的两个已知向量a、b为邻边作平行四边形,则以O为起点的对角线OC就是a与b的和.我们把这种作两个向量和的方法叫做向量加法的平行四边形法则.力的合成可以看作向量加法的物理模型.提出问题①对于零向量与任一向量的加法,结果又是怎样的呢?②两共线向量求和时,用三角形法则较为合适.当在数轴上表示两个向量时,它们的加法与数的加法有什么关系?③思考|a+b|,|a|,|b|存在着怎样的关系?④数的运算和运算律紧密联系,运算律可以有效地简化运算.类似地,向量的加法是否也有运算律呢?活动:观察实际例子,教师启发学生思考,并适时点拨,诱导,探究向量的加法在特殊情况下的运算,共线向量加法与数的加法之间的关系.数的加法满足交换律与结合律,即对任意a,b∈R,有a+b=b+a,(a+b)+c=a+(b+c).任意向量a,b的加法是否也满足交换律和结合律?引导学生画图进行探索.讨论结果:①对于零向量与任一向量,我们规定a+0=0+a=a.②两个数相加其结果是一个数,对应于数轴上的一个点;在数轴上的两个向量相加,它们的和仍是一个向量,对应于数轴上的一条有向线段.③当a,b不共线时,|a+b|<|a|+|b|(即三角形两边之和大于第三边);当a,b共线且方向相同时,|a+b|=|a|+|b|;当a,b共线且方向相反时,|a+b|=|a|-|b|(或|b|-|a|).其中当向量a的长度大于向量b的长度时,|a+b|=|a|-|b|;当向量a的长度小于向量b的长度时,|a+b|=|b|-|a|.一般地,我们有|a+b|≤|a|+|b|.④如图5,作AB=a,AD=b,以AB、AD为邻边作ABCD,则=b,=a.因为AC=AB+AD=a+b,AC=AD+DC=b+a,所以a+b=b+a.如图6,因为AD=AC+CD=(AB+BC)+CD=(a+b)+c,AD==AB+BD=AB+(BC+CD)=a+(b+c),所以(a+b)+c=a+(b+c).综上所述,向量的加法满足交换律和结合律.图5 图6应用示例思路1例1 如图7,已知向量a、b,求作向量a+b.活动:教师引导学生,让学生探究分别用向量加法的三角形法则和平行四边形法则作两个向量的和向量.在向量加法的作图中,学生体会作法中在平面内任取一点O的依据——它体现了向量起点的任意性.在向量作图时,一般都需要进行向量的平移,用平行四边形法则作图时应强调向量的起点放在一起,而用三角形法则作图则要求首尾相连.图7 图8 图9解:作法一:在平面内任取一点O(如图8),作OA=a,AB=b,则OB=a+b.作法二:在平面内任取一点O(如图9),作OA=a,OB=b.以OA、OB为邻边作OACB,连接OC,则=a+b.变式训练化简:(1)+;(2)++;(3)++++.活动:根据向量加法的交换律使各向量首尾顺次相接,再运用向量加法的结合律调整运算顺序,然后相加.解:(1)BC+=+BC=AC.(2)DB+CD+BC=BC+CD+DB=(BC+CD)+DB=BD+DB=0.(3)++++FA=++++=++DF+=++=+=0.点评:要善于运用向量的加法的运算法则及运算律来求和向量. 例2 长江两岸之间没有大桥的地方,常常通过轮渡进行运输.如图10所示,一艘船从长江南岸A 点出发,以5 km/h 的速度向垂直于对岸的方向行驶,同时江水的速度为向东2 km/h.(1)试用向量表示江水速度、船速以及船实际航行的速度(保留两个有效数字);(2)求船实际航行的速度的大小与方向(用与江水速度间的夹角表示,精确到度).图10 图11活动:本例结合一个实际问题说明向量加法在实际生活中的应用.这样的问题在物理中已有涉及,这里是要学生能把它抽象为向量的加法运算,体会其中应解决的问题是向量模的大小及向量的方向(与某一方向所成角的大小).引导点拨学生正确理解题意,将实际问题反映在向量作图上,从而与初中学过的解直角三角形建立联系.解:如图11所示,AD 表示船速,AB 表示水速,以AD 、AB 为邻边作ABCD,则AC 表示船实际航行的速度.(2)在Rt △ABC 中,|AB |=2,|BC |=5,所以|AC |=2952|||AB |2222=+=+BC ≈5.4. 因为tan ∠CAB=229,由计算器得∠CAB=70°. 答:船实际航行速度的大小约为5.4 km/h,方向与水的流速间的夹角为70°.点评:用向量法解决物理问题的步骤为:先用向量表示物理量,再进行向量运算,最后回扣物理问题,解决问题.变式训练用向量方法证明对角线互相平分的四边形是平行四边形.图12活动:本题是一道平面几何题,如果用纯几何的方法去思考,问题不难解决,如果用向量法来解,不仅思路清晰,而且运算简单.将互相平分利用向量表达,以此为条件推证使四边形为平行四边形的向量等式成立.教师引导学生探究怎样用向量法解决几何问题,并在解完后总结思路方法.证明:如图12,设四边形ABCD 的对角线AC 、BD 相交于点O,=+,=+.AC 与BD 互相平分,=,=,=,因此AB∥CD且|AB|=|DC|,即四边形ABCD是平行四边形.点评:证明一个四边形是平行四边形时,只需证明AB=DC或AD=BC即可.而要证明一个四边形是梯形,需证明AB与DC共线,且|AB|≠|DC|.思路2例3 如图13,O为正六边形ABCDEF的中心,作出下列向量:(1)OA+OC;(2)BC+FE;(3)OA+FE.活动:教师引导学生由向量的平行四边形法则(三角形法则)作出相应的向量.教师一定要让学生亲自动手操作,对思路不清的学生教师适时地给予点拨指导.图13解:(1)因四边形OABC是以OA、OC为邻边的平行四边形,OB是其对角线,故+=.(2)因=,故+与方向相同,长度为的长度的2倍,故BC+=.(3)因OD=FE,故+=+=0.点评:向量的运算结合平面几何知识,在长度和方向两个方面做文章.应深刻理解向量的加、减法的几何意义.例2 在长江的某渡口处,江水以12.5 km/h的速度向东流,渡船的速度是25 km/h,渡船要垂直地渡过长江,其航向应如何确定?活动:如图14,渡船的实际速度、船速与水速应满足+=.图14解:设AB表示水流速度,AD表示渡船的速度,AC表示渡船实际垂直过江的速度,以AB为一边,AC为对角线作平行四边形,AD就是船的速度.在Rt△ACD中,∠ACD=90°,|DC|=|AB|=12.5,|AD|=25,∠CAD=30°.答:渡船的航向为北偏西30°.点评:根据题意画出草图,是解决问题的关键.变式训练已知O是四边形ABCD内一点,若OA+OB+OC+OD=0,则四边形ABCD是怎样的四边形?点O是四边形的什么点?活动:要判断四边形的形状就必须找出四边形边的某些关系,如平行、相等等;而要判断点O是该四边形的什么点,就必须找到该点与四边形的边或对角线的关系.图15解:如图15所示,设点O是任一四边形ABCD内的一点,且OA+OB+OC+OD=0,过A作AE OD,连结ED,则四边形AEDO为平行四边形,设OE与AD的交点为M,过B作BF OC,则四边形BOCF为平行四边形,设OF与BC的交点为N,于是M、N分别是AD、BC的中点.∵+++=0,+=+=,+=+=OF,∴+OF=0,即与OF的长度相等,方向相反.∴M、O、N三点共线,即点O在AD与BC的中点连线上.同理,点O也在AB与DC的中点连线上.∴点O是四边形ABCD对边中点连线的交点,且该四边形可以是任意四边形.知能训练课本本节练习.解答:1.直接在教科书上据原图作(此处从略).2.直接在教科书上据原图作(此处从略).3.(1)DA;(2)CB.点评:在向量的加法中要注意向量箭头的方向.4.(1)c;(2)f;(3)f;(4)g.点评:通过填空,使学生得出首尾相接的几个向量的求和规律.课堂小结1.先由学生回顾本节学习的数学知识:向量的加法定义,向量加法的三角形法则和平行四边形法则,向量加法满足交换律和结合律,几何作图,向量加法的实际应用.2.教师与学生一起总结本节学习的数学方法:特殊与一般,归纳与类比,数形结合,分类讨论,特别是通过知识迁移类比获得新知识的过程与方法.这种迁移类比的方法将把我们引向数学的王国,科学的殿堂.作业如图16所示,已知矩形ABCD中,|AD|=43,设AB=a,BC=b,BD=c,试求向量a+b+c的模.图16解:过D作AC的平行线,交BC的延长线于E,∴DE∥AC,AD∥BE.∴四边形ADEC为平行四边形.∴=,=.于是a+b+c=++=+==+=2,∴|a+b+c|=2||=83.点评:求若干个向量的和的模(或最值)的问题通常按下列步骤进行:(1)寻找或构造平行四边形,找出所求向量的关系式;(2)用已知长度的向量表示待求向量的模,有时还要利用模的重要性质.设计感想1.本节内容是向量的加法,运算法则有三角形法则和平行四边形法则,而两个法则的运用有各自的条件:三角形法则适合于首尾顺次相接的两向量相加,对于共线向量的加法仍然适合;而平行四边形法则适合于两个同起点的向量相加,对于共线向量却不能用此法解决.三角形法则可以推广到多个首尾顺次相接的向量的加法.2.本节要求使用多媒体辅助教学,便于直观、生动地揭示向量加法的概念,突破难点,提高效率,因为本节解决问题的方法主要是借助图形,采用数形结合的思想方法.多让学生动手画图,识图,让学生在动态中经历和体会概念的形成过程.让学生自己类比、猜想、发现及应用新知识解决问题.。

向量的加法运算及其几何意义课件

向量的加法运算及其几何意义课件

在解析几何中,向量加法可以用于线性组合的计算。线性组 合是指一组向量的加权和,即$overset{longrightarrow}{D} = lambdaoverset{longrightarrow}{A} + muoverset{longrightarrow}{B}$,其中$lambda$和$mu$ 为实数。线性组合在解决实际问题中具有广泛的应用。
应用拓展
随着科技的进步,向量加法的应用领域将不断拓展,如人工智能、信号处理、图像处理等,为解 决实际问题提供更多有效的方法。
算法优化
随着计算技术的发展,向量加法的算法将不断优化,提高计算效率和精度,为相关领域的研究和 应用提供更好的支持。
THANKS
感谢观看
向量的加法运算及其几何意义
• 向量加法的定义与性质 • 向量加法的几何意义 • 向量加法的运算规则 • 向量加法的应用实例 • 总结与展望
01
向量加法的定义与性质
向量加法的定义
向量加法是由平行四边形法则或三角形法则定义的。在二维空间中,向量加法可以通过连接两个向量 的起点和终点,并绘制一个平行四边形来完成。在三维空间中,向量加法可以通过连接两个向量的起 点和终点,并绘制一个三角形来完成。
物理应用
向量加法在物理中有广泛的应用, 如速度、加速度、力的合成等, 通过向量加法可以更直观地理解 物理现象。
解析几何
向量加法在解析几何中也有重要 的意义,它可以用来描述平面或 空间中的点、线、面等几何对象 的位置和方向。
向量加法的未来发展
理论完善
随着数学和物理学等学科的发展,向量加法的理论体系将进一步完善,为相关领域的研究提供更 坚实的基础。
算。
03
向量加法的运算规则

《向量的加法运算及其几何意义》教案完美版

《向量的加法运算及其几何意义》教案完美版

《向量的加法运算及其几何意义》教案完美版第一章:向量的引入1.1 实数与向量的关系介绍实数的概念和性质。

解释实数可以看作是二维向量空间中的一条直线上的点。

强调实数与向量的相关性。

1.2 向量的定义定义向量的概念,包括大小和方向。

强调向量是自由矢量,可以自由平移。

解释向量与箭头表示法的区别。

第二章:向量的表示法2.1 箭头表示法介绍箭头表示法,箭头的长度表示向量的大小,箭头的方向表示向量的方向。

强调箭头表示法中的大小和方向的表示方法。

2.2 坐标表示法介绍坐标表示法,使用有序数对(x, y) 来表示向量,其中x 表示向量在x 轴上的分量,y 表示向量在y 轴上的分量。

强调坐标表示法中的分量的概念和计算方法。

第三章:向量的加法运算3.1 向量加法的定义定义向量加法的概念,即将两个向量相加得到一个新的向量。

强调向量加法满足交换律和结合律。

3.2 向量加法的几何意义解释向量加法的几何意义,即将两个向量的箭头首尾相接,得到一个新的向量箭头。

强调向量加法是将两个向量的方向和大小相加。

第四章:平行向量与共线向量4.1 平行向量的定义定义平行向量的概念,即方向相同或相反的向量。

强调平行向量具有相同的方向或相反的方向。

4.2 共线向量的定义定义共线向量的概念,即在同一直线上的向量。

强调共线向量可以是同方向的或反方向的。

第五章:向量加法的平行四边形法则5.1 平行四边形法则的定义介绍平行四边形法则,即将两个向量的起点相连,形成一个平行四边形,平行四边形的对角线表示两个向量相加的结果。

强调平行四边形法则是向量加法的一种直观表示方法。

5.2 平行四边形法则的应用解释如何使用平行四边形法则计算两个向量的和。

强调平行四边形法则适用于任意两个向量的加法运算。

第六章:向量减法与相反向量6.1 向量减法的定义定义向量减法,即将一个向量与它的相反向量相加。

强调向量减法实际上是加上一个相反向量。

6.2 相反向量的概念解释相反向量的定义,即大小相等、方向相反的向量。

高中数学人教A版必修向量加法运算及其几何意义课件

高中数学人教A版必修向量加法运算及其几何意义课件

高 中 数 学 人 教A版 必修4第 二章2 .2.1 向 量 加法 运算及 其几何 意义 课 件 (共 19张P PT)
【引申】 (1)AB BC CD DE AE
(2)OA AB BC CO 0
高 中 数 学 人 教A版 必修4第 二章2 .2.1 向 量 加法 运算及 其几何 意义 课 件 (共 19张P PT)


数的加法满足交换律与 结合律,即对任意 a, b R,有
ab ba (a b) c a (b c)
高 中 数 学 人 教A版 必修4第 二章2 .2.1 向 量 加法 运算及 其几何 意义 课 件 (共 19张P PT)
高 中 数 学 人 教A版 必修4第 二章2 .2.1 向 量 加法 运算及 其几何 意义 课 件 (共 19张P PT 数 学 人 教A版 必修4第 二章2 .2.1 向 量 加法 运算及 其几何 意义 课 件 (共 19张P PT)
【例2】已知三角形 ABC的重心为 G,
证明 : GA GB GC 0. A
高 中 数 学 人 教A版 必修4第 二章2 .2.1 向 量 加法 运算及 其几何 意义 课 件 (共 19张P PT)
ab
ab
高 中 数 学 人 教A版 必修4第 二章2 .2.1 向 量 加法 运算及 其几何 意义 课 件 (共 19张P PT)
一般地,我们有 |ab| |a||b|
高 中 数 学 人 教A版 必修4第 二章2 .2.1 向 量 加法 运算及 其几何 意义 课 件 (共 19张P PT)
高 中 数 学 人 教A版 必修4第 二章2 .2.1 向 量 加法 运算及 其几何 意义 课 件 (共 19张P PT)
高 中 数 学 人 教A版 必修4第 二章2 .2.1 向 量 加法 运算及 其几何 意义 课 件 (共 19张P PT)

河南省高中数学 向量的加法运算及其几何意义设计说明素材 新人教A版必修3

河南省高中数学 向量的加法运算及其几何意义设计说明素材 新人教A版必修3

河南省2014年高中数学向量的加法运算及其几何意义设计说明课件新人教A版必修3一、教学的本质、地位和作用向量是近代数学中重要和基本的数学概念之一,是沟通代数与几何的桥梁。

在实际生活中应用广泛,如物理学、工程技术中都用到了向量;向量加法运算是学生对向量运算体系所进行的第一次探索和尝试,学好本节课将为后面学习向量的其它知识奠定基础,为用“数”的运算解决“形’的问题提供工具和方法。

二、教学目标设计教学目标的分析与确定是教学设计的起点,它是教师对学生学习内容所达水平程度的期望,基于本节课的特点,我从以下三个方面设定了本节课的教学目标:知识目标:理解向量加法的含义,掌握向量加法的三角形法则和平行四边形法则;会用向量加法的交换律与结合律进行向量运算.能力目标:经历向量加法概念、法则的建构过程;通过观察、实验、类比、归纳等方法培养学生发现问题、分析问题、解决问题的能力.情感目标:经历运用数学来描述和刻画现实世界的过程;在动手探究、合作交流中培养学生勇于探索、敢于创新的个性品质.同时,本节课的知识结构层次清晰.重点:向量的加法法则和向量加法的运算律。

探究向量的加法法则并正确应用是本课的重点。

两个加法法则各有特点,联系紧密,实质相同,但是三角形法则适用范围更加广泛,且简便易行,所以是详讲内容。

难点:理解向量加法及其几何意义;尤其是方向相反的两个向量的加法。

主要是让学生认识到三角形法则的实质是:将已知向量首尾相接,而不是表示向量的有向线段之间必须构成三角形。

三、教学过程设计本节课的教学过程就是:提出问题、分析问题、解决问题的过程,通过创设情境,引入课题;独思共议,总结法则;合作交流,探究性质;典例分析,深化认识;课堂小结,拓展延伸等环节进行。

1、创设情境,引入课题情景:原来从浙江的嘉兴到宁波的慈溪,需先从嘉兴到杭州,再从杭州到慈溪,现在建好了杭州湾跨海大桥,可以从嘉兴直接到达慈溪。

这两种方式的位移是一样的,引出向量的加法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学向量的加法运算及其几何意义设计说明课件新人教A版必
修3
一、教学的本质、地位和作用
向量是近代数学中重要和基本的数学概念之一,是沟通代数与几何的桥梁。

在实际生活中应用广泛,如物理学、工程技术中都用到了向量;向量加法运算是学生对向量运算体系所进行的第一次探索和尝试,学好本节课将为后面学习向量的其它知识奠定基础,为用“数”的运算解决“形’的问题提供工具和方法。

二、教学目标设计
教学目标的分析与确定是教学设计的起点,它是教师对学生学习内容所达水平程度的期望,基于本节课的特点,我从以下三个方面设定了本节课的教学目标:
知识目标:理解向量加法的含义,掌握向量加法的三角形法则和平行四边形法则;会用向量加法的交换律与结合律进行向量运算.
能力目标:经历向量加法概念、法则的建构过程;通过观察、实验、类比、归纳等方法培养学生发现问题、分析问题、解决问题的能力.
情感目标:经历运用数学来描述和刻画现实世界的过程;在动手探究、合作交流中培养学生勇于探索、敢于创新的个性品质.
同时,本节课的知识结构层次清晰.
重点:向量的加法法则和向量加法的运算律。

探究向量的加法法则并正确应用是本课的重点。

两个加法法则各有特点,联系紧密,实质相同,但是三角形法则适用范围更加广泛,且简便易行,所以是详讲内容。

难点:理解向量加法及其几何意义;尤其是方向相反的两个向量的加法。

主要是让学生认识到三角形法则的实质是:将已知向量首尾相接,而不是表示向量的有向线段之间必须构成三角形。

三、教学过程设计
本节课的教学过程就是:提出问题、分析问题、解决问题的过程,通过创设情境,引入课题;独思共议,总结法则;合作交流,探究性质;典例分析,深化认识;
课堂小结,拓展延伸等环节进行。

1、创设情境,引入课题
情景:原来从浙江的嘉兴到宁波的慈溪,需先从嘉兴到杭州,再从杭州到慈溪,现在建好了杭州湾跨海大桥,可以从嘉兴直接到达慈溪。

这两种方式的位移是一样的,引出向量的加法。

2、独思共议,总结法则
引例1:通过现实中塔吊工作的情形引出位移的合成,体现出“首尾相接”的两个向量如何相加,从而得出向量加法的三角形法则。

引例2:有两辆汽车牵引一辆大卡车,牵绳间有夹角,如果只用一辆汽车来牵引,而产生的效果跟原来相同,试求这辆车的牵引力的大小和方向。

通过力的合成体现了“共起点”的两个向量如何相加,引出向量加法的平行四边形法则
根据学生的认知规律,从学生熟悉的物理知识入手,采用探究的方式,把探究新知的权利交给学生,让学生主动参与到问题的发现、讨论和解决等活动中来,而且在探究的过程中学生对向量加法的认识逐步由感性上升到理性,顺利得出向量加法法则,为突破重点奠定基础。

3、合作交流,探究性质
熟练两个法则的作图技能,让学生开展小组合作、自主探究,特别是向量共线时,通过研究向量的方向以及模之间的关系,培养学生勇于探索、敢于创新的个性品质,使他们在轻松愉快的氛围中突破难点,在过程中收获自信,体验成功!
通过学生展示讲解,锻炼学生的组织能力和语言表达能力。

通过教师点拨,强化重、难点,形成规律,加深理解。

4、典例分析,深化认识
通过层层深入的问题,既做了向量加法的练习,又证明了运算律,完善了知识体系。

特别是通过“类比”的方法引入向量的加法运算律,是符合建构主义的认识的.同时,对于结论的验证使学生进一步认识的数学的严谨之美,也欣赏到了两个法则的和谐统一之美.由特殊到一般,让学生通过练习归纳向量加法的三角形法则的推广-----多边形法则。

然后生活中有向量,生活中用向量,通过对应用题的讨论,拉近了学生和抽象的数学知识之间的距离,激发了他们学习的兴趣,同时增强了他们学习好数学的动力.
5、课堂小结,拓展延伸
让学生自己从所学的数学知识、数学思想方法两个方面进行总结,提高学生的概括、归纳能力。

同时学生在回顾、总结、反思的过程中,将知识条理化、系统化,使认知结构更趋合理。

在预先设计的情景下,学生通过积极思维,完成了向量加法法则及其运算律的自主探究;以学生为本,采用问题式教学,根据现代建构主义理论,从思维的最近发展区出发,以物理中熟悉的位移和力为情境,激活了学生原有的认知规律,巧妙引入课题,并为知识结构的优化奠
定基础;培养了学生自主探究,合作交流的能力。

四、教法特点及预期效果
伟大的教育家叶圣陶先生说过“教师之谓教,不在全盘授予,而在相机诱导”。

我将本着“以学生为中心,以问题为载体”的指导思想,采用启发、引导、探究相结合的教学方法.由于新课程所倡导的学习是学生自主探究和建构知识的过程,所以,在学法上,我引导学生采用以“小组合作、自主探究”为主要方式的自主学习模式.根据学生已有的知识和经验,有能力对数学问题进行合作探究。

在学生熟知的位移的合成、里的合成的基础上,探究出向量加法的运算。

也即是通过学生自主探究、合作交流,获得新知,学以致用。

以上是我本人对于本节课设计的一些做法和想法,由于水平有限,难免有许多的不足之处,恳请各位专家批评指正!。

相关文档
最新文档