高数习题集(附答案)
高等数学练习题(附答案)

《高等数学》专业年级学号姓名一、判断题.将√或×填入相应的括号内.(每题2分,共20分)()1.收敛的数列必有界.()2.无穷大量与有界量之积是无穷大量.()3.闭区间上的间断函数必无界.()4.单调函数的导函数也是单调函数.()5.若f (x )在x 0点可导,则f (x )也在x 0点可导.()6.若连续函数y =f (x )在x 0点不可导,则曲线y =f (x )在(x 0,f (x 0))点没有切线.()7.若f (x )在[a ,b ]上可积,则f (x )在[a ,b ]上连续.()8.若z =f (x ,y )在(x 0,y 0)处的两个一阶偏导数存在,则函数z =f (x ,y )在(x 0,y 0)处可微.()9.微分方程的含有任意常数的解是该微分方程的通解.()10.设偶函数f (x )在区间(-1,1)内具有二阶导数,且f ''(0)=f '(0)+1,则f (0)为f (x )的一个极小值.二、填空题.(每题2分,共20分)1.设f (x -1)=x ,则f (x +1)=.22.若f (x )=2-12+11x1x,则lim +=.x →03.设单调可微函数f (x )的反函数为g (x ),f (1)=3,f '(1)=2,f ''(3)=6则---------------------------------------------------------------------------------------------------------------------------------g '(3)=.4.设u =xy +2x,则du =.y35.曲线x =6y -y 在(-2,2)点切线的斜率为.6.设f (x )为可导函数,f '(1)=1,F (x )=f ()+f (x ),则F '(1)=.7.若1x2⎰f (x )0t 2dt =x 2(1+x ),则f (2)=.8.f (x )=x +2x 在[0,4]上的最大值为.9.广义积分⎰+∞0e -2x dx =.2210.设D 为圆形区域x +y ≤1,⎰⎰y D1+x 5dxdy =.三、计算题(每题5分,共40分)111+Λ+).1.计算lim(2+22n →∞n (n +1)(2n )2.求y =(x +1)(x +2)(x +3)ΛΛ(x +10)在(0,+∞)内的导数.23103.求不定积分⎰1x (1-x )dx .4.计算定积分⎰πsin 3x -sin 5xdx .3225.求函数f (x ,y )=x -4x +2xy -y 的极值.6.设平面区域D 是由y =x ,y =x 围成,计算⎰⎰Dsin ydxdy .y7.计算由曲线xy =1,xy =2,y =x ,y =3x 围成的平面图形在第一象限的面积.---------------------------------------------------------------------------------------------------------------------------------8.求微分方程y '=y -2x的通解.y四、证明题(每题10分,共20分)1.证明:arc tan x=arcsinx 1+x 2(-∞<x <+∞).2.设f (x )在闭区间[a ,b ]上连续,且f (x )>0,F (x )=⎰f (t )dt +⎰x xb1dt f (t )证明:方程F (x )=0在区间(a ,b )内有且仅有一个实根.《高等数学》参考答案一、判断题.将√或×填入相应的括号内(每题2分,共20分)1.√;2.×;3.×;4.×;5.×;6.×;7.×;8.×;9.√;10.√.二、填空题.(每题2分,共20分)21.x +4x +4; 2.1; 3.1/2;4.(y +1/y )dx +(x -x /y )dy ;25.2/3;6. 1;7.336;8.8;9.1/2;10.0.三、计算题(每题5分,共40分)n +1111n +1<++L +<1.解:因为(2n )2n 2(n +1)2(2n )2n 2且lim 由迫敛性定理知:lim(n →∞n +1n +1=0lim ,=0n →∞(2n )2n →∞n 2111++Λ+)=0222n (n +1)(2n )2.解:先求对数ln y =ln(x +1)+2ln(x +2)Λ+10ln(x +10)---------------------------------------------------------------------------------------------------------------------------------∴11210y '=++Λ+y x +1x +2x +10∴y '=(x +1)Λ(x +10)(3.解:原式=21210++Λ+)x +1x +2x +10⎰11-xd x =2⎰11-(x )2d x=2arcsin4.解:原式=x +c⎰πsin 3x cos 2xdxπ32=⎰π2020cos x sin xdx -⎰cos x sin xdx232ππ32=⎰sin xd sin x -⎰ππ2sin xd sin x32222-[sin 2x ]π=[sin 2x ]0π552=4/525.解:f x'=3x -8x -2y =0f y'=2x -2y =05π5故⎨⎧x =0⎧x =2或⎨⎩y =0⎩y =2当⎨⎧x =0''(0,0)=-2,f xy ''(0,0)=2''(0,0)=-8,f yy 时f xx⎩y =0---------------------------------------------------------------------------------------------------------------------------------Θ∆=(-8)⨯(-2)-22>0且A=-8<0∴(0,0)为极大值点且f (0,0)=0当⎨⎧x =2''(2,2)=-2,f xy ''(2,2)=2''(2,2)=4,f yy 时f xxy =2⎩Θ∆=4⨯(-2)-22<0∴无法判断6.解:D=(x ,y )0≤y ≤1,y 2≤x ≤y{}∴⎰⎰D1y sin y 1sin y sin y dxdy =⎰dy ⎰2dx =⎰[x ]y dyy 20y 0y y y =⎰(sin y -y sin y )dy1=[-cos y ]+10⎰1yd cos y 1=1-cos1+[y cos y ]0-⎰cos ydy 01=1-sin17.解:令u =xy ,v =y;则1≤u ≤2,1≤v ≤3x1x uJ =yuxv =2uv y vv-u 2v v =12v u2u v231dv =ln 3∴A =⎰⎰d σ=⎰du ⎰112v D8.解:令y =u ,知(u )'=2u -4x由微分公式知:u =y =e ⎰22dx 2(⎰-4xe ⎰-2dx dx +c )---------------------------------------------------------------------------------------------------------------------------------=e 2x (⎰-4xe -2x dx +c )=e 2x (2xe -2x +e -2x +c )四.证明题(每题10分,共20分)1.解:设f (x )=arctan x -arcsinx 1+x 221Θf '(x )=-21+x 1x 1-1+x 221+x -⋅1+x 2x 21+x 2=0∴f (x )=c-∞<x <+∞令x =0Θf (0)=0-0=0∴c =0即:原式成立。
高数试题及答案

高数试题及答案一、选择题(每题2分,共20分)1. 函数f(x)=x^2-4x+3在区间[0,5]上的最大值是:A. 3B. 4C. 5D. 62. 曲线y=x^3-3x^2+2x在x=1处的切线斜率是:A. -1B. 0C. 1D. 23. 已知∫(0,1) x^2 dx = 1/3,求∫(0,1) x^3 dx的值:A. 1/4B. 1/3C. 1/2D. 2/34. 函数y=sin(x)的周期是:A. πB. 2πC. 4πD. 8π5. 无穷小量o(x)与x的关系是:A. o(x) = x^2B. o(x) = xC. o(x) = x^(1/2)D. o(x) = x^(1/3)6. 极限lim(x→0) (sin(x)/x)的值是:A. 0B. 1C. πD. ∞7. 函数f(x)=x^3+2x^2-5x+7的零点个数是:A. 0B. 1C. 2D. 38. 已知函数f(x)=x^2+3x+2,求f(-1)的值:A. 0B. 1C. 2D. 39. 函数f(x)=e^x的导数是:A. e^xB. x*e^xC. 1D. x10. 已知序列{an}=2n-1,求a5的值:A. 9B. 7C. 5D. 3二、填空题(每题2分,共10分)11. 函数f(x)=2x-3的反函数是________。
12. 曲线y=x^2在x=-1处的切线方程为________。
13. 极限lim(x→∞) (1/x)等于________。
14. 函数y=ln(x)的定义域是________。
15. 函数f(x)=cos(x)的最小正周期是________。
三、解答题(每题15分,共30分)16. 求函数f(x)=x^3-6x^2+11x-6在区间[1,3]上的最大值和最小值。
17. 求曲线y=x^3-2x^2+x在点(1,0)处的切线方程,并说明切点坐标。
四、证明题(每题15分,共15分)18. 证明:对于任意正整数n,有sin(n)≠n。
完整)高等数学考试题库(附答案)

完整)高等数学考试题库(附答案)高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分)。
1.下列各组函数中,是相同的函数的是()。
A)f(x)=ln(x^2)和g(x)=2lnxB)f(x)=|x|和g(x)=x^2C)f(x)=x和g(x)=x^2/xD)f(x)=2|x|和g(x)=1/x答案:A2.函数f(x)=ln(1+x)在x=0处连续,则a=()。
A)1B)0C)-1D)2答案:A3.曲线y=xlnx的平行于直线x-y+1=0的切线方程为()。
A)y=x-1B)y=-(x+1)C)y=(lnx-1)(x-1)D)y=x答案:C4.设函数f(x)=|x|,则函数在点x=0处()。
A)连续且可导B)连续且可微C)连续不可导D)不连续不可微答案:A5.点x=0是函数y=x的()。
A)驻点但非极值点B)拐点C)驻点且是拐点D)驻点且是极值点答案:A6.曲线y=4|x|/x的渐近线情况是()。
A)只有水平渐近线B)只有垂直渐近线C)既有水平渐近线又有垂直渐近线D)既无水平渐近线又无垂直渐近线答案:B7.∫f'(1/x^2)dx的结果是()。
A)f(1/x)+CB)-f(x)+CC)f(-1/x)+CD)-f(-x)+C答案:C8.∫ex+e^(-x)dx的结果是()。
A)arctan(e^x)+CB)arctan(e^(-x))+CC)ex-e^(-x)+CD)ln(ex+e^(-x))+C答案:D9.下列定积分为零的是()。
A)∫π/4^π/2 sinxdxB)∫0^π/2 xarcsinxdxC)∫-2^1 (4x+1)/(x^2+x+1)dxD)∫0^π (x^2+x)/(e^x+e^(-x))dx答案:A10.设f(x)为连续函数,则∫f'(2x)dx等于()。
A)f(1)-f(0)B)f(2)-f(0)C)f(1)-f(2)D)f(2)-f(1)答案:B二.填空题(每题4分,共20分)。
高等数学练习题(附答案)

高等数学练习题(附答案)高等数学一、判断题(每题2分,共20分)1.√2.√3.×4.√5.×6.√7.×8.√9.√ 10.√二、填空题(每题2分,共20分)1.f(x+2)=x+12.03.g'(3)=1/64.du=ydx+xdy5.-1/26.5/47.9/48.69.-2 10.π/2三、计算题(每题5分,共40分)1.1/42.y'=(∑(i=1 to 10) i/(x+i))^23.ln|x-1|+ln|x|+C4.2π5.(2,2)6.1-cos(1)7.ln3/28.y=e^x-x-1/2x^2+C一、判断题1.√2.×3.×4.×5.×二、填空题1.22.13.14.15.1三、改写后的文章2.根据函数的定义,f(x)在点x处有定义是指该点的函数值存在,而f(x)在点x处连续是指当x在该点附近时,函数值的变化趋势与x的变化趋势一致。
因此,f(x)在点x处有定义是f(x)在点x处连续的充分条件,但不是必要条件。
3.若y=f(x)在点x不可导,则曲线y=f(x)在(x,f(x))处可能有切线,也可能没有切线。
因此,该说法是错误的。
4.若f(x)在[a,b]上可积,g(x)在[a,b]上不可积,则f(x)+g(x)在[a,b]上可能可积,也可能不可积。
因此,该说法是错误的。
=0和x+y+z=0在空间直角坐标系中分别表示一个坐标轴和一个平面,而不是三个坐标轴和一个点。
因此,该说法是错误的。
四、证明题1.设f(x)=arctanx-arcsin(x/(1+x^2)^(1/2)),则f'(x)=1/(1+x^2)-x/(1+x^2)(1-x^2/(1+x^2))=0.化简可得x^2=1,即x=±1.因此,f(x)在(-∞,1)和(1,+∞)上单调递减,故在(-∞,+∞)上存在唯一实根。
高等数学习题集及解答

高等数学习题集及解答第二章一、 填空题1、设()f x 在x a =可导,则0()()lim x f a x f a x x →+--=。
2、设(3)2f '=,则0______________(3)(3)lim 2h f h f h →--=。
3、设1()xf x e -=,则0_____________(2)(2)limh f h f h→--=。
4、已知00cos (),()2,(0)1sin 2x f x f x x x π'==<<-,则0_______________________()f x =。
5、已知2220x y y x +-=,则当经x =1、y =1时,_______________dydx =。
6、()x f x xe =,则_______________(ln 2)f '''=。
7、如果(0)y ax a =>是21y x =+的切线,则__________a =。
8、若()f x 为奇函数,0()1f x '=且,则0_________________()f x '-=。
9、()(1)(2)()f x x x x x n =+++,则_________________(0)f '=。
10、ln(13)x y -=+,则____________________y '=。
11、设0()1f x '=-,则0___________00lim(2)()x xf x x f x x →=---。
12、设tan x y y +=,则_________________________dy =。
13、设lny =_______________(0)y '''=。
14、设函数()y f x =由方程42ln xy x y +=所确定,则曲线()y f x =在点(1,1)处的切线方程是______________________。
高等数学试题(含答案)

高等数学试题(含答案)高等数学试题(含答案)一、选择题1.已知函数f(x)=x^2+3x+2,下列哪个选项是f(x)的导数?A. 2x+3B. 2x+2C. x^2+3D. 3x+22.若函数f(x)=e^x,那么f'(x)等于:A. e^-xB. e^xC. ln(x)D. e^x+13.设函数y=f(x)在点x=2处可导,且f'(2)=3,则曲线y=f(x)在点(2,f(2))处的切线斜率为:A. 2B. 3C. 1D. 6二、计算题1.计算极限lim(x→1) [(x-1)/(x^2-1)]答案:1/22.计算积分∫(0 to 1) (2x+1) dx答案:3/23.设曲线C的方程为y=x^3,计算曲线C的弧长。
答案:∫(0 to 1) √(1+9x^4) dx三、证明题证明:若函数f(x)在区间[a,b]上连续,且在(a,b)可导,那么必然存在c∈(a,b),使得 f'(c) = [f(b)-f(a)] / (b-a)。
证明过程:由于f(x)在区间[a,b]上连续,根据连续函数的介值定理,f(x)在[a,b]上会取到最大值M和最小值m。
设在点x=c处取得最大值M(即f(c)=M)。
根据费马定理,如果f(x)在点x=c处可导,并且f'(c)存在,那么f'(c)=0。
由于f(x)在(a,b)可导,故f'(c)存在。
那么,根据导数的定义,f'(c)=[f(c)-f(a)]/(c-a)。
又因为f(c)=M,将其代入上式得到f'(c)=(M-f(a))/(c-a)。
同理,根据费马定理,如果f(x)在点x=d处取得最小值m(即f(d)=m),那么f'(d)也等于0。
将f(d)=m代入上式得到f'(d)=(m-f(a))/(d-a)。
由于f(x)是连续函数,故在区间[a,b]上必然存在一个点c∈(a,b),使得它处于最大值M和最小值m之间,即m<f(c)<M。
完整)高等数学练习题附答案

完整)高等数学练习题附答案第一章自测题一、填空题(每小题3分,共18分)1.lim (sinx-tanx)/(3xln(1+2x)) = 1/22.lim (2x^2+ax+b)/(x-1) =3.a = 5.b = 123.lim (sin2x+e^(2ax)-1)/(x+1) = 2a4.若f(x)在(-∞,+∞)上连续,则a=05.曲线f(x) = (x-1)/(2x-4x+3)的水平渐近线是y=1/2,铅直渐近线是x=3/26.曲线y=(2x-1)/(x+1)的斜渐近线方程为y=2x-3二、单项选择题(每小题3分,共18分)1.“对任意给定的ε∈(0,1),总存在整数N,当n≥N时,恒有|x_n-a|≤2ε”是数列{x_n}收敛于a的充分条件但非必要条件2.设g(x)={x+2,x<1.2-x^2,1≤x<2.-x,x≥2},f(x)={2-x,x<1.x^2,x≥1},则g(f(x))=2-x^2,x≥13.下列各式中正确的是 lim (1-cosx)/x = 04.设x→0时,e^(tanx-x-1)与x^n是等价无穷小,则正整数n=35.曲线y=(1+e^(-x))/(1-e^(-x^2))没有渐近线6.下列函数在给定区间上无界的是 sin(1/x),x∈(0,1]三、求下列极限(每小题5分,共35分)1.lim (x^2-x-2)/(4x+1-3) = 3/42.lim x+e^(-x)/(2x-x^2) = 03.lim (1+2+3+。
+n)/(n^2 ln n) = 04.lim x^2sin(1/x) = 01.设函数$f(x)=ax(a>0,a\neq1)$,求$\lim\limits_{n\to\infty}\frac{1}{\ln\left(\frac{f(1)f(2)\cdotsf(n)}{n^2}\right)}$。
2.求$\lim\limits_{4x\to1}\frac{x^2+e\sin x+6}{1+e^x-\cosx}$。
高等数学试题及答案解析

高等数学试题及答案解析一、选择题1. 函数f(x) = x^2 - 4x + 3在区间[0, 5]上的最大值是:A. 3B. 5C. 7D. 9答案:D解析:首先求导f'(x) = 2x - 4,令f'(x) = 0得到x = 2,这是函数的极值点。
计算f(2) = 2^2 - 4*2 + 3 = -1。
接下来检查区间端点,f(0) = 3,f(5) = 5^2 - 4*5 + 3 = 9。
因此,最大值为f(5) = 9。
2. 若f(x) = sin(x) + cos(x),则f'(x)等于:A. cos(x) - sin(x)B. cos(x) + sin(x)C. -sin(x) + cos(x)D. -sin(x) - cos(x)答案:A解析:根据导数的基本公式,sin(x)的导数是cos(x),cos(x)的导数是-sin(x)。
因此,f'(x) = cos(x) - sin(x)。
二、填空题1. 求不定积分∫(2x + 1)dx = __________。
答案:x^2 + x + C解析:根据不定积分的基本公式,∫x^n dx = (x^(n+1))/(n+1) + C,其中n ≠ -1。
将n = 1代入公式,得到∫(2x + 1)dx = ∫2x dx + ∫1 dx = x^2 + x + C。
2. 若y = ln(x),则dy/dx = __________。
答案:1/x解析:对自然对数函数求导,根据对数函数的导数公式,ln(x)的导数是1/x。
三、解答题1. 求函数f(x) = x^3 - 6x^2 + 9x - 2的极值点。
答案:极值点为x = 3。
解析:首先求导f'(x) = 3x^2 - 12x + 9。
令f'(x) = 0,解得x = 1 和 x = 3。
计算二阶导数f''(x) = 6x - 12,代入x = 1得到f''(1) = -6 < 0,说明x = 1是极大值点;代入x = 3得到f''(3) = 18 > 0,说明x = 3是极小值点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 函数与极限
§1 函数
必作习题
P16-18 4 (5) (6) (8),6,8,9,11,16,17
必交习题
一、一列火车以初速度0v ,等加速度a 出站,当速度达到1v 后,火车按等速运动前进;从
出站经过T 时间后,又以等减速度a 2进站,直至停止。
(1) 写出火车速度v 与时间t 的函数关系式;
(2) 作出函数)(t v v =的图形。
二、 证明函数1
2+=
x x y 在),(+∞-∞内是有界的。
三、判断下列函数的奇偶性: (1)x x x f 1sin
)(2= ;
(2)1
212)(+-=x x x f ;
(3))1ln()(2++=x x x f 。
四、 证明:若)(x f 为奇函数,且在0=x 有定义,则0)0(=f 。
§2 初等函数
必作习题
P31-33 1,8,9,10,16,17
必交习题
一、 设)(x f 的定义域是]1,0[,求下列函数的定义域:
(1))(x e f ;
(2))(ln x f ;
(3))(arcsin x f ;
(4))(cos x f 。
二、(1)设)1ln()(2x x x f +=,求)(x e
f -;
(2)设23)1(2+-=+x x x f ,求)(x f ;
(3)设x
x f -=
11)(,求)]([x f f ,})(1{x f f 。
)1,0(≠≠x x
三、设)(x f 是x 的二次函数,且1)0(=f ,x x f x f 2)()1(=-+,求)(x f 。
四、设⎩⎨⎧>+≤-=0,
20,
2)(x x x x x f ,⎩⎨⎧>-≤=0,
0,)(2x x x x x g ,求)]([x g f 。
§3 数列的极限
必作习题
P42 3 (3) (4),4,5,6
必交习题
一、 写出下列数列的前五项 (1)3sin 31n n x n =
;
(2)n n n n x n ++++++=
22212111Λ;
(3)n
x n x n n n
)1(1211122-=+++=-,Λ。
二、已知n
x n
n )1(1-+=,用定义证明:0lim =∞→n n x
§4 函数的极限
必作习题
P50 1 (2) (4),2(2),3,4,7,9
必交习题 一、用极限的定义证明:41
22 lim 21=--→x x x 。
二、用极限的定义证明:656 lim =+∞→x
x x 。
三、研究下列函数在0=x 处的左、右极限,并指出是否有极限: (1)x x x f ||)(=
;
(2)⎪⎩
⎪⎨⎧<+=>-=0,10, 00,1)(2x x x x x x f
四、用极限的定义证明:2)106( lim 22
=+-→x x x
§5 无穷大与无穷小 §6 极限运算法则
必作习题
P54-55 3,4,5; P63 1,2,3
必交习题
一、举例说明(当0→x 时):(1)两个无穷小的商不一定是无穷小;(2)无界量不一定为无
穷大量。
二、求下列数列的极限: (1))121( lim 222n
n n n n -+++∞→Λ=
(2)n
n n n n 6565 lim 1
1++++∞→=
(3))3
)1(27191311( lim 11
--∞→-++-+-n n n Λ=
三、求下列函数的极限: (1)1
1 lim 1--→x x x =
(2)h
x h x h 3
30)( lim -+→=
(3)))(( lim x a x x x -++∞
→=
(4))1311( lim 31x x x ---→=
四、设21
2)1( lim 2334-=-++++∞→x x bx x a x ,求b a ,。
§7 极限存在准则 ,两个重要极限 §8
无穷小的比较 必作习题
P 71 1,2,4; P 74 1,2,3,4
必交习题
一、 求下列极限: (1) x
x x 3sin lim ∞→=
(2)a
x a x a x --→22sin sin lim =
(3)114sin lim 0-+→x x x =
(4)114 lim +∞→⎪⎭
⎫ ⎝⎛++x x x x =
(5)x
x x x 1011 lim ⎪⎭
⎫ ⎝⎛-+→=
二、用极限存在准则求证下列极限:
(1)设1(0=>i a i ~),m },,m ax {1m a a M Λ=;证明: M a a a n n
m n n n =+++∞→Λ21lim
(2)设31>x ,),2,1(3)1(31Λ=++=+n x x x n
n n 。
证明此数列收敛,并求出它的极限。
三、确定k 的值,使下列函数与k x ,当0→x 时是同阶无穷小: (1)
x x +-+111;
(2)53243x x -;
(3)x x sin 1tg 1--+。
四、已知11 lim 21=-++→x b a x x ,求b a 和. 。
三、用极限定义证明:
(1) 若)(∞→→n a x n ,则对任一自然数k ,也有)(∞→→+n a x k n ;
(2) 若)(∞→→n a x n ,则)(||||∞→→n a x n ,并举例说明反之未必成立;
(3) 若)(0||∞→→n x n ,则)(0∞→→n x n 。
四、 设数列}{n x 有界,又0 lim n =∞→n y ,证明0 lim n =∞
→n n y x 。
§9 函数的连续性与间断点
必作习题
P80 1,2,3
必交习题
一、当0=x 时下列函数)(x f 无定义,试定义)0(f 的值,使)(x f 在0=x 连续: (1)1111)(3-+-+=
x x x f ;
(2)x
x x f 1sin sin )(⋅=。
二、指出下列函数的间断点并判定其类型: (1)311)(x x x f ++=
;
(2))
1(||)(22--=x x x x x f ;
(3)⎪⎩
⎪⎨⎧≤<-+>=-0
1)1ln(0)(1
1x x x e x f x 。
三、确定b a 和,使函数)
1)(()(---=x a x b e x f x 有无穷间断点0=x ;有可去间断点1=x 。
四、设函数)(x f 在),(+∞-∞上有定义,且对任何21,x x 有
)()()(2121x f x f x x f +=+,
证明:若0)(=x x f 在连续,则),()(+∞-∞在x f 上连续。
§10 连续函数的运算与初等函数的连续性
§11 闭区间上连续函数的性质
必作习题
P85-86 1,2,3; P91 1,2,3
必交习题
一、 欲使
⎪⎩
⎪⎨⎧->++-=-<+=1)ln(111)(22x x x b x x x a x f ,,,
在1-=x 处连续,求b a ,。
二、求下列极限: (1)x
a a x x ln )ln( lim 0-+→=
(2)x
x x e x 1)( lim 0+→=
(3)x (x-x cos 21)sin
lim 33-→ππ=
(4)x x x 2sin 1
)(cos lim →=
三、证明方程=-x x 351至少有一根介于1和2之间。
四、设函数)(x f 在区间]2,0[a 上连续,)2()0(a f f =,证明在区间],0[a 上至少存在一
点0x 使得)()(00a x f x f +=。