变压器比率差动保护原理及校验方法

合集下载

变压器保护校验方法

变压器保护校验方法

RCS-978系列变压器保护测试、RCS-978型超高压线路成套保护RCS-978 配置:主保护:稳态比率差动,工频变化量比率差动,零序比率差动,谐波制动,后备保护:复合电压闭锁(启动)方向过流零序方向过流保护间隙零序过流过压保护零序过压稳态比率差动一、保护原理基尔霍夫电流定律,流入=流出(1)差动元件的动作特性在国内生产的微机型变压器差动保护中,差动元件的动作特性较多采用具有二段折线的动作特性曲线,如下图:在上图中,I .为差动元件起始动作电流幅值,也称为最小动作电流;op.minI 为最小制动电流,又称为拐点电流;res.minK=tan a为制动特性斜率,也称为比率制动系数。

微机变压器差动保护的差动元件采用分相差动,其动作具有比率制动特性。

动作特性为:拐点前(含拐点):' >一忆V JmJ拐点后: I op - I op mn + K (I es — JmJ / J .mJ式中 I op ——差动电流的幅值I res ——制动电流的幅值也有某些变压器差动保护采用三折线的制动曲线。

(2)动作方程和制动方程:差动电流Iop 和制动电流Ires 的获取差动电流(即动作电流):取各侧差动电流互感器(TA )二次电流相量和的绝对值。

以双绕组变压器为例,在微机保护中,变压器制动电流的取得方法比较灵活。

国内微机保护有以下几种取得方 式:I = I —I /2I = (I + I )/2resIres二、测试要点:标么值的概念另:注意,978可以自动辅助计算当前的差流,但其同时显示的“制流X 相”并不是当前X 相的制动电流,而是当前X 相制动电流下的动作电流边界!! !三、试验举例:保护定值:动作门槛:0.3差动速断电流:4I 侧(Y 接线)二次侧额定电流:3.935;II 侧(Y 接线)二次侧额定电流:3.765;III 侧(D 接线)二次侧额定电流:3.955由于该保护的补偿系数由标么值的方式计算,则每一侧的补偿系数是该侧二次侧额定 电流的倒数。

变压器差动保护比率制动系数校验的程序

变压器差动保护比率制动系数校验的程序

变压器差动保护比率制动系数校验的程序变压器差动保护比率制动系数校验的程序主要包含以下步骤:
1.获取变压器参数和保护装置的相关设置,包括变压器型号、额定容量、高
低压侧电流互感器变比、差动保护装置的制动特性曲线等。

2.计算差动保护的动作电流值,这是基于变压器高低压侧的电流值、变压器
变比和差动保护装置的制动特性曲线来确定的。

3.模拟变压器正常运行和异常运行状态下的电流情况,以验证差动保护装置
在不同情况下的动作性能。

4.校验差动保护装置的比率制动系数,检查其是否满足规程要求。

比率制动
系数是根据差动保护装置的动作电流值和变压器高低压侧的电流值计算得出的。

5.如果发现差动保护装置的比率制动系数不满足规程要求,需要对装置进行
调整或重新配置,以确保其性能符合要求。

总的来说,变压器差动保护比率制动系数校验的程序主要是为了确保变压器差动保护装置在不同运行状态下能够正确、可靠地动作,从而保障变压器的安全稳定运行。

这一过程需要综合考虑变压器参数、保护装置配置以及各种运行工况,通过模拟和计算来验证保护装置的性能,并对其进行必要的调整和优化。

微机型变压器比率差动保护原理及其校验

微机型变压器比率差动保护原理及其校验

了 Y 侧移相的方法,当在 Y 侧加载单相电流时,由式 (2-1) 其参与
差动运算的电流会缩小 3 倍,同时在其超前相会产生一反向的电
流。所以在实际校验中要采取措施进行处理,一是 Y 侧加载的单相
电流幅值要扩大 3 倍,二是要在 d 侧进行非试验相(超前相)电流 的补偿,使得非试验相的差动电流为零。
按上述方法求出第二点的差动动作电流 Icdd2 。
(5)计算
K1
的实际值(
K1
=
Icdd2 − Icdd1 ),验证 3Izd − 2Izd
0.5
倍的比
率系数。
(6)也可以根据所选的 Izdd 的数值代入式 (3-1) 求出对应
的动作电流 Icdd,确定要使比率差动动作需要在 d 侧 A 相加载电流
主要为:
(1)比率制动特性方程中的电流是以标幺值的形式表示的,所
以校验前需要计算出高、低压侧二次额定电流,计算结果可以与装
置中差动计算定值核对,应一致。而各侧所加载的电流幅值应为计
算出来的标幺值乘以各侧的额定电流。
(2)由于软件中采用了 d 侧移相的方法,当在 Y 侧加载单相电
流时,根据式 (2-3) 由于 Y 采取了消除零序电流的措施,其参与差
动运算的电流会缩小;在 d 侧加载单相电流时,根据式 (2-4) 其参
与差动运算的电流会缩小 3 倍,同时在其滞后相会产生一反向的电 流。可采取的措施:一是 d 侧加载的单相电流幅值要扩大 3 倍;二 是要在 Y 侧对应的滞后相加入与试验相幅值相同方向相反的电流,
这样
Y
.
侧零序电流 Ι
o
=
1
.

ah
降低。设校验中取制动电流 Izd=3Ie 这一点,在高、低压侧分别加

变压器比率差动保护原理及校验方法分析

变压器比率差动保护原理及校验方法分析

1引言随着生产生活进一步发展,社会各界对电能需求量进一步增加,电力企业为满足当前用电需求,不断优化电网,各种各样高压输电线路、变压设备等逐渐投入到电网建设之中。

变压器属于电网重要仪器之一,保证变压器质量可以有效提升电网整体可靠性。

而研究变压器比率差动保护原理及校验,对于提升变压器自身可靠性有很大意义。

2变压器比率差动保护原理差动保护属于变压器保护形式的一种,是指比较变压器不同侧相位与电流不同,进而构成一种保护。

尽管变压器各侧电路互不相通,电流不等,但可以根据变压器短路(外部)时流出与流入变压器的功率与正常情况下变压器工作时流出与流入变压器的功率进行比对,利用各侧电流安匝之和近似为零等,进而建立相应的差动保护平衡方程[1]。

一旦变压器内部发生故障后,可以通过建立相应差动保护平衡方程对相应差动电流流过的差动回路进行控制,促使差动继电器发挥作用,进而对变压器进行保护。

2.1不平衡电流产生的原因一旦变压器外部电路出现短路等故障后,差流回路(差动保护)会产生较大非平衡电流。

一般导致不平衡电流出现的原因包括以下几个:各侧电流(变压器)的互感器变比和型号不一致;高低压侧(变压器)绕组接线的形式不相同;暂态非平衡电流产生原因与变压故障、空载电流有很大关系,变压器外部故障消除后,或者有空载电流进入电源后,电压恢复励磁涌流导致暂态非平衡电流出现;变压器带负荷调分接头引起变比变化。

2.2不平衡电流处理措施常规变压器非平衡电流处理方式包括如下几种:确保各侧电流互感器必须一致。

相关技术人员选择相同电流互感器,安装在变压器各侧要尽可能选择变比、型号相同的仪器,确保各侧对变压器影响相同,避免非平衡电流产生。

技术人员也可以适当增加保护动作电流,以有效避免外部短路造成非平衡电流产生,动作电流具体数额要在对差动保护的整定计算中,进一步考虑[2];相关技术人员可以利用相位补偿法有效解决因高低压侧绕组方式不同导致的非平衡电路;相关技术人员可以采用波形对称原理、二次谐波制动原理、励磁涌流波形和内部短路电流差别等方式来躲避励磁涌流,避免非平衡电流产生;可以利用对变压器差动保护的整定计算的进一步优化,消除由于带负荷调分接头导致的非平衡电流问题。

变压器比率差动保护原理及校验方法分析

变压器比率差动保护原理及校验方法分析

变压器比率差动保护原理及校验方法分析摘要:电力系统的发展突飞猛进,大型发电机变压器投入运行,发变组差动保护在发变组保护中的地位越来越重要,运行中的发电机变压器发生故障,做为主保护的发变组比率差动保护应在第一时间动作,将故障的发电机或者变压器从系统中切除,保证电力系统的稳定运行。

近年在电网系统中,国电南自,国电南瑞,许继发变组保护在现场中得到了大量的应用,不同的厂家,针对保护的原理会有所不同,算法也各不相同,这对继电保护人员在保护校验中提出了更高的要求,本文针对变压器比率差动保护,以主变比率差动保护校验方法为例,研究国电南自,国电南瑞,许继主变比率差动保护的不同,校验方法的不同。

关键词:国电南自;国电南瑞;许继;变压器比率差动保护;检验1 保护配置某发电厂300MW机组,采用发电机-变压器-线路组形式接入220KV地区电网,主变采用Y/Δ-11点钟接线,主变比率差动保护TA取自发电机机端侧TA变比15000/5,高厂变高压侧TA变比1500/5,主变高压侧TA变比1200/5,变压器各侧电流互感器二次接线均采用星型接线,二次电流直接接入装置,变压器各侧TA二次电流相位由软件自调整,装置采用Y/Δ变化调整差流平衡。

(图一)2国电南瑞主变比率差动保护校验方法现场班组一般配置ONLLY A460系列继电保护校验仪,以(图一)为例,主变比率差动保护检验需要分别检验:发电机机端侧和主变高压侧比率差动,高厂变高压侧和主变高压侧比率差动,发电机机端侧和高厂变高压侧比率差动。

下面都以发电机机端侧和主变高压侧比率差动为例,研究单相法主变比率差动校验方法。

(1)从南瑞RCS-985发电机综合保护装置中读取主变差动定值:差动启动定值和差动速断定值是标幺值(2)南瑞RCS-985发电机综合保护装置,主变比率差动保护计算公式I d>Kbl×Ir+Icdqd(Ir<nIe)Kbl=Kbl1+Kblr×(Ir/Ie)Id>Kbl2×(Ir-nIe)+b+Icdqd (Ir≥nIe)Kblr=(Kbl2-Kbl1)/(2×n)b=(Kbl1+Kblr×n) ×nIe(公式一)Id----差动电流;Ir----制动电流;Kbl1----比率差动起始斜率Kbl2----比率差动最大斜率n----最大斜率时的制动电流倍数取6差动电流取各侧相量和的绝对值制动电流取各侧数值绝对值相加除以2(3)从计算定值中读取各侧额定电流:I主变高压侧=3.43A I发电机侧=4.33A(4)软件校正差动各侧电流相位差与平衡系数,校正方法:对于Y侧电路:ⅰ’A=(ⅰA-ⅰB)/√3ⅰ’B=(ⅰB-ⅰC)/√3ⅰ’C=(ⅰC-ⅰA)/√3ⅰA、ⅰB、ⅰC——为Y侧TA二次电流ⅰ’A、ⅰ’B、ⅰ’C­——为Y侧校正后各相电流(公式二)(5)保护动作特性:图二比率差动保护动作特性(6)打开校验仪,按照下表在保护装置上输入数值,设置步长:(表一)在校验仪上设置好数值之后,从保护装置上观测两侧电流平衡,差流位零,制动电流为两侧电流绝对值之和除以2,缓慢的调节步长(增加或减少都可),制动电流不变,差流逐渐增大,直至发电机保护动作,记录校验仪所加动作值,从微机保护装置上读取动作电流和制动电流。

比率差动保护原理

比率差动保护原理

比率差动保护原理比率差动保护是电力系统中常用的一种保护方式,它主要用于保护变压器和输电线路。

比率差动保护原理基于比较电流变压器的一次和二次电流之间的比率,以检测电流在变压器或输电线路中的不平衡情况,从而实现对系统的保护。

本文将介绍比率差动保护的原理及其应用。

比率差动保护的原理是基于基尔霍夫电流定律和变压器的工作原理。

在正常情况下,变压器的一次和二次电流是按照变比关系进行传递的,即二次电流等于一次电流乘以变压器的变比。

当变压器或输电线路发生故障时,导致一次和二次电流不平衡,这时比率差动保护就会起到作用。

比率差动保护装置会对一次和二次电流进行比较,如果检测到不平衡,则会输出保护动作信号,从而切断故障部分,保护系统的安全稳定运行。

比率差动保护通常由比率差动继电器、电流互感器、控制装置等组成。

比率差动继电器是比率差动保护的核心部件,它通过比较一次和二次电流的差值,来判断系统是否存在故障。

电流互感器则用于将一次和二次电流进行采集,并送至比率差动继电器进行比较。

控制装置则负责接收比率差动继电器的输出信号,并对系统进行保护动作。

比率差动保护在电力系统中具有重要的应用价值。

首先,它能够对变压器和输电线路进行全面的保护,及时发现故障并切断故障部分,保护系统的安全稳定运行。

其次,比率差动保护具有高灵敏度和快速动作的特点,可以有效地减小故障对系统的影响,提高系统的可靠性。

再次,比率差动保护还能够实现远程通信和自动化控制,提高电力系统的运行效率和管理水平。

总的来说,比率差动保护原理简单、可靠,具有广泛的应用前景。

随着电力系统的不断发展,比率差动保护将会在电力系统中发挥越来越重要的作用,为电力系统的安全稳定运行提供有力保障。

浅析变压器比率差动保护的校验方法

浅析变压器比率差动保护的校验方法
He a 7 5 0) n n4 3 0 ;
Ab t a t nt sso r n fr rS b t o ’ i e e t l r tci n. t sdf c l t ai ae t ec r e o t — ie e t r ~ sr c :I t f a s me u s ̄i n S f r n i oe t e T o d ap o i wa i iu t ov l t u v f ai df r n i p o d h r o l a tcin b c u et ec mp n ain p n i a f o u e r tcin d vc a w y s n e s o y tc nc a s.I iw o e e t e a s o e s t r cp l mp tr oe t e i ew sa a smi d r t d b h iin o h o i oc p o l u o e n ve f t h p o l m , h r cp eo ie e t l rt c o n h o k n so i e e t lc re t o e s t n meh d o o u e rtc rbe t ep i il f f r n i o e t n a d t e t id f f r ni u r n mp n ai t o n c mp trp o e - n d ap i w d a c o
关键词 : 变压 器 ; 比率 差 动 保 护 ;ห้องสมุดไป่ตู้验 方 法 校 d i 0 99 .s. 0 - 5 42 1. . 2 o 1. 6 6i n1 6 85 . 00 0 : 3 s 0 0 80
Ana y i o t si g m e ho o t a s o m e ’ r to i e e ta p o e to l ss f e tn t d n r b f r r S a i -d f r n i l r t c i n

比率差动保护实验方法

比率差动保护实验方法

比率差动保护实验方法汉川供电公司石巍主题词比率差动实验方法随着综合自动化装置的普遍推广使用,变压器比率差动保护得到了广泛的使用,但是由于厂家众多,计算方法和保护原理略有差异,而且没有统一的实验方法,尤其是比率制动中制动特性实验不准确,给运行和维护带来了不便,下面介绍两种比较简单和实用的,用微机继电保护测试装置测试差动保护的实验方法。

一、比率差动原理简介:差动动作方程如下:Id>Icd (Ir<Ird)Id>Icd+k*(Ir-Ird) (Ir>Ird)式中:Id——差动电流Ir——制动电流Icd——差动门槛定值(最小动作值)Ird——拐点电流定值k——比率制动系数多数厂家采用以下公式计算差动电流;Id=︱İh+İl︱(1)制动电流的公式较多,有以下几种:Ir=︱İh-İl︱/2 (2)Ir=︱İh-İl︱(3)Ir=max{︱İ1︱,︱İ2︱,︱İ3︱…︱İn︱}(4)为方便起见,以下就采用比较简单常用的公式(3)。

由于变压器差动保护二次CT为全星形接线,对于一次绕组为Y/∆,Y/Y/∆,Y/∆/∆,Y形接线的二次电流与∆形接线的二次电流有30度相位差,需要软件对所有一次绕组为Y形接线的二次电流进行相位和幅值补偿,补偿的方式为:İA=(İA’—İB’)/1.732/K hpİB=(İB’—İC’)/1.732/K hpİC=(İC’—İA’)/1.732/K hp其中İA、İB、İC为补偿后的二次电流(即保护装置实时显示的电流),İA’、İB’、İC’为未经补偿的二次电流,相当与由CT输入保护装置的实际的电流。

K hp为高压的平衡系数(有的保护装置采用的是乘上平衡系数),一般设定为1。

这样经过软件补偿后,在一次绕组为Y形的一侧加入单相电流时,保护会同时测到两相电流,加入A相电流,则保护同时测到A、C两相电流;加入B相电流,则保护同时测到B、A两相电流;加入C相电流,则保护同时测到C、B两相电流。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变压器比率差动保护原理及校验方法1引言继电保护(Protective Relay,Power System Protection是研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。

因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等,使之免遭损害,所以也称继电保护。

基本任务是:当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。

继电保护是保障电力设备安全和防止及限制电力系统长时间大面积停电的最基本、最重要、最有效的技术手段。

许多实例表明,继电保护装置一旦不能正确动作,就会扩大事故,酿成严重后果。

因此,加强继电保护的设计和整定计算,是保证电网安全稳定运行的重要工作。

实现继电保护功能的设备称为继电保护装置。

本次设计的任务主要包括了六大部分,分别为运行方式的选择、电网各个元件参数及负荷电流计算、短路电流计算、继电保护距离保护的整定计算和校验、继电保护零序电流保护的整定计算和校验、对所选择的保护装置进行综合评价。

其中短路电流的计算和电气设备的选择是本设计的重点。

通过分析,找到符合电网要求的继电保护方案。

电力系统和继电保护技术的不断发展和安全稳定运行,给国民经济和社会发展带来了巨大动力和效益。

但是,电力系统一旦发生自然或人为故障,如果不能及时有效控制,就会失去稳定运行,使电网瓦解,并造成大面积停电,给社会带来灾难性的后果。

因此电网继电保护和安全自动装置应符合可靠性、安全性、灵敏性、速动性的要求。

要结合具体条件和要求,本设计从装置的选型、配置、整定、实验等方面采取综合措施,突出重点,统筹兼顾,妥善处理,以达到保证电网安全经济运行的目的。

继电保护是随着电力系统的发展而发展起来的。

20世纪初随着电力系统的发展,继电器开始广泛应用于电力系统的保护,这时期是继电保护技术发展的开端。

最早的继电保护装置是熔断器。

从20世纪50年代到90年代末,在40余年的时间里,继电保护完成了发展的4个阶段,即从电磁式保护装置到晶体管式继电保护装置、到集成电路继电保护装置、再到微机继电保护装置。

2继电保护相关理论知识2.1继电保护的概述研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。

因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等,使之免遭损害,所以沿称继电保护。

2.2继电保护的任务当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。

2.3继电保护基本原理继电保护装置的作用是起到反事故的自动装置的作用,必须正确地区分“正常”与“不正常”运行状态、被保护元件的“外部故障”与“内部故障”,以实现继电保护的功能。

因此,通过检测各种状态下被保护元件所反映的各种物理量的变化并予以鉴别。

依据反映的物理量的不同,保护装置可以构成下述各种原理的保护。

2.3.1反映电气量的保护电力系统发生故障时,通常伴有电流增大、电压降低以及电流与电压的比值(阻抗和它们之间的相位角改变等现象。

因此,在被保护元件的一端装没的种种变换器可以检测、比较并鉴别出发生故障时这些基本参数与正常运行时的差别,就可以构成各种不同原理的继电保护装置。

电力系统发生故障后,工频电气量变化的主要特征是:(1电流增大:短路时故障点与电源之间的电气设备和输电线路上的电流将由负荷电流增大至大大超过负荷电流。

(2电压降低:当发生相间短路和接地短路故障时,系统各点的相间电压或相电压值下降,且越靠近短路点,电压越低。

(3电流与电压之间的相位角改变:正常运行时电流与电压间的相位角是负荷的功率因数角,一般约为20°,三相短路时,电流与电压之间的相位角是由线路的阻抗角决定的,一般为60°~85°,而在保护反方向三相短路时,电流与电压之间的相位角则是180°(-60°~-85°。

(4测量阻抗发生变化:测量阻抗即测量点(保护安装处电压与电流之比值,正常运行时,测量阻抗为负荷阻抗;金属性短路时,测量阻抗转变为线路阻抗,故障后测量阻抗显著减小,而阻抗角增大。

(5不对称短路时,出现相序分量,如两相及单相接地短路时,出现负序电流和负序电压分量;单相接地时,出现负序和零序电流和电压分量。

这些分量在正常运行时是不出现的。

利用短路故障时电气量的变化,便可构成各种原理的继电保护。

2.3.2反映非电气量的保护如反应温度、压力、流量等非电气量变化的可以构成电力变压器的瓦斯保护、温度保护等。

2.4对继电保护装置的要求继电保护装置为了完成它的任务,必须在技术上满足选择性、速动性、灵敏性和可靠性四个基本要求。

对于作用于继电器跳闸的继电保护,应同时满足四个基本要求,而对于作用于信号以及只反映不正常的运行情况的继电保护装置,这四个基本要求中有些要求可以降低。

(1选择性选择性就是指当电力系统中的设备或线路发生短路时,其继电保护仅将故障的设备或线路从电力系统中切除,当故障设备或线路的保护或断路器拒动时,应由相邻设备或线路的保护将故障切除。

(2速动性速动性是指继电保护装置应能尽快地切除故障,以减少设备及用户在大电流、低电压运行的时间,降低设备的损坏程度,提高系统并列运行的稳定性。

一般必须快速切除的故障有:1使发电厂或重要用户的母线电压低于有效值(一般为0.7倍额定电压。

2大容量的发电机、变压器和电动机内部故障。

3中、低压线路导线截面过小,为避免过热不允许延时切除的故障。

4可能危及人身安全、对通信系统或铁路信号造成强烈干扰的故障。

故障切除时间包括保护装置和断路器动作时间,一般快速保护的动作时间为0.04s~0.08s,最快的可达0.01s~0.04s,一般断路器的跳闸时间为0.06s~0.15s,最快的可达0.02s~ 0.06s。

对于反应不正常运行情况的继电保护装置,一般不要求快速动作,而应按照选择性的条件,带延时地发出信号。

(3灵敏性灵敏性是指电气设备或线路在被保护范围内发生短路故障或不正常运行情况时,保护装置的反应能力。

保护装置的灵敏性是用灵敏系数来衡量。

能满足灵敏性要求的继电保护,在规定的范围内故障时,不论短路点的位置和短路的类型如何,以及短路点是否有过渡电阻,都能正确反应动作,即要求不但在系统最大运行方式下三相短路时能可靠动作,而且在系统最小运行方式下经过较大的过渡电阻两相或单相短路故障时也能可靠动作。

系统最大运行方式:被保护线路末端短路时,系统等效阻抗最小,通过保护装置的短路电流为最大运行方式;系统最小运行方式:在同样短路故障情况下,系统等效阻抗为最大,通过保护装置的短路电流为最小的运行方式。

(4可靠性可靠性包括安全性和信赖性,是对继电保护最根本的要求。

安全性:要求继电保护在不需要它动作时可靠不动作,即不发生误动。

信赖性:要求继电保护在规定的保护范围内发生了应该动作的故障时可靠动作,即不拒动。

继电保护的误动作和拒动作都会给电力系统带来严重危害。

即使对于相同的电力元件,随着电网的发展,保护不误动和不拒动对系统的影响也会发生变化。

以上四个基本要求是设计、配置和维护继电保护的依据,又是分析评价继电保护的基础。

这四个基本要求之间是相互联系的,但往往又存在着矛盾。

因此,在实际工作中,要根据电网的结构和用户的性质,辩证地进行统一。

继电保护相当于一种在线的开环的自动控制装置,根据控制过程信号性质的不同,可以分模拟型(它又分为机电型和静态型和数字型两大类。

对于常规的模拟继电保护装置,一般包括测量部分、逻辑部分和执行部分。

测量部分从被保护对象输入有关信号,再与给定的整定值比较,以判断是否发生故障或不正常运行状态;逻辑部分依据测量部分输出量的性质、出现的顺序或其组合,进行逻辑判断,以确定保护是否应该动作;执行部分依据前面环节判断得出的结果子以执行:跳闸或发信号。

2.5继电保护装置的组成一般情况而言,整套继电保护装置由测量元件、逻辑环节和执行输出三部分组成。

(1测量比较部分:测量比较部分是测量通过被保护的电气元件的物理参量,并与给定的值进行比较,根据比较的结果,给出“是”“非”性质的一组逻辑信号,从而判断保护装置是否应该启动。

(2逻辑部分:逻辑部分使保护装置按一定的逻辑关系判定故障的类型和范围,最后确定是应该使断路器跳闸、发出信号或是否动作及是否延时等,并将对应的指令传给执行输出部分。

(3执行输出部分:执行输出部分根据逻辑传过来的指令,最后完成保护装置所承担的任务。

如在故障时动作于跳闸,不正常运行时发出信号,而在正常运行时不动作等。

2.6工作回路要完成继电保护任务,除了需要继电保护装置外,必须通过可靠的继电保护工作回路的正确工作,才能完成跳开故障元件的断路器、对系统或电力元件的不正常运行发出警报、正常运行状态不动作的任务。

继电保护工作回路一般包括:将通过一次电力设备的电流、电压线性地传变为适合继电保护等二次设备使用的电流、电压,并使一次设备与二次设备隔离的设备,如电流、电压互感器及其与保护装置连接的电缆等;断路器跳闸线圈及与保护装置出口间的连接电缆,指示保护动作情况的信号设备;保护装置及跳闸、信号回路设备的工作电源等。

3设计内容与要求3.1设计基本资料35KV供电系统图,如图1所示。

系统参数:电源I短路容量:SIDmax=150MVA;电源Ⅱ短路容量:SⅡDmax=250MVA;供电线路:L1=L2=15km,L3=L4=10km,线路阻抗:XL=0.4Ω/km。

图3.135KV系统原理接线图10KV母线负荷情况,见下表:表3.110KV母线负荷情况3.235KV变电所主接线图图3.235KV变电所主接线图B1、B2主变容量、型号为6300kVA之SF1-6300/35型双卷变压器,Y-Δ/11之常规接线方式,具有带负荷调压分接头,可进行有载调压。

其中Uk%=7.5。

运行方式:以SI、SⅡ全投入运行,线路L1~L4全投。

DL1合闸运行为最大运行方式;以SⅡ停运,线路L3、L4停运,DL1断开运行为最小运行方式。

已知变电所10KV出线保护最长动作时间为1.5s。

4本设计继电保护装置原理概述4.1纵差动保护三绕组变压器差动保护的动作原理是按循环电流原理构成的。

正常运行和外部短路时,三绕组变压器三侧电流向量和(折算至同一电压等级为零。

它可能是一侧流入另两侧流出,也可能由两侧流入,而从第三侧流出。

所以,若将任何两侧电流相加再和第三侧电流相比较,就构成三绕组变压器的纵差动保护。

其原理接线如图3-1所示。

相关文档
最新文档