山东大学本科高等数学作业卷(十)及答案
2010年山东专升本(数学)真题试卷(题后含答案及解析)

2010年山东专升本(数学)真题试卷(题后含答案及解析)题型有:1. 选择题 2. 填空题 4. 解答题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。
1.函数y=-arccos的定义域是( )A.[-3,1]B.[ -8,-1)C.[-8,-1]D.[-1,1]正确答案:D解析:因,故,,所以-1≤x≤1,故选项D正确2.极限等于( )A.0B.1C.1/3D.3正确答案:D解析:,故选项D正确3.已知(1)=1,则等于( )A.1B.-1C.2D.-2正确答案:D解析:根据导数的定义,=-2(1)=-2,选D正确4.设φ(x)=,则(x)等于( )A.B.C.D.正确答案:C解析:(x)===,选项C正确5.曲线y=x2与直线y=1所围成的图形的面积为( )A.2/3B.3/4C.4/3D.1正确答案:C解析:曲线y=x2与曲线y=1的交点坐标为(-1,1)和(1,1),则所围图形的面积为(1-x2)dx-=.选项C正确6.定积分xcos xdx等于( )A.-1B.0C.1D.1/2正确答案:B解析:因被积函数xcosx在[-2,2]上为奇函数,故xcosxdx=0.选项B 正确7.已知向量=(-1,-2,1)与向量=(1,2,t)垂直,则t等于( ) A.-1B.1C.-5D.5正确答案:D解析:因向量a与b垂直,故a.b=0,即(-1).1+(-2).2+1.t=0,也即-5+t=0,故t=5.选项D正确8.曲线y=x2在点(1,1)处的法线方程为( )A.y=xB.y=+C.y=+D.y=--正确答案:B解析:根据导数的几何意义,切线的斜率k=|x=1=2x|x=1=2,故法线方程为y-1=(x-1),即y=-+,选B正确9.设函数f(x)在点x0处不连续,则( )A.(x0)存在B.(x0)不存在C.f(x)必存在D.f(x)在点x0处可微正确答案:B解析:根据“可导必连续”,则“不连续一定不可导”,选项B正确10.=0是级数收敛的( )A.必要条件B.充分条件C.充分必要条件D.不确定正确答案:A解析:根据收敛级数的性质,=0是级数收敛的必要条件.选项A正确填空题11.若函数f(x)=在x=1处连续,则a=_______.正确答案:f(x)=(-2x+1)=-1,f(x)=(x-a)=1-a,因f(x)在点x=1处连续,故f(x)=f(z),即-1=1-a,a=212.x=0是函数f(x)=xcos的第_______类间断点.正确答案:f(x)==0,故x=0是函数f(x)的第一类间断点13.若曲线y=f(x)在点(x0,f(x0))处的切线平行于直线y=2x-3,则(x0)=________.正确答案:切线与直线平行,则切线的斜率与直线的斜率相等,故(x0)=2 14.函数f(x)=2x3-9x2+12x的单调减区间是_______.正确答案:令(x)=6x2-18x+12=6(x-1)(x-2)=0,得驻点x=1和x=2;当x(x)>0,当1(x)2时,(x)>0,故函数的单调递减区间为[1,2]15.设y=cos(sin x),则dy=______.正确答案:dy=dcos(sinx)=-sin(sinx)cosxdx16.不定积分∫df(x)=________.正确答案:根据不定积分与微分的关系可得,∫df(x)=f(x)+C17.dx=________ .正确答案:由定积分的几何意义,dx表示曲线y=,直线x=0,x=1和x轴所围成的图形的面积,即圆面积,故18.“函数z=f(x,y)的偏导数,在点(z,y)存在”是“函数z=f(x,y)在点(x,y)可微分”的_______条件.正确答案:根据二元函数微分的存在性定理可知,二元函数z=f(x,y)在点(x,y)处可微分则偏导数一定存在,但反之不一定成立,故“函数z=f(x,y)的偏导数、在点(x,y)存在”是“函数z=f(x,y)在点(x,y)可微分”的必要非充分条件19.微分方程-4-5y=0的通解为_______.正确答案:原方程的特征方程为r2-4r-5=0,有两个不相等的实根r1=-1,r2=5,故原方程的通解为y=+20.幂级数的收敛区间为_______.正确答案:因==故R==+∞所以原幂级数的收敛区间为(-∞,+∞)解答题解答时应写出推理、演算步骤。
山东大学网络高起专高等数学试题及答案

山东大学网络高起专高等数学试题及答案高等数学模拟卷 1 一 求下列极限 1 1lim sin n n n→∞=0(有界量乘无穷小量)2 求0lim x x x →=1lim 1lim {00x -=-=-+→→xxx xx3 求1lim xx e →=0lim lim {1010=∞=-+→→xx xx e esin 4limsin5x x x x x→++=31616155sin 5sin lim 55sin 5lim 5sin sin lim sin lim 0000=+=+++=+++→→→→xx x x x xx x x x x x x x x x x x x x x x (第一个重要极限)二a 取什么值,0()0x e x f x a x x ⎧<=⎨+≥⎩连续 答:根据函数在一点处连续的定义,)(lim )(lim 0x f a x f x x -+→→==,而)(lim 0x f x -→=x x e -→0lim =1 所以 a=1三 计算下列各题 1已知2sin ln y x x=⋅ 求,y答:y ’=2(sinx ·lnx)’=2[(sinx)’(lnx)+(sinx)(lnx)’] =2cosxlnx+2xsinx2 (),()x f x y f e e y =⋅已知,求答:由链式法则,()()()()dxdy e e f e e e f dx x f x x f x x +⋅=dy所以()()()()x f x x f x x ee f e e f y -=+1'23x xe dx⎰求答:ce dx e x d e x x x +===⎰⎰2222121222原式四、若202tan()sec x yx x y tdt ---=⎰,求dydx另x-y=m, y=x-m, 对两边求导数,得到dy/dx = 1 - dm/dx 将y = x-m 带回原式,再两边对x 求导。
高等数学试题库及答案doc

高等数学试题库及答案doc一、选择题1. 下列函数中,哪一个是偶函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = |x|D. f(x) = sin(x)答案:A2. 曲线 y = x^2 在点 (1,1) 处的切线斜率是多少?A. 0B. 1C. 2D. -2答案:C二、填空题1. 极限lim(x→0) (sin(x)/x) 的值是 __________。
答案:12. 函数 f(x) = x + 1 在 x = 2 处的导数是 __________。
答案:1三、计算题1. 求函数 f(x) = x^3 - 2x^2 + 3x 的导数。
解:f'(x) = 3x^2 - 4x + 32. 计算定积分∫(0 到 1) x^2 dx。
解:∫(0 到 1) x^2 dx = [1/3 * x^3] (从0到1) = 1/3四、证明题1. 证明函数 f(x) = e^x 是严格单调递增的。
证明:设任意 x1 < x2,则 f(x1) - f(x2) = e^x1 - e^x2。
由于e^x 是严格单调递增的,所以当 x1 < x2 时,e^x1 < e^x2,从而f(x1) < f(x2)。
因此,函数 f(x) 是严格单调递增的。
五、应用题1. 一个物体从静止开始,以初速度为零的匀加速直线运动,其加速度为 2 m/s²。
求物体在前 3 秒内的位移。
解:根据匀加速直线运动的位移公式 s = 1/2 * a * t²,代入 a = 2 m/s²和 t = 3 s,得到 s = 1/2 * 2 * 3² = 9 m。
六、论述题1. 论述微积分在物理学中的应用。
答案:微积分在物理学中有广泛的应用,例如在力学中计算物体的运动轨迹、在电磁学中分析电场和磁场的变化、在热力学中研究温度分布等。
微积分的基本原理—极限和导数,为物理学家提供了一种强大的工具,用以描述和预测物理现象的变化趋势。
山东高等数学2010年专升本试题答案

山东大学成人教育专升本入学考试高等数学(二)模拟题 (1)一、 选择题:本大题5个小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内。
1、函数291)(xx f -=的定义域是( A )A 、(-3,3)B 、[-3,3 ]C 、(3,3-,)D 、(0,3)2、x1sin lim x ∞→=( A ) A. 0 B. 1 C.∞ D. 不存在 3、设4)3)(2)1)-x -(x -(x -x(x f(x)=则)2('f =( D )A 、0B 、1C 、2D 、4 4、设函数x f(x)=,则)1(f '等于 ( C )A.1B.-1C.21 D.-21 5、曲线3x y =在点)1,1(M 处的切线方程是 ( C ) A. 023=-+x y B. 03231=-+x y C.023=+-x y D. 043=--x y二、填空题:本大题共15个小题,共15个空,每空3分,共45分。
把答案填在题中横线上。
1、设1)1(2--=+x x x f ,则=)(x f231x x -+2、判断函数的奇偶性:cosx )(3x x f = 是 奇函数3、=-+∞→531002lim 33x xx x 23 4、13+=x y 的反函数是()3log 1y x =-5、已知32)tan(lim 0=→xkx x ,则k = 6 6、=++∞→xx x x )12(lim 1 7、设x x x y -=ln ,则y '=ln x8、曲线22xy =在)2,1(处的切线方程是46y x =-+9、设x x y sin =,则''y =2cos sin y x x x =-10、=-=dy x y 则设,)1(4323312(1)x x dx - 11、不定积分⎰=+dx x 121()1ln 212x C ++ 12、不定积分⎰dx x xe = x x xxe e e +-13、定积分dx x⎰-+11211=π14、定积分=⎰exdx 1ln 115、⎰-+⋅=x dt t t x 0321)(φ设,)('x φ则= 123(1)x x +三、计算题:本大题共10个小题,每小题6分, 共60分。
山东大学高数测试题5

………………………………………………密………………………………封………………………………线………………………………………………高等数学 ch5 常微分方程 测试题题号 一 二 三 四 五 六 七 八 九 十 总分 阅卷人得分学院 专业 级 学号 姓名第 1 页 共 3 页一、选择题(每题5分,共25分)1.函数x C y sin -=(其中C 是任意常数)是方程x xysin d d 22=的(A) 通解 (B) 特解 (C) 是解,但既非通解也非特解 (D)不是解2212222|1222(A)(B)(C)(D)1111x x y xy y y xxxy y y y x x x x ='+======+-++2.微分方程满足初始条件的特解为2002221()0|1,|2(A)1(B)1(C)1(D)x x yy y y y y x y x y x y x==''''+====-=+=+=3.微分方程满足初始条件的特解是123e ,2e ,3e (A)0(B)0(C)61160(D)220x x x y y x y y y y y y y y y y y y y y y y y --===''''''''''''--+=+--=''''''''''''-+-=--+=4.具有特解的三阶常系数线性微分方程是12121221122112211221,()()0()()______.(A)()()()()0(B)()()()()0(C)()()()()0(D)()()()()0y y y p x y q x y y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x '''++=''''-=+≠''''+=-≠5.设是二阶常系数线性齐次方程的两个特解,则由与能构成该方程的通解,其充分条件为二、填空题(每题5分,共25分)0()(,())1()d ()____________.xx y f x x f x y f t t f x x >==⎰1.设对任意,曲线上点处的切线在轴上的截距等于,则2.2____________.xy y xy '+=微分方程的通解为 'tan cos ____________.y y x x +=3.微分方程的通解为e 1(,)____________.x y y a b ''-=+4.微分方程的一个特解应具有形式式中为常数2'2''____________y y y x xx -=5.微分方程+的通解为.三、计算、证明题(第1-4题10分,5-6题每题15分,共70分) 1. 求通解(12e )d 2()e d 0x x yyy x x y y +--=12121e 2.(e e )(,)2''2'e x x xx y C C C C x xy y xy -=+++-=证明下列函数为任意常数是方程的通解.得分 阅卷人得分 阅卷人第 2 页 共 3 页3.()'()(1)''()()0'()(1)f x f x f x f x f x f x f x =-+==-证明:若满足方程,则必满足方程,并求方程的解.()sin ()()d ().xf x x x t f t t f f x =--⎰4.设,其中为连续函数,求25.()''3'22e ,(0,1)1x y f x y y y y x x y =-+==-+设函数满足微分方程其图形在处的切线与曲线在该点处的切线重合,求函数的解析表达式.2222212d 36.()(1)()4(1)d ()3()e d 1().2e t u x t t y y f x t t t x y t y t y u t t ϕϕϕϕ-⎧=+=>-=⎨+=⎩==+=⎰设函数由参数方程所确定,且,其中具有二阶导数,曲线与在处相切,求函数。
山东大学 微积分作业卷及答案(上下册)

(D)若 lim f ( x) lim g ( x) 0 ,当 0 x x0 时有 f ( x) g ( x) .
x x0 x x0
2. 当 x → 1 时,函数
(A) 等于 2
x 2 1 x1 e 1 的极限为 ( D ) x 1 (B) 等于 0 (C) 为 ∞x 1 0 NhomakorabeaD
x 1 0
)
(A) f ( x)在x 1无定义 (B) lim f ( x)不存在 (C) lim f ( x)不存在 2. 当 x → 0 时 f ( x) (A)无穷小量 1 1 sin 是 ( 2 x x (B)无穷大量
C )
x x0 x x0
(D) lim f ( x)不存在
解 lim f ( x) lim sin x 0, lim f ( x) lim a x 2 a ,故当 a=0 时 lim f ( x) 存在
x 0 0 x 0 0 x 0 0 x 0 0 x 0
此时 lim f ( x) 0
x 0
第 2 页,共 61 页
,b =
0
时 f(x)在(-∞,+ ∞)连续.
4.若 lim
sin 6 x xf ( x) 6 x sin 6 x 6 f ( x) 0, lim 36, 则 lim 3 3 x 0 x 0 x 0 x x x2
36
.
二、选择题
x 1, 0 x 1 1. f ( x) 在 x=1 处间断是因为 ( 2 x, 1 x 3
(D) 不存在但不为 ∞ ) (D) a =-1,b =-1
x2 3. 已知 lim ax b 0 ,其中 a,b 是常数,则 ( C x x 1
山东大学《高等数学》期末复习参考题 (11)

2
k
1− r 2
(7 分)
= 4πabc ∫ r 1 − r 2 d r
0
k
4πabc 2 = 1 − 1 − k 3
(
)
3 2
(10 分)
2、解: n = ±{5,−1,−1} ,cos α = ±
5 1 1 ,cos β = ∓ ,cos γ = ∓ 27 27 27
x2 y2 5、函数 f ( x , y ) = x 4 + y 4 0
(A)连续但不可微; (C)可导但不可微; 1、 设Ω是由 分 I=
( x , y ) ≠ (0,0) ( x , y ) = (0,0)
在点(0,0)处(
)
(B)可微; (D)既不连续又不可导。 ≤1 及 所确定的闭区域,(a,b,c>0;0<k≤1),试求积
《数学分析 III》期末试卷 11 答案与评分标准
一、填空题(共 10 小题,40 分)
1、π 2、 3、 − ( x + y ) ≤ z ≤ x + y ,且 x + y ≠ 0
2 2 2 2 2 2
4、
μ(x,y)dσ(或
μ(x,y)dxdy).
5、I=24 6、 2 2 π 2 7、 3x + 2 y − z = 11 8、 x + 2 y + z + 2 = 0 9、
三、计算题(共 3 小题,30 分)
.
2
2、求函数 u = x ln( y + 3z ) 在点(1,2,2)处沿平面 5x − y − z = 1 法线方向的方向 导数。 3、求函数 u = z ⋅ y 在点(1,2,1)处沿 a = {3,3,−2} 方向的方向导数。
大学数学练习题

大学数学习题及答案一 填空题:1 一阶微分方程的通解的图像是 维空间上的一族曲线.2 二阶线性齐次微分方程的两个解 y 1(x);y 2(x)为方程的基本解组充分必要条件是________.3 方程0'2''=+-y y y 的基本解组是_________.4 一个不可延展解的存在区间一定是___________区间.5 方程21y dxdy-=的常数解是________. 6 方程0')('')(==+-x q x t p x t 一个非零解为 x 1(t) ,经过变换_______7 若4(t)是线性方程组X t A X )('=的基解矩阵, 则此方程组的任一解4(t)=___________. 8 一曲线上每一占切线的斜率为该点横坐标的2倍,则此曲线方程为________. 9 满足_____________条件的解,称为微分方程的特解.10 如果在微分方程中,自变量的个数只有一个我们称这种微分方程为_________. 11 一阶线性方程)()('x q y x p y =+有积分因子(=μ ). 12 求解方程y x dxdy/-=的解是( ). 13已知(0)()3222=+++dy x y x dx y x axy 为恰当方程,则a =____________.14 ⎪⎩⎪⎨⎧=+=0)0(22y y x dx dy ,1:≤x R ,1≤y 由存在唯一性定理其解的存在区间是( ).15方程0652=+-⎪⎭⎫ ⎝⎛y dx dy dx dy 的通解是( ). 16方程534y x y dx dy =++⎪⎭⎫ ⎝⎛的阶数为_______________.17若向量函数)()();();(321x x x x n Y Y Y Y 在区间D 上线性相关,则它们的伏朗斯基行列式w (x)=____________. 18若P(X)是方程组Y =)(x A dxdy的基本解方阵则该方程组的通解可表示为_________. 19.方程0d )1(1)d (22=-+-y x y x y x 所有常数解是____________________. 20.方程04=+''y y 的基本解组是____________________.21.方程1d d +=y xy 满足解的存在唯一性定理条件的区域是____________________.22.函数组)(,),(),(21x x x n ϕϕϕ 在区间I 上线性无关的____________________条件是它们的朗斯基行列式在区间I 上不恒等于零.23.若)(),(21x y x y ϕϕ==是二阶线性齐次微分方程的基本解组,则它们____________________共同零点.二 单项选择:1 方程y x dxdy+=-31满足初值问题解存在且唯一定理条件的区域是( ). (A)上半平面 (B)xoy 平面 (C)下半平面 (D)除y 轴外的全平面 2 方程1+=y dxdy ( ) 奇解.(A) 有一个 (B) 有两个 (C) 无 (D) 有无数个 3 在下列函数中是微分方程0''=+y y 的解的函数是( ).(A) 1=y (B)x y = (C) x y sin = (D)xe y = 4 方程x e y y x==-''的一个特解*y 形如( ).(A)b ae x= (B)bx axe x+ (C)c bx ae x++ (D)c bx axe x++ 5 )(y f 连续可微是保证方程)(y f dxdy=解存在且唯一的( )条件. (A )必要 (B )充分 (C) 充分必要 (D)必要非充分 6 二阶线性非齐次微分方程的所有解( ).(A)构成一个2维线性空间 (B)构成一个3维线性空间 (C)不能构成一个线性空间 (D)构成一个无限维线性空间7 方程323y dxdy=过点(0,0)有( ). (A) 无数个解 (B)只有一个解 (C)只有两个解 (D)只有三个解8 初值问题 ⎝⎛=10'x ⎪⎪⎭⎫01x , ⎪⎪⎭⎫⎝⎛-=11)0(x 在区间,∞<<∞-t 上的解是( ).(A) ⎪⎪⎭⎫ ⎝⎛-t t u t )( (B) ⎪⎪⎭⎫ ⎝⎛-=t e u t )( (C) ⎪⎪⎭⎫ ⎝⎛-=e t u t )( (D) ⎪⎪⎭⎫ ⎝⎛-=e e u t )( 9 方程0cos 2=++x y x dxdy是( ). (A) 一阶非线性方程 (B)一阶线性方程 (C)超越方程 (D)二阶线性方程10 方程032=+⎪⎭⎫⎝⎛dx dy dx dy 的通解是( ).(A)xeC C 321+ (B) xeC x C 321-+ (C)xeC C 321-+ (D)xeC 32-11 方程0442=++⎪⎭⎫⎝⎛y dx dy dx dy 的一个基本解组是( ).(A) xex 2,- (B)xe2,1- (C)xex 22,- (D)x xxe e22,--12 若y1和y2是方程0)()(2=++⎪⎭⎫⎝⎛y x q dx dy x p dx dy 的两个解,则2211y e y e y += (e 1,e 2为任意常数) (A) 是该方程的通解 (B)是该方程的解(C) 不一定是该方程的通解 (D)是该方程的特解 13 方程21y dxdy-=过点(0,0)的解为x y sin =,此解存在( ). (A)),(+∞-∞ (B) ]0,(-∞ (C)),0[+∞ (D)]2,2[ππ- 14 方程xe y x y -=23'是( ) .(A) 可分离变量方程 (B) 齐次方程 (C)全微分方程 (D) 线性非齐次方程 15 微分方程01=-y x dx dy 的通解是( ). (A) x c y = (B) cx y = (C)c xy +=1(D)c x y +=16 在下列函数中是微分方程0''=+y y 的解的函数是( ). (A)1=y (B)x y = (C)x y sin = (D)xe y = 17 方程x e y y x+=-''的一个数解xy 形如( ).(A) b ae x+ (B)bx axe x+ (C)c bx ae x++ (D)c bx axe x++ 18 初值问题 ⎝⎛10'x ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫11)0(;01x x 在区间∞<<∞-t 上的解是( ). (A)⎪⎪⎭⎫ ⎝⎛-=t t u t )( (B)⎪⎪⎭⎫ ⎝⎛=-t e u t t )( (C)⎪⎪⎭⎫ ⎝⎛-=-t t e t u )( (D) ⎪⎪⎭⎫ ⎝⎛-=--t t t e e u )( 19.方程yx y =d d 的奇解是( ).(A )x y = (B )1=y (C )1-=y (D )0=y20. 方程21d d y x y -=过点)1,2(π共有( )个解.(A )一 (B )无数 (C )两 (D )三21.n 阶线性齐次微分方程基本解组中解的个数恰好是( )个.(A )n (B )n -1 (C )n +1 (D )n +2 22.一阶线性非齐次微分方程组的任两个非零解之差( ).(A )不是其对应齐次微分方程组的解 (B )是非齐次微分方程组的解 (C )是其对应齐次微分方程组的解 (D )是非齐次微分方程组的通解23.如果),(y x f ,y y x f ∂∂),(都在xoy 平面上连续,那么方程),(d d y x f x y=的任一解的存在区间( ).(A )必为),(∞+-∞ (B )必为),0(∞+ (C )必为)0,(-∞ (D )将因解而定三 求下列方程的解:1 求下列方程的通解或通积分:(1)ny y dx dy 1= (2)x y x y dx dy +⎪⎭⎫⎝⎛-=21 (3)5xy y dx dy += (4)0)(222=-+dy y x xydx (5)3)'(2'y xy y += 2 求方程的解 01)4()5(=-x tx 3 解方程:x y dxdycos 2=并求出满足初始条件:当x=0时,y=2的特解 4 求方程: x ytg x y dx dy +=5求方程: 26xy xydx dy -=的通解6 求0)46()63(3222=+++dy y y x dx xy x 的通解.7 求解方程: 022244=++x dt xd dt x d8 求方程: 014455=-dt xd t dtx d 的解 9 求方程25'5''x y y -=-的通解10 求下列方程组的通解⎪⎪⎩⎪⎪⎨⎧-=+=x dtdy ty dt dx sin 111求初值问题⎩⎨⎧=--=0)1('y yx y 11:≤+x R 1≤y 的解的存在区间并求出第二次近似解12 求方程的通解 (1)2y x y dx dy += (2) xy x y dx dy tan += (3) 0)4()3(2=---dy x y dx x y (三种方法) (4)04524=+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛y dx dy dx dy13 计算方程 x y y 2sin 34''=+的通解14计算方程 t x dtdxdt x d cos 442=+- 15 求下列常系数线性微分方程: xxe y y y 210'2''=+-16 试求⎢⎣⎡=02x ⎥⎦⎤21x 的基解矩阵17 试求矩阵⎢⎣⎡-=12A ⎥⎦⎤41的特征值和对应的特征向量. 18 试求矩阵⎢⎣⎡-=53A ⎥⎦⎤35的特征值和特征向量 19 解方程组 ⎝⎛=⎪⎪⎭⎫⎝⎛13''21y y ⎪⎪⎭⎫22 ⎪⎪⎭⎫⎝⎛21y y 20.求下列方程组的通解⎪⎪⎩⎪⎪⎨⎧+=--=y x t y y x t x43d d 2d d .四 名词解释1微分方程 2常微分方程、偏微分方程 3变量分离方程 4伯努利方程 5Lipschitz 条件 6 线性相关 五 证明题1在方程0)(')(''=++y x q y x p y 中已知p(x);q(x)在);(+∞-∞上连续 求证:该方程的任一非零解在xoy 平面上不能与x 轴相切. 2 设x 1(t)、x 2(t)分别是非齐次性线方程)()()(1111t f x t G dt xd t G dt x d n n n n n =+++-- )()()(2111t f x t G dtxd t G dt x d n n n n n =+++-- 证明:x 1(t)+x 2(t)是方程)()()()(21111t f t f x t G dtxd t G dt x d n n n n n +=+++-- 的解。